Applying Conflict Management Strategies in BDI Agents for
Resource Management in Computational Grids

Omer F. Rana?

Michael Winikoff', Lin Padgham', James Harland'

1School of Computer Science and Information Technology,
RMIT University, Melbourne, Australia
Email: {winikoff,linpa,jah}@cs.rmit.edu.au
2Department of Computer Science, Cardiff University, UK
Email: o.f.rana@cs.cf.ac.uk

Abstract

Managing resources in large scale distributed systems — “Com-
putational Grids”, is a complex and time sensitive process. The
computational resources being shared vary in type and com-
plexity, and resource properties can change over time. An ap-
proach based on interacting software agents is presented, where
each resource manager and resource requester is modelled as a
BDI agent. The proposed approach can help resolve conflicts
that arise during resource discovery and application scheduling,
and enables site autonomy to be maintained. The modelling
and detection of conflicts is important in the context of this
work, to enable each resource and application to respond to
changes in the environment. We propose a BDI based frame-
work that can be used to model agents that represent resources
and applications — and outline properties that each must main-
tain.

Keywords: modelling conflicts, computational Grids, distributed
computing, BDI agents

1 Introduction

An intelligent agent is able to make rational deci-
sions, i.e., blending proactiveness and reactiveness,
showing rational commitment to decisions made,
and exhibiting flexibility in the face of an uncer-
tain and changing environment. Agents offer new
ways of abstraction, decomposition, and organisa-
tion that fit well with our natural view of the
world and agent oriented programming is often con-
sidered a natural successor to object oriented pro-
gramming [Jennings, 2001]. It has the potential to
change the way we design, visualise, and build soft-
ware in that agents can naturally model “actors”
— real world entities that can show autonomy and
proactiveness. Additionally, social agents naturally
model (human) organisations ranging from business
structure & processes to military command struc-
tures. A number of significant applications utilising
agent technology [Jennings and Wooldridge, 1998a]
have already been developed, many of which are de-
cidedly non-trivial, such as the military simulation
work undertaken with dMars containing thousands
of plans [Tidhar et al., 1998].

In this paper we apply intelligent software
agents, using the BDI model [Wooldridge, 2000,
Georgeff and Rao, 1998, Rao and Georgeff, 1992], to
the problem of resource management in distributed
systems. The resource management problem in dis-
tributed systems (in its simplest form) consists of, (1)
selecting a set of resources on which to execute tasks
generated from an application, (2) mapping tasks to

Copyright ©2001, Australian Computer Society, Inc.

computational resources, (3) feeding data to these
computations, and (4) ensuring that task and data de-
pendencies between executing tasks are maintained.
Generally, relations between tasks are defined using
a task graph — which provides a partial ordering on
task execution. Each node within such a graph rep-
resents a computation, and arcs represent data or
control relationships. Once a task graph has been
specified, the next stage involves resource selection or
discovery, to identify suitable computational engines
from a pool, typically homogeneous, based on criteria
ranging from licensing constraints, processor(s) ca-
pability(ies), execution costs, and background work-
load. A good overview of such cluster management
systems can be found in [Baker, Fox and Yau, 1996).
In [Rana et al., 2001] an agent based MatchMaking
service is described, which acts as a “yellow pages”
service to discover resources of interest. This study
assumes that resources can be heterogeneous, and
their properties can change over time. A match be-
tween task and resource properties is achieved by find-
ing commonalities (either syntactic, contextual or se-
mantic) between task and resource properties. An
implementation based on JKQML [JKQML, 1999] is
also provided in the study to demonstrate the con-
cepts. The agents however undertake simple activi-
ties, and do not have associated behaviours that can
be used to adapt their operations over time.

We extend the work in [Rana et al., 2001] to in-
clude rational agents based on the BDI model. A ra-
tional agent executes a plan (from a pre-defined plan
library) to achieve local goals, and can retry alter-
nate plans if a goal cannot be achieved. To utilise
this model, it is necessary to translate the resource
management problem into goals that need to be sat-
isfied locally within each agent, based on the role that
an agent undertakes within the system. We identify
three roles that are necessary for such a resource man-
agement system, (1) a resource agent role, (2) an ap-
plication agent role, and (3) a middle (broker) agent
role. These are described in greater detail in sec-
tion 2. Expressing the resource management prob-
lem in this way supports a de-centralised manage-
ment strategy, whereby each agent in the system is
responsible for managing its local goals, and is par-
ticularly useful in an environment (such as Computa-
tional Grids [Foster and Kesselman, 1999]) where re-
source capabilities and application demands can vary
significantly over time.

2 Resource management

A three tier system is considered, based on BDI Appli-
cation Agents (AAs), Broker Agents (BAs) and BDI
Resource Agents (RAs) as illustrated in figure 1. Each
AA is responsible for managing the execution of a
program described as a task graph. An AA can man-
age multiple programs (task graphs) and undertakes

Task Graph Task Graph
Application
Agents Aq Ao An
LN Task Graph
" :\: ~.\..\1
v4- N Bg B B
: o Middle
5‘1 el Agents
Vo N Tl N
Resource
R R R
Agents
1,2,3,4: Resource Discovery
5: Application Mapping

Figure 1: Overall system architecture

a similarity check between the task graphs it manages
to identify common tasks. A task graph is an ordered
set, consisting of tasks # and arcs 7,

Task Graph(TG) = (6,n)

n= {nzn) nout}

where each 6 is an executable unit. The set of arcs n
is the union of input and output arcs, and each arc
carries a label, a type, and data. Two tasks 6; and 6;

are said to be identical® if:

(i Nty # O) A (e N1y # 0)

and two tasks are said to be similar if:

(ni, N1l # 0)

2.1 Application Agents

An AA is responsible for managing one or more task
graphs. As identified previously, each task graph is
a directed graph, with nodes representing executable
tasks, and links representing dependencies. For tasks
that can be concurrently executed, an AA must de-
cide an ordering — especially if tasks belonging to dif-
ferent graphs can be shared. In cases where common
tasks can be detected, such tasks are given a higher
precedence (execution priority). Each AA must there-
fore perform a static analysis of a task graph to de-
termine whether tasks can be shared across graphs.
Each AA maintains a plan library (see section 3)
which can be used to change the ordering of tasks,
the discovery of common tasks, the decomposition of
tasks, and the aggregation (grouping) of tasks. Each
plan is a well defined logic formula, which is triggered

!The tasks are not identical in the conventional sense of being
indistinguishable, merely in the (weaker) sense of having identical
inputs. A more detailed definition of ‘similar’ and ‘identical’ is
provided later for specifying BDI behaviours (see section 3.1).

based on the current state of the AA, and its priori-
ties.

