
IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 1

CAGFuzz: Coverage-Guided Adversarial
Generative Fuzzing Testing for Image-based

Deep Learning Systems
Pengcheng Zhang, Bin Ren, Qiyin Dai, and Hai Dong

Abstract—Deep Neural Network (DNN) driven technologies have been extensively employed in various aspects of our life.
Nevertheless, the applied DNN always fails to detect erroneous behaviors, which may lead to serious problems. Several approaches
have been proposed to enhance adversarial examples for automatically testing deep learning (DL) systems, such as image-based DL
systems. However, the approaches contain the following two limitations. First, existing approaches only take into account small
perturbations on adversarial examples, they design and generate adversarial examples for a certain particular DNN model. This might
hamper the transferability of the examples for other DNN models. Second, they only use shallow features (e.g., pixel-level features) to
judge the differences between the generated adversarial examples and the original examples. The deep features, which contain
high-level semantic information, such as image object categories and scene semantics, are completely neglected. To address these
two problems, we propose CAGFuzz, a Coverage-guided Adversarial Generative Fuzzing testing approach for image-based DL
systems. CAGFuzz is able to generate adversarial examples for mainstream DNN models to discover their potential errors. First, we
train an Adversarial Example Generator (AEG) based on general datasets. AEG only considers the data characteristics to alleviate the
transferability problem. Second, we extract the deep features of the original and adversarial examples, and constrain the adversarial
examples by cosine similarity to ensure that the deep features of the adversarial examples remain unchanged. Finally, we use the
adversarial examples to retrain the models. Based on several standard datasets, we design a set of dedicated experiments to evaluate
CAGFuzz. The experimental results show that CAGFuzz can detect more hidden errors, enhance the accuracy of the target DNN
models, and generate adversarial examples with higher transferability.

Index Terms—Deep neural network; Fuzz testing; Adversarial example; Coverage criteria.

F

1 INTRODUCTION

A I technologies have become more prominent in our
lives. In many applications, we can observe the traces

of deep neural networks (DNN), such as automatic driv-
ing [1], [2], intelligent robotics [3], smart city applications [4]
and AI-enabled Enterprise Information Systems [5]. In this
paper, we term this type of applications as deep learning
(DL) systems. DL systems can be generally categorized
into image-based, text-based, audio-based and video-based
systems, according to their served objects. In this research,
we only focus on image-based DL systems.

Many different types of DNN are embedded in mission
and safety-critical applications, such as automatic driv-
ing [1] and intelligent robotics [3]. This brings new chal-
lenges, since predictability, correctness, and safety are es-
pecially crucial for these types of DL systems. These safety
and mission-critical applications deploying DNN without
comprehensive testing could cause serious problems. For
instance, in automatic driving systems, if the deployed
DNN have not recognized the obstacles ahead timely and
correctly, it might lead to serious consequences, such as
vehicle damage and even human death [6].

• P. Zhang, B. Ren, and Q. Dai are with College of Computer and
Information, Hohai University, Nanjing, China.
E-mail: pchzhang@hhu.edu.cn;

• H. Dong is with School of Computing Technologies, RMIT University,
Melbourne, Australia E-mail: hai.dong@rmit.edu.au

Manuscript received XXX, XXXX; revised XXX, XXXX.

The development process of DL systems is essentially
different from the traditional software development pro-
cess. As shown in Fig. 1, for traditional software devel-
opment practices, developers directly specify the logic of
the systems. In contrast, DL systems automatically learn
their models and corresponding parameters from data. For
traditional software systems, code or control-flow coverage
is utilized to guide the testing process [7]. In comparison,
the logic of the DL systems is not encoded by control
flows and thus it cannot be solved by the normal encoding
way. Their decisions are always made by training data for
many times and the performance is more dependent on
data rather than human interventions. Consequently, most
traditional software testing methodologies are not suitable
for testing DL systems. As highlighted in [8], [9], research
on developing new testing techniques for DL systems is
urgently needed.

Obviously, it is unthinkable to exhaustively test every
feasible input of the DL systems. Recently, an increasing
number of researchers have contributed to testing DL sys-
tems with a variety of approaches [8], [9], [10], [11], [12],
[13]. The main idea of these approaches is to enhance
input examples of test datasets by diverse techniques. Some
approaches, e.g., DeepXplore [8], are based on multiple
DNN models, where decision boundaries are predefined
among the models. Adversarial examples are generated by
changing the gradient direction in a decided model. Some
approaches, e.g., DeepHunter [9], employ a metamorphic

© © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.P. Zhang, B. Ren, H. Dong and Q. Dai, "CAGFuzz: Coverage-Guided Adversarial Generative Fuzzing Testing for Image-Based
Deep Learning Systems," in IEEE Transactions on Software Engineering, vol. 48, no. 11, pp. 4630-4646,

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 2

Traditional Developer

Decision LogicInput

{

Input

Decision LogicInput Input

Decision Logic

Decision Logic

Training Data
DL system Developer

Fig. 1: Comparison between traditional and DL system
development

mutation strategy to generate new adversarial examples.
Other approaches, e.g., DeepGauge [12], propose new cover-
age criteria for DNN. These coverage criteria can be used as
guidance for generating adversarial examples. While these
approaches make some progresses on testing DL systems,
they still suffer the following two main problems:

1) Unsatisfied transferability of the generated adversarial
examples. Most approaches [9], [14] neglect the influ-
ence of small perturbations when generating adver-
sarial examples. Several approaches such as [8], [15]
consider small perturbations. However, the trans-
ferability [16] of the examples generated by these
approaches appears to be unsatisfied. Through our
experiments, we found that, when the adversarial
examples generated for a specific model are used to
retrain other similar models, the increased accuracy
for the other models cannot maintain the same
level as it for the specific model. For example, the
accuracy of the VGG-16 model can be improved by
28.2% by using the adversarial examples generated
for the VGG-16 model. In contrast, the enhanced
accuracy of the VGG-16 model is only 21.8% (i.e.
dropped by 22.69%) if it is trained upon the adver-
sarial examples generated for the VGG-19 model.
The common solution is to generate adversarial ex-
amples for each model to more effectively improve
their accuracy. However, our experiment finds that
the generation of 50000 adversarial examples (based
on the CIFAR-10 dataset) takes nearly 3 hours (ap-
prox. 0.25s per example) each time. In addition,
each set of newly generated adversarial examples
need 113M of storage space. Therefore, adversarial
example generation for each single model might not
be a reasonable choice when multiple models need
to be trained and time/storage resources are limited.

2) Low accuracy caused by shallow features. State-of-the-

art adversarial example generation approaches use
shallow features, such as pixel-level features, to
judge the differences between the adversarial exam-
ples and the original examples. The deep features
containing high-level semantic information, such
as image object category and scene semantics, are
completely neglected. For instance, in their study,
Xie et al. [9] use L0 and L∞ to limit the pixel-
level changes of the adversarial examples. However,
such shallow features can only represent the visual
consistency between the adversarial examples and
the original examples, and cannot guarantee the
deep features consistency between the adversarial
examples and the original examples. This might
lead to low accuracy when testing the networks
with deep layers.

To address the problems aforementioned, we propose a
new fuzzing testing approach for image-based DL systems,
called CAGFuzz (Coverage-guided Adversarial Generative
Fuzzing)1. The goal of CAGFuzz is to explore the use of
neuron coverage to generate adversarial examples with min-
imal perturbations for the target DNN. Meanwhile, we aim
to generate examples with higher transferability. In other
words, the examples can be used to effectively test multiple
DNN models. In summary, the major contributions of this
paper include the following three aspects:

• We design an adversarial example generator, AEG, which
can generate adversarial examples with small perturba-
tions based on general datasets. The goal of Cycle-
GAN [17] is to transform image A to image B with
different styles. Based on CycleGAN, we aim to trans-
form image B back to image A, and obtain image
A’ similar to the original image A. Consequently,
we combine the two generators with the opposite
functions of CycleGAN as our adversarial example
generator. The adversarial examples generated by
AEG can add small perturbations to the original
examples. AEG is trained based on general datasets
and does not rely on any specific DNN model, which
has higher transferability than state-of-the-art ap-
proaches. The experimental results demonstrate the
enhanced transferability of the AEG generated adver-
sarial examples. They not only improve the accuracy
of multiple models effectively, but also make the
accuracy of the target model 3.39% higher than that
of a typical model-based approach, i.e., DeepXplore.

• We extract the deep features of the original examples and
the adversarial examples, and make them as similar as
possible by similarity measurement. We use VGG-19 net-
work [18] to extract the deep features of the original
examples and the adversarial examples, and employ
cosine similarity measurement to ensure that the
deep features of the adversarial examples are consis-
tent with the original examples as much as possible.
At the same time, the deep features can facilitate
the adversarial examples generated by CAGFuzz to
obtain better results compared with other approaches
when testing the neural networks with deeper layers.

1. https://github.com/QXL4515/CAGFuzz

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 3

• We design a series of experiments to evaluate the
CAGFuzz approach based on several public datasets. The
experiments validate that CAGFuzz can effectively
improve the transferability of the generated adver-
sarial examples. Meanwhile, it is proved that the
adversarial examples generated by CAGFuzz can de-
tect hidden errors in the target DNN model. Further-
more, the accuracy of the DNN models retrained by
AEG have been significantly improved.

The rest of the paper is organized as follows. Section 2
provides some basic concepts including coverage-guided
grey-box fuzzing, AEG, VGG-19 and neuron coverage. The
coverage-guided adversarial generative fuzzy testing ap-
proach is provided in Section 3. In Section 4, we use
three popular datasets (MNIST [19], CIFAR-10 [20], and
ImageNet [21]) to validate our approach. Existing works are
discussed in Section 5. Finally, Section 6 concludes the paper.

2 PRELIMINARIES

The principles of Coverage-guided Grey-box Fuzzing, Adversar-
ial Example Generator, VGG-19 Network Structure and Neuron
Coverage are introduced in Section 2.1, Section 2.2, Sec-
tion 2.3, and Section 2.4 respectively. Finally, other important
terminology definitions used in the paper are described in
Section 2.5.

2.1 Coverage-guided Grey-box Fuzzing
Due to the scalability and effectiveness in generating useful
defect detection tests, fuzzing has been widely used in
academia and industry. Based on the perception of the
target program structure, the fuzzy controller can be divided
into black-box, white-box, and grey-box. One of the most
successful techniques is Coverage-guided Grey-box Fuzzing
(CGF), which balances effectiveness and efficiency by using
code coverage as feedback [22]. Many state-of-the-art CGF
approaches, such as AFL [23], libFuzzer [24] and VUzzer
[25], have been widely used and proved to be effective.
The state-of-the-art CGF approaches mainly consist of the
following three parts:

• Mutation: According to the difference of the target ap-
plication program and data format, the correspond-
ing test data generation method is chosen. It can use
the pre-generated examples, a variation of valid data
examples, or dynamically generated ones according
to the protocol or file format.