Let & be a set of resources, and & be a set of tasks,
where

R(t) = {R1(2), ... Ra(t)}, S = {T1, .., T}

each T; can be obtained from a task graph, or may be
specified directly by the application developer. Every
R;(t) specifies the state of resource ‘j’ at time ‘t’.
Associated with each T; is an execution time, such
that the total execution time of an application with
‘k’ tasks (Tapp) can be specified as:

k
TApp = Z Ti
i=1

Each T; consists of the time to acquire data for a
task, perform the execution, and write results to a
file system. If tasks are run in parallel, the total ex-
ecution time is the sum of the maximum task execu-
tion times (at each stage of execution) of the parallel
tasks (assuming that tasks run concurrently). The
objective of the AA is to find a mapping function
d: S — (4,t),1 <j < n, which maximises the util-
isation of each resource, and minimises T,,,. The
function @ allocates tasks to resources; ®(T;) = (4,1)
represents the presence of task T; on resource R; at
time t.

We consider ‘t’ to be discretised, and assume that
the total execution time of an application can be spec-
ified in units of this parameter. From this definition, a
resource management system would monitor the state
of the system (i.e. the properties of T; and R;) and
aim to find a function ® such that the execution time
of an application for each AA is minimised, and the
utilisation for each RA is maximised. Traditionally
the determination of ® has been considered as an op-
timisation problem, over tasks and resources. This
problem has been addressed in various ways, gen-
erally involving two simplifying assumptions, (1) ‘n’

is fixed and all members of R are identical, (2) ‘m’

is fixed, and all members of & are pre-defined (sug-
gesting a static schedule). Additionally, the mapping
® is generally performed by a centralised scheduler
(allocator), with some support for dynamic task cre-
ation (i.e. variable ‘m’) provided via an additional
dispatcher. In this latter case, the dispatcher works
with a resource information service to generate R(t)
at fixed time intervals, or whenever a new T; needs to
be allocated to a resource. In order to overcome these
restrictions, we propose a de-centralised mechanism,
which can cater for variable ‘n’ and ‘m’.

2.2 Resource Agents

A RA is responsible for managing access to services
being offered on a given resource. The RA also mon-
itors the state of the resource, and makes these pa-
rameters available to Broker and Application agents.
Each RA maintains a plan library (similar to an AA)
based on the type of resource it manages. For com-
putational resources this can include scheduling oper-
ations on the resource, re-ordering a given schedule,
and pre-empting executing tasks. Based on its cur-
rent state (beliefs), the RA makes one or more plans
active, and executes these in order to achieve its goal
of improving resource utilisation.

Consider an application composed of one AA
and two RAs. The application task graph con-
sists of three tasks, where the granularity of each
task may range from a sub-routine, to a com-
plete application. ~We consider each resource to
specialise in a particular operation, but be capa-
ble of supporting all three task executions. Based
on our task graph representation, we could de-
ﬁne2: RA1(91) = 10,RA2(01) = 12,RA1(92) =
8,RA2(92) = 4,RA1(03) = 30,RA2(03) = 32. This
is summarised in the following table:

0, 16>] 65
R, [10] 8 130
Ry [12] 4] 32

Hence, the total execution time on RA; would be 48
units, and on RA; would also be 48 units. However,
if ; was run on RA;, 6> on RAs, and 03 on RA;
then the total execution time would be 44 units (as-
suming that task assignment is static). In the second
scenario, RAs may specialise in performing tasks of
type 02, and should be identified as the most suitable
resource by the broker. It is in the interest of the AA
to map task 6> to resource RA, to minimise its execu-
tion time. If we consider agent AA,, consisting only
of tasks of type 62 from AA;, then this agent will find
a match for all of its tasks from resource RA,, and it
must now find a mechanism to execute all its tasks on
this resource. This leads to a conflict between AA;
and A A in determining who should access RA. This
conflict may be overcome by other parameters, such
as the priority associated with the application being
managed by AA; over AA,, and whether some tasks
being managed by the two AAs are similar in some
way. It is also possible for some resources to be inca-
pable of executing certain tasks — in which case the
conflicts are much easier to resolve. Since none of
the application or resource agents are aware of the
complete state of the other agents at any one time,
it is hard for them to optimise their schedule for the
complete application. This holds in the context of
Computational Grids in particular, where a resource
cannot influence task execution at other resources, or
determine the selection of tasks from particular ap-
plications.

2Where RA;(0;) is the execution time T; on resource R;.

Handling such conflicts efficiently is essential in
making more effective use of resources. In some situ-
ations, it may be possible to overcome some of these
conflicts, whilst in others, it may only be possible to
flag the existence of such conflicts.

2.3 Broker Agents

The BAs can undertake different roles within such a
system, offering services such as a certificate grant-
ing service, a matchmaking service etc. Hence, a BA
may restrict interaction with AAs and RAs based on
access criteria, such as restricting access to RAs from
one or more administrative domains, access to tasks
from RAs based on the types of resources currently
available, and based on periods of access for partic-
ular types of resources. Each RA is responsible for
advertising the capability of a resource to a BA, and
also for monitoring activities undertaken on the re-
source. For instance, an RA for a computational re-
source would monitor the number of processes cur-
rently active on the resource, the usage of local mem-
ory etc. These metrics are then reported to the AA
managing a program on a given resource, and to a
BA which requests this information to determine suit-
able resources to which tasks may be mapped. The
data model for exchanging this information is pro-
vided in [Rana et al., 2001].