• Feedback guidance: The fuzzy test example is executed,
and the target program is executed and monitored.
The test data that causes the exception of the target
program is recorded.

• Fuzzing strategy: If an error is detected, the corre-
sponding example is reported and new generated
examples that cover new traces are stored in the
example pool.

Due to the difference between DL systems and tradi-
tional software systems, traditional CGF cannot be directly
applied to DL systems. In our approach, CGF is improved
to be suitable for DL systems. The state-of-the-art CGF
approaches mainly consist of three parts: mutation, feedback

guidance, and fuzzing strategy, in which we replace mutation
with the adversarial example generator trained by Cycle-
GAN. In the feedback part, neuron coverage is used as
the guideline. In the fuzzy strategy part, since the test is
basically fed with the same format of images, the adversarial
examples with higher coverage are selected and added into
the processing pool to maximize the neuron coverage of the
target DL systems. This paper aims to provide a quality
assurance tool for DNN development and deployment by
designing an effective CGF framework.

2.2 Adversarial Example Generator
Adversarial Example Generator (AEG) is an important part
of our approach. To improve the stability and security
of target DL systems, AEG provides effective adversarial
examples to detect potential errors. The idea of generating
adversarial examples is to add perturbations that people
cannot distinguish from the original examples. This is very
similar to the idea of example generation using GAN [26].
GAN’s generators G and discriminators D alternately gen-
erate adversarial examples that are very similar but not
identical to the original examples based on noise data.
Considering the difference of datasets for various target
DL systems, e.g., some DL systems relying on labelled data
while others not, we choose CycleGAN [17] as the training
model of AEG, since CycleGAN does not require the paired
examples and label information. Two sets of generators and
discriminators of CycleGAN are used to train alternately, and
the two generators are combined to form an AEG. During
AEG training, the adversarial loss and the cycle consistency
loss are the important guarantee to keep the image similarity
between adversarial examples and the seed examples. Fig. 2
shows the schematic diagram of AEG. The part in the red
box shows the components of AEG.

Fig. 2: Components of adversarial example generator

2.3 VGG-19 Network Structure
As a feed-forward neural network, the last layer of CNN
has m neurons. Each neuron generates a scalar. The output
of M neurons can be regarded as a vector v. Now all
of them are connected to one neuron. The output of this

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 4

neuron is wv + b, which is a continuous value and can
deal with regression prediction problems. The function of
CNN is similar to that of BP neural network. Instead of
explicit mathematical expressions, the mapping relationship
between input and output is implied in sample data. Convo-
lutional Neural Network (CNN) has remarkable capability
to extract deep feature and express semantics. Those deep
features and expressions are more effective than traditional
image features, therefore, the CNN model trained by large
image databases has better generalization capability [27].
The CNN models can extract deep features from the im-
ages for semantic segmentation, target detection and image
retrieval. The structure of VGG-19 [18] convolution network
is shown in Fig. 3. There are 19 layers in VGG-19, including
16 convolution layers, i.e., 2 Convl1-Convl2 and 4 Convl3-
Convl5, and 3 fully connected layers, including Fc6, Fc7, and
Fc8. The works in [28], [29] show that the VGG-19 network
can extract deep features from images, and it can be used
to identify the similarity between images. In this paper, the
output of the last fully connected layer is fused into a feature
vector to compare the similarity between the adversarial
examples and the original examples, and to serve as the
threshold for filtering the generated adversarial examples.

Data

Convl1_1

Relu1_1

Convl1_2

Relu1_2

Convl2_1

Relu2_1

Convl2_2

Relu2_2

Convl3_1

Relu3_1

Convl3_2

Relu3_2

Convl4_1

Relu4_1

Convl4_2

Relu4_2

Convl4_3

Relu4_3

Convl4_4

Relu4_4

Convl5_1

Relu5_1

Convl5_2

Relu5_2

Convl5_3

Relu5_3

Convl5_4

Relu5_4

Fc6

Relu6

drop6

Fc7

Relu7

drop7

Fc8

Pool1

Pool4 Pool5 Prob

Convl3_3

Relu3_3

Pool2

Pool3

Convl3_4

Relu3_4

Fig. 3: Structure of VGG-19 network for extracting deep
features of target images

2.4 Neuron Coverage
Pei et al. [8] initially propose neuron coverage as a measure
for testing DL. They define neuron coverage of a set of
test inputs as the ratio of the number of uniquely activated
neurons for all the test inputs to the total number of neurons
in the DNN.

Let N = {n1, n2, ..., np} be all the neurons in a DNN,
where p is the number of neurons. The input to a DNN
is an image xi ∈ T = {x1, x2, ..., xq}, where T is the
input domain and q is the length of the input domain. Let
out(ni, xi) be an output function that returns the output
value of a neuron ni in the DNN for a given test input xi.
Finally, let t represent the threshold for considering a neuron
to be activated. Then, the neuron coverage can be defined in
the following:

NC(T, xi) =
|{ni|∀xi ∈ T, out(ni, xi) > t}|

|N | (1)

2.5 Other Terminology Definitions
The other important terminology definitions used in this
paper are described below.

Transferability. Szegedy et al. [16] bring up the concept
of transferability, indicating the capability of adversarial ex-
amples generated for one model to stay adversarial for other
models. In this paper, transferability refers to whether the
same set of adversarial examples are effective for enhancing
the accuracy of multiple DNN models to perform the same
task by retraining the models with the adversarial examples.

Deep Features. Hou et al. [30] name the output of the
intermediate layer of a DNN as the deep features of an
image, given the image as the input of the DNN. In this
paper, deep features of an image are the output of a fully
connected layer of a CNN model given the image vector as
the input. In our approach, the output of Fc7 layer of the
VGG-19 network is used as the deep features, represented
as a 4096 dimensional vector.

Errors. In the field of software engineering, Salfner et
al. [31] define an error as a situation when a system’s state
deviates from the correct state. In this paper, an error is
defined as the inconsistency between the original input and
the output of a DNN model caused by training the model
with the adversarial examples of the input. For example,
given an original example x and a corresponding adversar-
ial examples xadv generated by an adversarial attack, the
error refers to DNN(x) 6= DNN(xadv), where DNN(·)
represents the label of the output of the DNN model.

3 THE CAGFuzz APPROACH

In this section, we first give an overview of our approach
(Section 3.1). Second, the pre-treatment of our approach is
described in Section 3.2, including data collection and AEG
training. Section 3.3 describes the main algorithm of the
adversarial example generation process. Finally, Section 3.4
shows how our approach uses neuron coverage feedback to
guide the generation of new adversarial examples.

3.1 Overview
The core components of DL systems are DNNs with various
structures and parameters. In this section, we will discuss
how to test a DNN. Here we focus on DNNs whose input
is images. Adding perturbations to images has a great
impact on DNNs and may cause errors. Guided by neuron
coverage, the quality of the generated adversarial examples
can be improved. This paper presents CAGFuzz, a coverage-
guided adversarial generative fuzzing testing approach.
This approach generates adversarial examples with invisible
perturbations based on AEG. In general, Fig. 4 shows the
main process of our approach, which consists of three steps
described as follows:

• The first step is the data collection and AEG training.
For each dataset, the data is divided into two subsets
with balanced example numbers and then employed
as the input of CycleGAN to train AEG. These ex-
amples are transferred to the processing pool after
configuring their priority according to their time
to join the processing pool. We make use of this
processing pool as the initial input for fuzzy testing.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 5

Step1

Data Collection and AEG Training

Dividing data

into two parts

Data

collection
AEG training

Processing

pool

Using CycleGAN to Train Adversarial

Example Generator(AEG)
Example selection

Using AEG to generate

adversarial examples
Data

preprocessing

Compliance with

sImilarity?

Step2

Adversarial Example

Generation

Data processing

and storage in

processing pool

Coverage

Analysis

Coverage

Increased ?

Failed

exampl

es

Feature extraction

Step3

Neuron Coverage Driven Adversarial Example Selection

Y

Y

N

Invalid examples

N

Fig. 4: Coverage-Guided Adversarial Generative Fuzzing testing approach

• The second step is the adversarial example generation.
Each time a prioritized raw example is selected from
the processing pool and utilized as the input of
AEG to generate adversarial examples. Deep features
are then employed to determine which adversarial
examples should be saved. First, we adopt the VGG-
19 network to extract the deep features (see Sec-
tion 3.3.2) of the original and adversarial examples.
Then, we calculate the cosine similarity (see Sec-
tion 3.3.3) between the deep features of the original
and the adversarial examples. If the cosine similarity
between the two deep features is more than 0.9, we
assume that the adversarial example is consistent
with the original example in deep features and can
be saved.

• The third step is to adopt neuron coverage to guide
the generation process. Each adversarial example
generated in the second step is provisioned as an
input to the DNN under test for coverage analysis.
If new coverage occurs, the adversarial example will
be placed into the processing pool as a part of the
dataset. The new coverage means that the neuron
coverage of the adversarial example is higher than
the neuron coverage of the original example.

The main flow chart of the CAGFuzz approach is shown
in Algorithm 1. The input of CAGFuzz includes a target
Dataset (D), a target DNN, the number of maximum itera-
tions N , the number of adversarial examples N1 generated
by each original example, and the parameterK of top-k. The
output is the generated adversarial examples that improve
the coverage of the target DNN.

We need to process the dataset before the fuzzing pro-
cess. The dataset is divided into two equal subsets (Line 1)

to train AEG (Line 2). All the examples in the dataset are
pre-processed (Line 3) and stored in the processing pool
(Line 4). During each iteration (Line 5), the original example
parent is selected from the processing pool according to
the selection priority (Lines 6-7). Then, multiple adversarial
examples are generated for each original example parent
(Line 8). For each generation, AEG is used to mutate the
original example parent to generate the adversarial example
data (Line 9). The deep features of the original example
parent and the adversarial example data are extracted
separately, and the cosine similarity (Lines 10- 11) between
them is calculated. Finally, all the adversarial examples
generated by the original example are sorted from high
to low in similarity, and the top-k of them are selected
as the target examples (Line 13). The neuron coverage of
the top-k adversarial examples is calculated and analyzed
to determine whether the adversarial examples should be
saved (Line 15). If the adversarial examples increase the
neuron coverage of the target DNN, they will be stored
in the processing pool with a specified selection priority
(Lines 16-19). The selection priority solution is detailed in
Section 3.3.1.