3 BDI Agents

The BDI model [Georgeff and Rao, 1998,
Rao and Georgeff, 1992] is a popular model for
intelligent agents. It has its basis in philosophy
[Bratman, 1987] and offers a logical theory which
defines the mental attitudes of Belief, Desire, and
Intention using a modal logic; a system architecture;
a number of implementations of this architecture
(e.s. PRS [PRS, 2001}, JAM [IRS, 2001], dMars,
JACK [JACK, 2001]); and applications demonstrat-
ing the viability of the model.

The central concepts in the BDI model are
[Georgeff and Rao, 1998, page 144]:

Beliefs: Information about the environment; infor-
mative.

Desires: Objectives to be accomplished, possibly
with each objective’s associated priority /payoff;
motivational.

Intentions: The currently chosen course of action;
deliberative.

Plans: Means of achieving certain future world
states. Intuitively, plans are an abstract speci-
fication of both the means for achieving certain
desires and the options available to the agent.
Each plan has (i) a body describing the primitive
actions or sub-goals that have to be achieved for
plan execution to be successful; (ii) an invocation
condition which specifies the triggering event3,
and (iii) a context condition which specifies the
situation in which the plan is applicable.

We shall use the notation and execution model of
AgentSpeak(L) [Rao, 1996] as an exemplar of BDI
systems. An AgentSpeak(L) agent consists of a belief
set, and a collection of plan clauses. Each plan clause
is of the form

goal: By A...ANBp < 51;...;8n

where each B; is a belief, and each S; is either an
action (a), or a subgoal (asyp). Goals and events are
conflated.

3Some events are considered as goal-events.

The execution model of AgentSpeak consists of the
following steps:

1. The agent selects an event e (note that goals are
an event type)

2. The agent generates all plans with matching in-
vocation conditions

3. From these relevant plans the agent identifies
those with satisfied preconditions

4. If there are several plans, one is chosen nonde-
terministically

The plan is then added to the intention stack. The
intention stack is executed by popping the topmost
plan of an intention and performing the first (unper-
formed) S;. If S; is an event, then it is posted, and if
it is an action, then it is executed.

In the interests of conciseness we shall use 7w to
denote an agent’s plan set, m; to denote the it* plan
clause, a to denote the goal which triggers 7;, and X
to denote By A...A By,. Additionally, we use m;(X,)
to denote the body of m;. Assuming that a plan con-
sists of a number of actions a, we can define:

(X, a) = (a1(p), a2(p), ---, ar(p))
head(m;(X,a)) = (a1 (),
tail(m; (X,) = (a2(p), ..., ax(p))

where each action a;(p) corresponds to a well defined
operation that an AA can perform on a task graph, or
an RA can perform on its local schedule (or executing
tasks). Each action within a plan results in an update
on the properties (p) of a task or a resource. A plan is
therefore not an atomic operation, and it is possible
for a plan to be interrupted during execution. An
agent can measure its environment after running each
action within the plan, and based on this determine
if plan execution should continue.

3.1 Specifying BDI behaviours

Each RA and AA is aiming to maximise its utilisation
and application execution time, respectively. For AAs
that manage multiple applications, the maximisation
is over multiple application task graphs. AAs com-
pete for resources in order to minimise the execution
time for a task graph that they manage. Similarly,
each RA is aiming to maximise its utilisation over all
available applications. Resource agents compete for
tasks from AAs, based on the particular capabilities
of the RA.

Typically, the actions performed by the RAs corre-
spond to well defined operations on the agent’s local
schedule (or executing task). The actions performed
by AAs correspond to well defined operations on a
task graph. Each action influences the properties of
a task graph or a resource, and can be defined as a
function which modifies the properties of a resource
in some way (discussed later). The time to execute a
plan T, can be expressed as:

Tm- = ldetiberate + tewecute(m)

The value of tgeiiperate depends on the complexity of
the agent, the complexity of the environment, and
on the size of the plan library. We assume that
tezecute(w) > tdetiberate, and therefore, we can approx-
imate tgetiverate +tezecute(7r) with temecute(ﬂ') . Each AA
attempts to minimise execution time for a task graph,
hence the goal for an AA is:

Goal(agent(AA)) = minimise Z t;(p)

=1

where t;(p) = tegecute(n) + tevecute(i) — i-€. execution
time is the sum of plan execution and the time to exe-
cute a task from the task graph. In an AA, the prop-
erties ‘p’ refer to the current ordering of tasks the
change in dependencies between the tasks etc. Hence
running an action a;(p) within a plan 7; will result in
a change of these properties. A plan may also be rep-
resented as a task graph, in which case the AA must
determine whether the plan should also be run re-
motely. We assume that the machine hosting the AA
will be able to execute the plan locally. Similarly, the
goal function for a RA can be defined as:

m
= maximise z C(pj)
j=1

Goal(agent(RA))

where C(p;) represents the capacity of the resource
on a given property p; — where resource properties
can range from local memory, CPU utilisation etc.
Alternatively, an RA may attempt to maximise utili-
sation on one or more individual properties. If there
are P properties in total, then the goal function is:
Goal(agent(RA)) = Apcpmaximise C(p)

where mazimise(C(p)) represents the goal of max-
imising the achieved value for a given resource prop-
erty. For instance, a resource may aim to maximise its
memory usage, but not CPU utilisation. By selective
maximisation of a particular property, an RA can aim
to achieve a particular behaviour over a given time pe-
riod. The beliefs (X) of an AA and RA correspond
to the value of these properties that are measured at
any time.

Based on the plans that each AA and RA main-
tains, it is possible for multiple plans to be runnable
at a given time, if pre-conditions to such plans match.
In this case, the agent needs to choose between the
available plans (in reality, this may be random, or
based on particular administrative policy). Plan or-
dering is left to the AA or RA, and it is possible for
AA or RA agents to have the same plan library, but
different plan ordering. Each AA agent maintains the
following beliefs:

task(6;, In,Out, f): which says that the task labelled
0; has input links In = (L;, L;, ...), output links
Out = (Lg, Ly;,...) and function f which takes
values from each input link and produces a tuple
of values, one for each output link.

link(L;,T,V): which says that the link labelled L;
has type T and value V which can either be a
value of type T or the distinguished value L in-
dicating that no value has yet been determined
for the link.