3.2 Data Collection and AEG Training

3.2.1 Data Collection
We define the target task of CAGFuzz as an image classifi-
cation problem. Image classification is the core mission of
many existing DL systems. The first step of CAGFuzz is to
choose an image classification oriented DNN (e.g., LeNet-
1, 4, 5) to be tested and the dataset to be classified. The
operation of the dataset is divided into two parts. First, all
the examples in the dataset are prioritized, and then all the
examples are stored in the processing pool as the original

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 6

Algorithm 1 A description of the main loop of CAGFuzz

Input: D: Corresponding datasets,
DNN : Target Deep Neural Network,
N : The maximum number of iterations,
N1: The number of new examples generated,
K : Top-k parameter

Output: Test example set for increasing coverage
1: X,Y = Divide(D);
2: Train AEG through X and Y
3: T = Preprocessing(D);
4: T serves as the initial processing pool
5: while number of iterations < N do
6: S = HeuristicSelect(T);
7: parent = Sample(S);
8: while number of generations < N1 do
9: data = AEG(parent);

10: Fp, Fd = FeatureExtraction(parent,data);
11: Similarity = CosineSimilarity(Fp,Fd);
12: end while
13: Select top-k examples from all new examples;
14: while number of calculations < K do
15: cov = DNNFeed(data);
16: if IsNewCoverage(cov) then
17: Add data to the processing pool
18: Set selection priority for data;
19: end if
20: end while
21: end while
22: Output all the examples in the processing pool as a test

example set;

examples. During the process of fuzzing, the fuzzer selects
an original example from the processing pool according to
the priority to perform the fuzzing operation. Second, the
dataset is divided into two sets of uniform domains. Ac-
cording to the domains, it is used as the input of CycleGAN
to train AEG.

3.2.2 Training Adversarial Example Generator

Traditional fuzzers mutate the original examples by flipping
bits/bytes, cross-inputting files, and swapping blocks to
achieve the effect of fuzziness. However, mutation of DNN
inputs using these methods is unachievable or invalid, and
might produce a large number of invalid testing examples.
At the same time, how to grasp the degree of mutation is
also a question worth further study. If the mutation makes
limited changes, the newly generated examples might be
almost unchanged. Although these changes may be mean-
ingful, the possibility of employing the new examples for
DNN error detection is very low. On the other hand, if
the mutation makes dramatic changes, more DNN errors
may be found. However, these changes might be unrealistic
in the real application environment. That is, the newly
generated examples are also invalid.

We propose a new strategy that employs AEG for muta-
tions. Given an image example x, AEG generates an adver-
sarial example x′, and the deep features of x′ are consistent
with those of x, where the adversarial perturbations that
are not human-observable are added. There are two reasons

x y’ x'
P(x) Q(y')

DY

y x’ y'
P(x')Q(y)

DX

as close as possible

Fig. 5: Relationship between two mapping functions in
training AEG

why we choose CycleGAN as the training model of AEG:
GAN technology is one of the most effective and convenient
image generation methods; CycleGAN does not rely on any
additional information to generate adversarial examples.

In Section 3.2.1, we evenly divide the collected data
into two data domains. We define these two data domains
as data domain X and data domain Y . Our goals are
to use the two data domains as the inputs of CycleGAN,
and to learn mapping functions from each other to train
AEG. Let us assume that data domain X is represented
as {x1, x2, ..., xn}, where xi denotes a training example in
X . Similarly, data domains Y is denoted as {y1, y2, ..., ym},
where yi represents a training example in Y . We define the
data distribution of data domain X as x ∼ Pdata(x), and
the data distribution of data domain Y as y ∼ Pdata(y). As
shown in Fig. 5, the mapping functions between the two
data domains are defined as P : X → Y and Q : Y → X ,
where P represents the transformation from data domain X
to data domain Y , andQ represents the transformation from
Y toX . In addition, there are two adversarial discriminators
DX and DY . DX distinguishes an original example x of
data domainX from its adversarial exampleQ(x) generated
by mapping function Q. Similarly, DY distinguishes an
original example y of data domain Y from P (x) generated
by mapping function P .

Adversarial Loss. The mapping functions between the two
sets of data domains are designed with loss function. For
mapping function P and its corresponding adversarial dis-
criminator DY , the objective function is defined as follows:

min
P

max
D

Y V (P,DY , X, Y) = Ey∼Pdata(y)[logDY (y)]+

Ex∼Pdata(x)[log(1−DY (P (x)))]
(2)

Mapping function P is to generate adversarial examples
y′ = P (x) similar to data domain Y , which can be under-
stood as adding large perturbations with the characteristics
of data domain Y to the original example x of data domain
X . Simultaneously, there is an adversarial discriminator
DY to distinguish the real example y in data domain Y
and the generated adversarial example y′. The goal of the
objective function is to minimize mapping function P and
maximize adversarial discriminator DY . Similarly, for map-

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 7

ping function Q and the target function set by adversarial
discriminator DX , the objective function is defined as:

min
Q

max
D

XV (Q,DX , Y,X) = Ex∼Pdata(x)[logDX(x)]+

Ey∼Pdata(y)[log(1−DX(Q(y)))]
(3)

Cycle Consistency Loss. We add perturbations to the
original example by using the aforementioned adversarial
loss function. However, the degree of mutation of these
perturbations is large, which is prone to generate invalid
adversarial examples. To avoid this problem, we add con-
straints to the perturbations, and control the degree of mu-
tations through the cycle consistency loss. In this way, the
perturbations added to the original example are invisible.
For instance, an adversarial example y′ is generated from
an example x of data domain X by the mapping function
P , and then y′ is passed to the mapping function Q to gen-
erate its adversarial example x′. At this time, the generated
adversarial example x′ is similar to the original example x,
that is to say, x → P (x) = y′ → Q(y′) = x′ ≈ x. The
objective function of the loss function of cyclic consistency
is described as follows:

Losscycle(P,Q) = Ex∼Pdata(x)[||Q(P (x))− x||1]+
Ey∼Pdata(y)[||P (Q(y))− y||1]

(4)

The overall structure of the network has two generators:
P and Q, and two discriminator networks DX and DY .
The whole network is a dual structure. We combine the two
generators with the opposite functions into our AEG. The
sample effect of AEG is shown in Fig. 6. The images on the
leftmost column are the original examples, on the middle
column are the transformed examples of the original ex-
amples, and on the rightmost column are the reconstructed
examples. We choose the reconstructed examples as the
adversarial examples. First, larger perturbations are added
to the original example. Second, the degree of mutation
is controlled by the reverse reconstruction to generate the
adversarial examples with smaller perturbations.

3.3 Adversarial Example Generation
3.3.1 Example Priority
The priority of the example determines which examples
should be first selected next time. We adopt a probabilistic
selection strategy based on the time of adding examples to
the processing pool. We adopt a meta-heuristic formula with
faster selection speed. The probability calculation formula
is described as follows: h(bi, t) = eti−t∑

eti−t , where h(bi, t)
represents the probability of selecting example bi at time t,
and ti represents the time when example bi is added into
the processing pool.

This priority can be interpreted as follows: the most re-
cently sampled examples are more likely to generate useful
new neuron coverage when being mutated to adversarial
examples. However, when time passes, the advantage will
gradually diminish.

3.3.2 Deep Feature Extraction
To ensure the generated adversarial examples as meaningful
as possible, we extract the deep features of the original

(a) automobile and truck (b) airplane and bird

(c) frog and ship (d) horse and deer

(e) dog and cat (f) apple and orange

Fig. 6: AEG generates effect maps of adversarial examples.
In each picture, the leftmost column is the original example,
the middle column is the transformed example of the origi-
nal example, and the rightmost column is the reconstructed
example.

examples and adversarial examples and control their differ-
ences within a certain range. The deep feature recognition
ability and semantics expression ability of CNN are more
remarkable. Hence, we select the VGG-19 network to extract
the deep features from examples. The deep features in the
VGG-19 model are extracted in hierarchies. Compared with
the high-level features, the low-level features are unlikely to
contain rich semantics information.

The deep features extracted from the VGG-19 network
can better represent images than traditional image features.
It also shows that the deeper the layer of convolution
network, the more parameters in the network, and the better
the image can be expressed. We fuse the output of the last
fully connected layer (Fc8 layer in Fig. 3) as the targeted
deep features, and the dimension of the deep features is
4096.

3.3.3 Cosine Similarity Computation
During the mutation process, AEG generates multiple ad-
versarial examples for each original example. We assume
that the original example is a, and the set of all the ad-
versarial examples is T = {a1, a2, ..., an}, which inherits
the deep feature vector of the original example by the
feature extraction method mentioned above. The dimension
of each feature vector is 4096. Let us assume that the

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 8

feature vector corresponding to the original example a is
X = [x1, x2, ..., xn]n=4096, and the corresponding eigenvec-
tor of an adversarial example ai is Y = [y1, y2, ..., yn]n=4096,
where ai ∈ T . Cosine similarity is used to measure the
difference between the adversarial example and the original
example. The formula is described as follows:

COS(X,Y) =
X · Y

||X|| × ||Y ||
=

∑n
i=1(xi × yi)√∑n

i=1 x
2
i ×

√∑n
i=1 y

2
i

(5)

where xi and yi correspond to each dimension of eigenvec-
tors X and Y .

To control the size and improve the mutation quality
of adversarial examples, we select the top-k adversarial
examples whose cosine similarity is sorted descendingly as
eligible examples to continue the follow-up steps. In our
approach, we set K = 5, that is to say, we select the five
adversarial examples with the highest cosine similarity for
neuron coverage analysis.

3.4 Neuron Coverage Driven Adversarial Example Se-
lection

Without using neuron coverage as a guiding condition, the
adversarial examples generated by AEG are not purposeful,
and it is impossible to learn about whether the adversarial
examples are effective or not. If the generated adversarial
examples cannot generate new coverage of a DNN to be
tested, these adversarial examples can only simply expand
the dataset, rather than effectively detecting the potential
errors of the DNN. To make matters worse, mutations
in these adversarial examples may bury other meaningful
examples in a fuzzy queue, and thus significantly reduce
the fuzzing effect. Therefore, neuron coverage feedback is
used to determine whether the newly generated adversarial
examples should be placed in the processing pool for further
mutations.

After each round of generation and similarity screen-
ing, all valid adversarial examples are used as the input
of the DNN to be tested for neuron coverage analysis. If
the adversarial examples generate higher neuron coverage,
we will set the priority for the adversarial examples and
store them in the processing pool for further mutations.
For instance, a DNN for image classification consists of
100 neurons. 32 neurons are activated when the original
example is input into the network, and 35 neurons are
activated when the adversarial example is input into the
network. Consequently, we determine that the adversarial
example generates new coverage.

4 EXPERIMENTAL EVALUATION

We make use of three standard deep learning datasets and
the corresponding image classification models to carry out
a series of experiments to validate CAGFuzz. The purpose
of the experiments is to explore the following three main
research questions:

• RQ1: Do the adversarial examples generated by
CAGFuzz have higher transferability than the adver-
sarial examples generated by the existing models?

• RQ2: Can CAGFuzz find potential errors in the target
network?