For example, a simple mathematical task which
adds its three inputs might be specified as the beliefs:

task(01, (L1, L2, L3), (L4),
Mz, y,2) = (. +y +2))
link(Ly, N, 3)
link(Zs. N, 6)
link(Ls, N, 3)
link(Ly, N, 1)

Generally the exact operation performed by func-
tion A is not known, and it often corresponds to
an executable (binary) program. In section 2 we
have provided a general definition of what is neces-
sary for two tasks to be similar and identical. To
make this definition more specific, we relate these
ideas to the beliefs of each agent. Hence, a task
0; is runnable if all of its input links have supplied
values: runnable(d;) < task(8;,In,Out, f) AVL; €
In . link(L;, T,V)AV # L

Two tasks are similar of they have common in-
puts, that is the same number of input links, and a
correspondence between the two sets of input links,
where two inputs are considered the same if they have
the same value. For convenience we define the nota-
tion In* to be the multi-set of types and values corre-
sponding to the labels in In, so for the example above
In* = (Lla L27 L3>* = {(Na 3)7 (Na 6)7 (Na 3)}

In* = {(T;, Vi)|L; € In Alink(L;, T;, Vi) }

We can now define similarity: similar(6;,60;) <
task(ﬁ,-, In;, Out;, fi)/\task(ﬁj, In;, O’U,tj, fj)/\Ini* =
In;*

JWe also have a notion of “identical” tasks. Two
tasks are identical if they have the same number
of inputs, the same number of outputs, and the
same values and types for inputs. identical(6;,0;) <
task(ﬁi, ITLZ', Outi, fi)/\task(ﬂj, Inj, Out]-, fj)/\ITL,'* =
In;™ A #0ut; = #O0ut; Note that two identical tasks
do not necessarily compute the same functions — they
merely have the same inputs, and can be conveniently
allocated together.

We assume that we have an algorithm to iden-
tify similar and identical tasks in the AA’s task
graph(s). We treat this as a capability of the
agent and assume that it examines the agent’s be-
liefs and adds beliefs of the form similar({6;,6;,...})
and identical({6;,0;,...}). An application agent uses
these beliefs (identical, similar, task, and link) in the
execution of its plans.

A task is allocated when an AA sends a message
to an RA containing the task identifier (6;), the input
values (e.g. (3,6,3)) and the function to be performed
(e.g. Mz,y,2) = {z+y + 2). In practice, this would
be implemented by a binary executable that is trans-
fered (along with the data) to the resource on which
execution is to take place.

AA — RA : task(6;, (3,6,3), f)

Assuming the RA accepts the task it will execute the
function and, when it completes, send a message to
the AA containing the task identifier and the output
data.

RA — AA : results(0;,(12))

An agent executes its task graph by selecting a
runnable task and allocating it to a resource (see fig-
ure 2). The first clause (m;) applies when there exists
a runnable task. This clause selects a runnable task
and allocates it. The second clause (m3) applies when
there are no runnable tasks. This clause waits for
a task to become runnable and then continues with
execution (which will allocate it).

The agent has plans to allocate a task. Firstly, we
check whether the task is similar or identical to oth-
ers. If it is (m3,m4), then we construct a merged task
and allocate it (see figure 3). Allocation (75) is done
by sending a message to the broker. The response by
tl)le broker is processed by further plan clauses (figure
4).

The merging of identical tasks is done as follows.
Suppose we have a set G of similar tasks {6;,6;,...}.
We find a common order for their inputs sucil that

Vk.1 <k <n = link(Li, T, V)Alink(LL, T', V')AT =
T'AV =V'. The two* tasks

(0:, (L%, ..., LL),(Li,q, .-

(05, (L1, ..., L) (L7, ...

are merged into the new task

) L;+m)7 fl)

,LZH_m), f])

Bnews (LYo oy LLY, (LS gy, Ly,

Lirseeos Do)y frew)
where frew = AT — cat(fi(T), f;(T)) where T denotes
a tuple and the function cat is defined as

cat({x1,. .., Tn), Y1, Ym)) =

<$17---;$n;y17---;ym>

Once the AA has received from the broker agent a
list of potential resources (Rs) to which the task can
be allocated it needs to select a resource. This list
will only be sent by the broker if the resources are
currently available, and have the capacity to execute
the task. It may be possible, for instance, for a re-
source to be particularly suitable for running tasks of
a particular type (or be the only resource with the
capability to execute such tasks) but not be avail-
able at the time the resource request is made. The
broker agent must therefore determine whether to re-
turn resources currently available, or the best match-
ing resources. A number of possible strategies may
be adopted:

1. The AA selects a resource from the list at ran-
dom, and sends it a request. The resource is free
and accepts the allocation. The task is trans-
fered to the resource, and execution of the task
commences.

2. None of the resources on the list are able to ac-
cept the allocation at the present time, i.e. all are
busy. In this case there are a number of strate-
gies that the AA can pursue:

e The AA could submit a new request to the
broker with weaker requirements (77, where
we denote a request with weaker require-
ments by weaken(6;)). For example, it could
indicate that it is willing to accept compute
servers with less memory.

e The AA could ask the broker to send it a
list of all resources which match its criteria
— even those that are not currently available
(this is denoted by plan 7g). Based on this
list, the AA determines which (other) AA
owns the task that is keeping the resource
busy, and requests the AA in question to re-
lease the resource. This interaction involves
a negotiation between the AA that wants a
resource, and one that currently owns the
running task on the resource.

This behaviour is described by the plans in figure 4.
In the scenario where A A, wishes to execute a task 67,
on a given resource RA;, which is currently running
task 6 (for AA;), it is possible for AA, to:

1. Request RA; to preempt 6} in preference for 6.
Based on the belief set for RA;, and its cur-
rent plans, either the existing sciledule on RA;
is aborted, or the request from AAj, is ignored.

4This generalises in an obvious way to more than two tasks.

m = exec : task(d;, In, Out, f) A runnable(d;) < allocate(6;) ; exec
m2 = exec : otherwise « waitfor task(6;, In, Out, f) A runnable(§;) ; exec

Figure 2: Exec plans

w3 = allocate(8;) :
74 = allocate(6;) :
75 = allocate(6;) :

identical(G) A 6; € G «+ mergeldentical(G,0,,cw) ; allocate(bnew)
similar(G) A 0; € G + mergeSimilar(G,0,¢) ; allocate(0yeq)
otherwise + send query 8; to broker agent

Figure 3: Allocate plans

2. Request AA; to preempt its task on RA;, and
reserve this resource for AAs. If AA; agrees,
it will make a preemption request, and pass a
reservation token to RA; to enable AA; to then
schedule its task on RA;. It is now up to RA; to
accept or deny the reservation request from }iAl

This assumes that agents are altruistic, or at
least cooperative. Note that although conflict
(in the allocation of resources) is usually cast as
being between two agents, conflict can also arise
within a single agent if that agent has more than
one task graph. In this case we certainly can
assume cooperation.

3. Request a higher priority level from a broker
agent (B2), and use this as a means to pre-empt a
task from another application agent. This strat-
egy would not require a direct interaction be-
tween AAs in order to resolve conflicts.

Figure 5 illustrates these interactions — and demon-
strates the case where a negotiation between AA; and
AA, takes place to abort task 61 on RA;. The re-

lease/reserve protocol for resource RA; is as follows:

1. AAs — B: Request(B, Capability(RA))
2. B — AA,: Reply([RAl])
Abort(6;, RA,),

3. AAy — AA, Request(AAl, Abort(ﬂ,lc,RAl),
where Select(AAs, RA1) A —Available(RA;)

4. AA; — RA;: Request(RA;, Reserve(6?)
5. AA; — AAs: Reply(AAs, Abort(6L, RA,))
6. AA; — RA;: Request(RA;, Schedule(6?))

3.2 Dealing with conflicts

In the context of such a BDI system, it is possible for
agents to have conflicting sub-goals in order to sat-
isfy their overall goal of minimising execution time,
or maximising utilisation. Conflicts can arise between
plans within an AA or an RA. For instance, an AA
may try to group tasks to minimise execution times
— however, the new grouping may not be runnable
on the available resources, resulting in the agent hav-
ing to find an alternate grouping, or to wait until
the required resources are available. In this case, the
grouping of tasks achieves the sub-goal of combin-
ing tasks with common properties, but it violates the
global goal of minimising the execution time. Similar

conflicts can arise in RAs trying to optimise their lo-
cal schedule to improve the overall utilisation of the
resource.

When modelling conflicts, it is important to relate
the achievement of a sub-goal with the global goal
that the agent is aiming to satisfy. The general
case is that the agent should not try to attempt a
sub-goal which conflicts with its global goal, based
on the information that the agent has about the
environment at any time. In the context of task
and resource allocation, this relates to violating the
global goals of minimising execution time (for AA)
and maximising resource utilisation (for RA). The
point at which a conflict is detected between the
sub-goal and the overall goal of the agent determines
the “dynamicity” of the agent. For instance, an
agent may initiate a plan to achieve a sub-goal, but
the environment may chance resulting in the beliefs
of the agent changing, and the sub-goal conflicting
with the global goal. In this case, a dynamic or
“cautious” agent would abandon the plan, and search
for plans that match its current beliefs. A static or
“bold” agent on the other hand would only detect
a change in the environment once it has completed
executing the current plan, and then determine
which other plans become valid. The use of either
strategy depends on the rate of change of the
underlying environment, and the time overhead of
abandoning the current plan and choosing a new one.

Kinny and Georgeff [Kinny and Georgeff, 1991]
and subsequently Schut and
Wooldridge [Schut and Wooldridge, 2000] define

this as the “degree of boldness” of an agent — which
represents the maximum number of plan steps the
agent executes before re-considering its intentions.
Their work however has focus on agents which
operate in environments which are simpler than the
ones we outline here.

In a general case, we can model conflicts between
plans that achieve sub-goals, and the global goal
as Con(asy,), where the number of sub-goals can
vary. A dynamic agent checks for this conflict after
executing each action within a plan, provided that
the rate of change of the environment does not ex-
ceed the rate at which the agent can achieve its in-
tentions. Aborting a plan (Abort()) implies that the
agent abandons the next activity within the current
plan, and tries to search for another plan that matches
its current beliefs. Hence, executing a plan is equiva-
lent to

Va € 7;, Exec(n) — Exec(a,tail(m))

We must determine ways to (1) detect conflicts, (2)
ways to deal with conflicts. We can detect conflicts

g = brokerResponse(6;,Rs) :
send to R : task(0;, (Vi,...,Vn), f);
receive task(6;, Status) ;

mg = brokerResponse(f;, Rs) : Rs =[]

R = head(Rs) A R # [] A task(6;, In,ut, f) <

if status # ok then brokerResponse(d;, Rs = tail(R))
m7 = brokerResponse(f;, Rs) : Rs =[] + send query weaken(;) to broker agent
+ send query match(R,0;) A ~Available(R)
m9 = brokerResponse(f;, Rs) : Rs = [| + send message(“No Resource Available”)

Figure 4: Plans to allocate a task to a resource using the broker’s response

[AA1] [AA2| | B1]| [B2| | RA1l] [RA2]
| | L | Register !
! | Register *="Regigter ; ' Registration Phase
o | Maich T Mach l |
| 1 eww T
! 1 Register | | | |
| =1 | | |
| - | | . RAZrunning AA1
| | Mach[] | | | L task
‘ Abort | . 1 | | |
| I Register | | |
l | Mateh[] | | | |
| | | Abort + Reserve | i Request for task
[! | Reserved ! ! ' preemption and resource
! ! ! ! ! ' reservation
| | e T

Figure 5: Interaction between Application (AA) and Resource (RA) agents, mediated by Broker (B) agents

by analysing changes in the properties associated with
an application or resource. There may be a number of
possible types of conflicts which may arise within each
agent. Conflicts can be between two goals, denoted
Con(asyy, @) — in which case the plan that leads to
the sub-goal asyp is aborted

i (X, agup) A Con(asup, @) = Abort(m;)

provided « is the goal of higher importance to the
agent. A conflict between a goal and a plan is treated
in the same way, leading to the plan being aborted.
In the context of Computational Grids, this can arise
when a RA tries to improve utilisation by running
the longest running task, although this task may not
utilise the capability available at the resource. In this
scenario, other tasks which cannot run elsewhere may
need to wait for the resource to be released. We can
detect goal conflicts by evaluating the changes that
two goals would make to the properties of a resource
or application.