• RQ3: Can CAGFuzz improve the accuracy of the
target network by adding adversarial examples into
the training set?

4.1 Experimental Design
4.1.1 Experimental Environment
The detailed descriptions of the hardware and software
environments of the experiments are shown in Table 1.

TABLE 1: Experimental hardware and software environ-
ment

Name Standard

CPU Xeon Silver 4108

GPU NVIDIA Quadro P4000

RAM 32G

System Ubuntu 16.04

Programming environment Python

Deep learning framework Keras

4.1.2 Datasets and Corresponding DNN Models
With the evaluation purpose, we adopt three popular and
commonly used datasets containing different types of data:
MNIST [19], CIFAR-10 [20], and ImageNet [21]. At the same
time, we have learned and trained several popular DNN
models for each dataset, which have been widely used by
scientific researchers. In Table 2, we provide an informative
summary of these datasets and the corresponding DNN
models. Among them, the models for CIFAR-10 are trained
by ourselves, and the models for ImageNet employ the
default weights and network structure provided by the
Keras framework 2, so the models with the same names in
the table are actually two different models.

MNIST [19] is a large handwritten digital dataset con-
taining 28 ∗ 28 ∗ 1 pixels of images with class labels ranging
from 0 to 9. The dataset contains 60,000 training examples
and 10,000 adversarial examples. We aim to imitate the
research of Lecun et al. [ref] and construct three different
kinds of neural networks based on LeNet family, namely
LeNet-1, LeNet-4, and LeNet-5.

CIFAR-10 [20] is a set of images used to train classifica-
tion models. It contains 32∗32∗3 pixel three-channel images,
including ten different kinds of objects (such as aircraft, cats,
trucks, etc.). The dataset contains 50,000 training examples
and 10,000 adversarial examples. Due to the large amount of
data and high complexity of CIFAR-10, its classification task
is more challenging than MNIST. To obtain the competitive
performance of CIFAR-10, we choose three famous DNN
models – VGG-16, VGG-19, and ResNet-20 – as the targeted
models.

ImageNet [21] is a large image dataset, in which each
image is a 224 ∗ 224 ∗ 3 three-channel image, containing
1000 different types. The dataset contains a large number
of training data (more than 1 million images) and test data

2. https://keras.io/

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 9

(about 50 thousand images). Therefore, for any automated
testing tool, working on ImageNet-sized datasets and DNN
models is a demanding task. Because of the large number
of images in the ImageNet dataset, most state-of-the-art
adversarial approaches are only evaluated on a part of the
ImageNet dataset. To obtain the competitive performance of
ImageNet, we choose three famous DNN models VGG-16,
VGG-19, and ResNet-50 as the targeted models.

TABLE 2: Datasets and DNN models

Dataset Description Model #Layer #Neuron Acc(%)

MNIST
Hand written
digits from 0

to 9

LeNet-1 7 52 98.25
LeNet-4 8 148 98.75
LeNet-5 9 268 98.63

CIFAR-10 10 class
general image

VGG-16 16 12426 93.39
VGG-19 19 13706 93.20

ResNet-20 70 4861 94.53

ImageNet
1000-class
large scale

datasets

VGG-16 16 14888 90.1*
VGG-19 19 16168 90.0*

ResNet-50 176 94059 92.1*

* The top-5 test accuracy of pretrained DNN model in [32].

4.1.3 Baseline Approaches
As surveyed in [33], there are several open-source tools
for testing machine learning applications, such as Themis 3,
mltest 4, and torchtes 5. None of them focus on generating
adversarial examples. Thus, to measure the performance
of CAGFuzz, we select the following approaches as our
baseline approaches:

• FGSM (Fast Gradient Sign Method) [15]. There are
many model-based adversarial example generation
approaches, such as [16], [34], [35]. Most of them are
variants of FGSM and their implementation princi-
ples are basically similar, whilst the frequencies of
perturbation insertion are varied. After an in-depth
analysis, we believe FGSM can be used to generate
adversarial examples that meet the experimental re-
quirements.

• DeepHunter [9] - an automated fuzz testing frame-
work for hunting potential errors of general-purpose
DNN. DeepHunter performs metamorphic mutation
to generate new semantically preserved tests, and
leverages multiple plug-able coverage criteria as
feedback to guide the test generation from different
perspectives.

• DeepXplore [8] - the first white box system for sys-
tematically testing DL systems and automatically
identify erroneous behaviors without manual labels.
DeepXplore performs gradient ascent to solve a joint
optimization problem that maximizes both neuron
coverage and the number of potentially erroneous
behaviors.

Since there is no open source version of DeepHunter [9],
we have implemented the eight image transformation meth-
ods mentioned in DeepHunter, and we use the eight methods

3. http://fairness.cs.umass.edu/
4. https://github.com/Thenerdstation/mltest
5. https://github.com/suriyadeepan/torchtest

to replace DeepHunter for later experimental evaluation.
The source code of FGSM and DeepXplore can be found
on GitHub. These tools are utilized for the forthcoming
experimental evaluation.