If a conflict between two plans arises, then the
agent must decide which plan to pursue with the cur-
rent beliefs. This scenario is particularly important
in the context of dynamic (cautious) agents, where
the beliefs of an agent may change to make the cur-
rently conflicting plan more viable. We denote this
as Con(m;,7;), and the corresponding sub-goals as ;
and «;

(X, o) A1 (X, a;) A Con(my, ;) A Con(ay, @)
— choose T;
(X, ;) A i (X, a5) A Con(m;, wj) A Con(aj,)
— choose T;
Wi(X, Ol,') A 71'j(X, C!j) A
Con(m;, ;) A (Priority(m;) > Priority(m;))
— choose m;
7T,'(X, Ol,') A 7Tj(X, Oéj) A
Con(m;, ;) A (Priority(m;) = Priority(r;))
— choose random(m;, ;)
We can detect conflicts between plans by evaluating

changes that the actions within a plan would make to
resource or application properties.

4 An Example

Consider a system consisting of the following named
resources:

Zeus (Z): An application server

Apollo (A): Another application server

Vulcan (V): A compute server with multiple CPUs,
and with capability to run graphics tasks

Mercury (M): A computer server with a single
CPU, and with capability to run database tasks

Hercules (H): A slow compute server

Zeus has a simple task graph consisting of three tasks
¢1, ¢2, and ¢3 where ¢3 cannot be scheduled until
both ¢, and ¢» have been completed, but ¢; and ¢-
can be scheduled in parallel. Apollo has a task graph
consisting of four tasks ¢4 through to ¢; which can
all be scheduled in parallel. The nature of the tasks is
such that all tasks can be scheduled on any machine,
but ¢3 is a database task, and will be particularly slow
to complete unless scheduled on Mercury. Similarly,
¢4 and ¢ are graphics tasks that would complete
quicker on Vulcan. Hence, the global goals include:

3
Goal(A) = mm(z exec(¢;) + exec(m))

i=1

with a similar formulation for Goal(Z), and,

Goal(V) = maz(Z

(p=CPU,Memory)

C(p) + exec(r))

which also holds for Goal(M) and Goal(H). Each
agent must now monitor its properties to determine
which plans apply. Figure 6 provides one execution
sequence for tasks ¢;...¢7 .In this example we assume
that each resource agent can only execute a single task
at a time. However, this constraint does not invali-
date the the more general condition where a resource
can execute multiple tasks simultaneously. All appli-
cation and resource agents register with the broker
(B) to start with. Application agents send a record
for each task that needs to be executed. Resource
agents send a record of their capabilities to B. As all
resources can run all tasks, B sends a list of all task
records to all resource agents, and all resource records
to both application agents. Z then requests V to ex-
ecute ¢;. However, as V has better capability to run
o4, @5, V ignores the request, and instead asks A to
submit ¢4 or ¢5. Z then re-submits its request to M,
where it is granted (as there are, currently, no tasks
requiring database capability to be executed). Subse-
quently, A sends ¢4 to V, and then ¢5 to H. B always
maintains beliefs about all tasks that are still waiting
to be completed, as indicated in the right hand side of
the diagram. After completing a task, each resource
agent (V, M or H) re-registers with B to indicate its
availability.

4.1 Analysis of system

The system presented here assumes that each agent
makes independent decisions about the best way to
achieve its goal. There may be conflicts between:

e Goals of various resource agents — as each agent
is competing for tasks

e Goals of various application agents — as each
agent is competing for resources

e Goals of application and resource agents — as
each is aiming to satisfy an objective, that could
have conflicting outcomes on the properties of
AAs and RAs

e Plans within a resource agent — trying to deter-
mine whether to select a task currently available,
or wait for one which utilises its capability

e Plans within an application agent — trying to de-
termine whether to run tasks separately, or to
group them for a faster CPU resource (for in-
stance)

We outline roles that agents could undertake within
such a system. In the examples described here,
the broker agent acts as a MatchMaking service, to
find similarities between task descriptions provided
by AAs and resource capabilities provided by RAs.
There is a single criteria over which a match is be-
ing achieved. Within the present system we can
also include brokers which evaluate multiple criteria
to resolve conflicts and choose suitable resources (or
tasks):

e Least loaded CPU

e CPU likely to be loaded least after a particular
time

Most available memory (or likely to be available)

Mean task execution time over entire application

Most secure (trusted) resource
e Least expensive resource

e Quickest time within deadline threshold

some of these criteria are dependent on the broker
executing a prediction algorithm. Our system can
easily accommodate these additional criteria, as this
would translate to altering the Goal of each RA and
AA, based on input it receives from the broker. We
could also have multiple broker agents, where each
broker either specialises in a given criteria, or uses a
different weighting function to rank each of the above
criteria.

Figure 7 illustrates a scenario involving task pre-
emption, and is similar to that in figure 6 except that
A and Z negotiate to preempt a task on a given re-
source. In this scenario, agent A negotiates with Z
to abort its task ¢; to enable it to execute its task
¢6, which it considers to have a tighter completion
deadline. Based on its beliefs, agent Z must decide
to honour the request, and to initiate the removal of
its task from resource M. Agent Z makes a request to
abort its task from resource M and make a reserva-
tion for A. It is now the decision of resource agent M
to honour the request from agent Z. As both Z and
M are autonomous, with their own beliefs and plan
library, they must make decisions locally. In this case,
M agrees to abort ¢, and sends an acknowledgement
to A and Z - and does not register again with B.
However, M informs B that ¢; has been aborted, and
must be re-executed (the beliefs of B now contain ¢1).
A now sends its task ¢g to M, where execution can
start. In this scenario the ability to abort a task re-
sides with the task owner, and the resource on which
the task is executing. When agent A requests agent
Z to abort its task, agent Z evaluates the priority
of the request and makes a subsequent decision. We
may also consider such decisions to be supported via
another broker agent (B2), which enables application
agents to request a priority level for their tasks. B2
may approve priority requests, or may decide on a
level different from the request, leaving it up to the
application agent to accept this.

4.2 Related work

Support for handling resource capabilities already
exist is some metacomputing systems, such as
Globus [Globus, 2001] and Legion. The Globus
system provides a Resource Specification Language

A lz] [8] [v] [m] [H]
L Q4070 4 | | ! ‘
; register — ¢ register } }
| ¢192 2 | | | |
e R T
| (V.MH) e | 101920497
o s T |
| | | | ﬂ 95 |
| | | | | ire
. | loa | |
| _ I _register | 91 |
| | = regiser | | |
1 1 = register 1 B=[020607]

Al lz] [8] [v] [m] [H]
| Py--97 4 | I] I
; register — ¢ register } }
| P92 2 | 1 1 1
T [OP2945:97.odiof B2
| (V:M.H) T | (01020407
s
: : : : o5
3 3 AbortJ:rR@erve 3 3 !
[! Ack(Aborted) | P11 |
T | | : 195
- : : R i :
: : - register : :
| | | | 1%
| : = register i B=1920107]

Figure 7: Interaction between Application (A,Z), Resource (V,M,H), and Broker (B) agents — scenario II

involving task preemption

(RSL) to define resource properties and the location
of software executables. Two new protocols — the
Grid Resource Information Protocol (GRIP) and Grid
Resource Registration Protocol (GRRP) are aimed
at providing support for discovering new informa-
tion services, and registering new services with the
Globus directory service (the MDS) [Foster, 2001].
Subsequently, a Globus Resource Allocation Manager
(GRAM) manages access to a set of resources with the
same site-specific allocation policy, where a resource
can range from a tightly coupled parallel computer, a
cluster of workstations, a data storage system or a sci-
entific instrument. Furthermore, resource ensembles
can be managed by a third party system, such as Co-
dine/GRIDWare or LSF /citebaker96. In Globus, a
Resource Broker is responsible for resource discovery
within each administrative domain, which works with
an Information Service, and a Co-allocator for mon-
itoring the current state of resources, and managing
an ensemble of resources respectively.

The Legion [Natrajan, Humphrey and Grimshaw, 200the class hierarchy (derived type).

system describes resources and tasks as a collection
of interacting objects, where compute resources are
abstracted as ‘Host’ objects, and data resources as
‘Vault’ objects. The Legion system also provides a

set of core objects, that enable arbitrary naming of
resources based on Legion Object Identifiers (LOIDs)
and Legion object addresses (LOA). Specialised
services, such as Binding agents and Context objects
are provided to translate between an arbitrary re-
source name and its physical location — enabling the
resource discovery to be abstracted as a translation
mechanism between LOIDs and physical resource
locations. The Legion system provides a notation for
defining resources, based on an object-oriented type
system, supporting inheritance and encapsulation.
Legion supports site autonomy with a Jurisdiction
Magistrate (JM), which can reject requests that
conflict with the policy of a managed site.

Other systems such as Jini [Edwards, 1999] from
Sun Microsystems makes use of a Discovery, Join and
Lookup service, to enable devices to dynamically en-
ter and leave a cluster. Although in many ways simi-
lar to our approach, the discovery protocol supported
involves lookup on data types and, in some instances,
Any additional
matching which exploits associations between device
types is not supported in Jini. The TSpaces project
from IBM [TSpaces, 2001] also uses data types to
seek a match between a service description and a ser-

vice request. However, TSpaces does claim to provide
advanced tuple matching capabilities, which involves
conjunction/disjunction of capabilities expressed as
data types. Serafini et al. [Serafini et al., 2001]
present an approach to optimising queries for data
Grids, involving four kinds of agents: user agents,
index agents, mass storage agents and “internal”
agents. Whereas the first three of these provide
wrappers to existing systems, “internal” agents act
as query optimisers at different levels of specialisa-
tion and criteria. They also suggest an implement-
ing based on BDI agents using JACK [JACK, 2001].
Their work can be easily integrated with our work
on Computational Grids, by utilising brokers which
hand-over control to their “internal” agents for man-
aging data resources.

Our approach uses the object-oriented description
mechanism in Legion, but is most closely related to
the approach taken in the ‘class advertisement’ mech-
anism in Condor [Frey et al., 2001]. In this system,
resources describe their capabilities as an advertise-
ment, which is subsequently matched with an ad-
vertisement describing the needs of an application.
Each advertisement carries a ‘Constraints’ and ‘Rank’
keyword, which must evaluate to True, for a match
between a resource and task advertisement to be
successful. Matching between resource capabilities
and task requirements are based on a classification
scheme, which divides resources into one of four cat-
egories, (1) a Storage resource, (2) a Computational
resource, (3) a Visualisation resource, (4) a scientific
Instrument. The proposed approach can utilise Jini
based services such as transaction support, leasing
etc, and at a minimum support the type matching
mechanism supported in Jini. We feel the proposed
approach therefore compliments and extends vendor
based approaches such as Jini and TSpaces.

5 Conclusion

A BDI approach to modelling behaviours of resource
and application agents is presented — and plans for
participating agents are described. The use of BDI
behaviours enables new application or resource agents
to be added, leading to existing agents adapting their
behaviours. Various roles that intermediate broker
agents could undertake within such a system are out-
lined, and we also suggest how role specialisation can
be used to overcome conflicts. A prototype of this
system is currently being developed in AgentTalk (an
implementation of AgentSpeak [Rao, 1996]). In sub-
sequent work, we also aim to explore the relationship
between tgepiverate aNd tegecute as described in sec-
tion 3.1, and as investigated under the general term
of ‘bounded optimality’ in agent systems. The ef-
fective control of time to reason is important in this
context, as a BDI agent must deliberate only for as
long as is necessary — and dependent on environment
complexity and agent knowledge/predictability about
its environment.

References
[Jennings and Wooldridge, 1998a] N. Jennings and
M. Wooldridge. Applications of intelligent agents. In

Jennings and Wooldridge [Jennings and Wooldridge, 1998b],
chapter 1, pages 3-28.

[Jennings, 2001] N. R. Jennings. An agent-based approach for
building complex software systems. Communications of the
ACM, 44(4):35-41, 2001.

[Georgeff and Rao, 1998] M. Georgeff and A. Rao. Rational soft-
ware agents: From theory to practice. In Jennings and
Wooldridge [Jennings and Wooldridge, 1998b], chapter 8, pages
139-160.

[Kinny and Georgeff, 1991] D. Kinny and M. P. Georgeff, ‘Com-
mitment and effectiveness of situated agents’, in Proceedings of

10

the International Joint Conference on Artificial Intelligence, pp.
82-88, Sydney, Australia, (1991)

[Frey et al., 2001] J. Frey, T. Tannenbaum, M. Livny, 1. Foster,
S. Tuecke, “Condor-G: A Computation Management Agent for
Multi-Institutional Grids”, Proceedings of the Tenth Interna-
tional Symposium on High Performance Distributed Computing
(HPDC-10), IEEE Press, August 2001

[Foster, 2001] I. Foster, “MDS2”, paper submitted to the Grid In-
formation Services Working Group, as part of the Global Grid
Forum, March 2001

[Natrajan, Humphrey and Grimshaw, 2001] A. Natrajan, M.
Humphrey, A. S. Grimshaw, “Capacity and Capability com-
puting in Legion”, Proceedings of International Conference on
Computational Science, May 2001

[Jennings and Wooldridge, 1998b] N. R. Jennings and M. J.
Wooldridge, editors. Agent Technology: Foundations, Appli-
cations, and Markets. Springer, 1998.

[Tidhar et al., 1998] G. Tidhar, C. Heinze, and M. Selvestrel. Fly-
ing together: Modelling air mission teams. Applied Intelligence,
8(3):195-218, May 1998.

[Rao and Georgeff, 1992] A. S. Rao and M. P. Georgeff. An ab-
stract architecture for rational agents. In C. Rich, W. Swartout,
and B. Nebel, editors, Proceedings of the Third International
Conference on Principles of Knowledge Representation and
Reasoning, pages 439-449, San Mateo, CA, 1992. Morgan Kauf-
mann Publishers.

[Bratman, 1987] M. E. Bratman. Intentions, Plans, and Practical
Reason. Harvard University Press, Cambridge, MA, 1987.

[Baker, Fox and Yau, 1996] Baker, M. A., Fox, G. C. and Yau, H.
W. (1996). Review of Cluster Management Software. NHSE
Review, 1(1), May 1996.

[Edwards, 1999] W. Keith Edwards, “Core Jini”, Addison Wesley,
1999.

[Foster and Kesselman, 1999] I. Foster, and C. Kesselman, (1999).

The Grid : Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers

[IRS, 2001] Intelligent Reasoning Sys-
tems. JAM Agent. See web site at:
http://members-http-3.rwcl.sfba.home.net/marcush/IRS/.

Last visited: July 2001.

[JKQML, 1999] IBM Research. A KQML imple-
mentation in Java, 1999. See web site at:
http://wuw.alphaworks.ibm.com/tech/jkqml/. Last visited:
July 2001.

5 gent Software Limited. s . See web site
JACK, 2001] A, Sof Limited. JACK, 2001. S b si
at: http://www.agent-software.com. Last visited: July 2001.

[Globus, 2001] Argonne National Laboratory. The Globus Sys-
tems. See web site at: http://www.globus.org/. Last visited:
July 2001.

[PRS, 2001] SRI. PRS-CL: A Procedural Reasoning System. See
web site at: http://www.ai.sri.com/~prs/. Last visited: July
2001.

[Rana et al., 2001] Rana, O.F., Bunford-Jones, D., Walker, D.W.,
Addis, M., Surridge, M., and Hawick, K. (2001) Resource Dis-
covery for Dynamic Clusters in Computational Grids. In Proced-
ings of Heterogeneous Computing Workshop, at IPPS/SPDP,
San Francisco, California, April 2001, IEEE Computer Society
Press.

[Serafini et al., 2001] L. Serafini, H. Stockinger, K. Stockinger,
and F. Zini. Agent-Based Query Optimisation in Grid Environ-
ment. In Proceedings of the IASTED International Conference
on Applied Informatics (AI 2001), Innsbruck, Austria, February
2001.

[Thanagarajah, 2000] J. Thangarajah. Representation of goals in
the belief-desire-intention model, 2000. Honours thesis, RMIT
University, Melbourne, Australia

[TSpaces, 2001] IBM Research, “TSpaces: In-
telligent Connectionware”, see Web site at:
http://www.almaden.ibm.com/cs/TSpaces/. Last visited: July

2001.

[Rao, 1996] A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. Technical Note 64, Australian Ar-
tificial Intelligence Institute, Feb. 1996. Also appeared in Agents
Breaking Away (LNAI 1038, p42-55).

[Winikoff, Padgham and Harland, 2000] M. Winikoff, L.
Padgham, and J. Harland, (2000). Conflict in BDI Agent Sys-
tems: Tazonomy and Language Constructs. RMIT University,
Melbourne, Australia

[Schut and Wooldridge, 2000] M. Schut and M. Wooldridge, In-
tention reconsideration in complex environments, Proceedings
of International Conference on Autonomous Agents, Barcelona,
Spain 2000

[Wooldridge, 2000] N. Wooldridge, (2000). Chapter 2 in Reason-
ing about Rational Agents. MIT Press. ISBN: 0-262-23213-8.