4.2 Experimental Results

4.2.1 Transferability
To answer RQ1, we compare CAGFuzz with the exist-
ing model-based adversarial example generation approach
FGSM. FGSM is a simple approach, in which no neuron
coverage based technique is utilized. For the fairness of
comparison, we enhance FGSM by facilitating it with the
neuron coverage analysis. In this way, FGSM employs the
same coverage-guided test approach as CAGFuzz does. For
transferability assessment, the accuracy of the models varies
more remarkably in small example data sets than it on large
data sets, which is more conducive to analysis and compar-
ison. Therefore, a few data examples are randomly selected
from the original data set for evaluation. We choose MNIST
and CIFAR-10 datasets as the sampling set. For MNIST, we
sample 10 examples for each class in the training set and
4 examples for each class in the test set. Since the DNN
models used to classify CIFAR-10 dataset have a large scale
of weight parameters, 10 training examples are insufficient
to achieve the training effect. Therefore, for CIFAR-10, we
sample 100 examples for each class in the training set and
10 examples for each class in the test set.

For the LeNet-1 model, we respectively employ FGSM
and AEG to generate an adversarial example for each ex-
ample in the training set. First, the original dataset is used
to train and test the LeNet-1 model. We set the number
of epochs as 50 and the learning rate as 0.05. Then, the
adversarial examples generated by CAGFuzz and FGSM are
added to the training set to retrain LeNet-1 with the same
parameters.

Similar to generate adversarial examples for LeNet-1, we
perform the same training process for LeNet-4 and LeNet-5.
Since the model accuracy value varies after each iteration of
training, we train each model 5 times in the same parameter
setting and take the average of the accuracy values after
each training as the final accuracy of our experiments. For
instance, the accuracy values of the ResNet-20 model trained
on the adversarial examples generated by FGSM-R20 are
respectively 49%, 35%, 42%, 34% and 40% after each time of
training. Its final accuracy value is 40%. Table 3 shows the
accuracy of the three models on the original dataset, FGSM-
Le1, FGSM-Le4, FGSM-Le5, and CAGFuzz-dataset. Among
them, “FGSM-Le1” refers to the dataset generated by FGSM,
and “CAGFuzz-dataset” refers to the dataset generated by
CAGFuzz. From the table, it can be seen that the accuracy of
each model based on FGSM generated adversarial examples
for that model is improved more strikingly than its accuracy
based on the examples generated for the other models.
We also find that, after retraining three models based on
CAGFuzz-dataset, the accuracy of the models are all re-
markably increased and higher than the accuracy based on
the FGSM datasets. By following the same way, results are
obtained based on the CIFAR10 dataset, and the final results
are shown in Table 4. We can see that, after retraining the
three models based on CAGFuzz-dataset, the accuracy of

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 10

each model is mostly higher than the maximum accuracy of
the retrained model based on FGSM. The ResNet-20 model
is the only exception, whose accuracy based on CAGFuzz is
0.8% lower than FGSM-R20 but much higher than FGSM-
V16 and FGSM-V19.

� Answer to RQ1: Based on the MNIST and CIFAR-
10 datasets, we prove that the adversarial examples gen-
erated by CAGFuzz can remarkably enhance the accuracy
of DNN models than FGSM in general. The latter can only
achieve reasonable accuracy improvement when specially
generating data for each model. In contrast, the former can
dramatically improve the accuracy of all the models, so its
transferability is higher.

TABLE 3: The accuracy of the three models on the MNIST
dataset, the adversarial examples generated by FGSM and
CAGFuzz(%)

Model Orig.
dataset

FGSM-
Le1

FGSM-
Le4

FGSM-
Le5

CAGFuzz-
dataset

LeNet1 59 70.6 66.6 68.6 72.6

LeNet4 62.6 66.6 71.6 68.2 72

LeNet5 60.6 69.3 64.6 71 74.3

TABLE 4: The accuracy of the three models on the CIFAR10
dataset, the adversarial examples generated by FGSM and
CAGFuzz(%)

Model Orig.
dataset

FGSM-
V16

FGSM-
V19

FGSM-
R20

CAGFuzz-
dataset

VGG16 19 28.2 21.8 24 30.2

VGG19 10 18.4 25.6 21.4 27

ResNet20 15 33.8 36.8 40 39.2

4.2.2 Erroneous Behavior Discovery
To answer RQ2, we sample the examples correctly classified
by the DNN models from the test set of each dataset.
Based on these correctly classified examples, we generate
adversarial examples for each example through AEG. We
can confirm that all the generated adversarial examples
are classified correctly, because the deep features between
the adversarial examples and the original examples are
consistent. The “positive examples” generated by AEG are
input into the corresponding DNN for classification. If there
are classification errors, a potential defect of the classifi-
cation model can be found. We define an original correct
example as Imageorig and its corresponding adversarial
examples as Imageadv = {Image1, Image2, ..., Imagen}.
Since the original example Imageorig is classified correctly
in the target DNN model, Imagei should also be classified
correctly, where Imagei ∈ Imageadv . If the classification
of an adversarial example is incorrect, we consider it as an
erroneous behavior of the target DNN.

We choose a quantitative measure to evaluate the effec-
tiveness of CAGFuzz in detecting erroneous behaviors in
different models. We choose 2000 examples, which are ver-
ified to be correct from each dataset. Then we use the four
approaches to mutate these examples, and generate 2000
adversarial examples for our experiments. Table 5 shows the

Fig. 7: Improvement of accuracy after model retraining.

number of erroneous behaviors found by different datasets
under the guidance of neuron coverage. In addition, we
also list the number of errors found by FGSM [15], Deep-
Hunter [9], and DeepXplore [8] in each dataset.

TABLE 5: Number of erroneous behaviors reported by
FGSM [15], DeepHunter [9], DeepXplore [8], and CAGFuzz
across 2000 adversarial examples.

datasets FGSM DeepHunter DeepXplore CAGFuzz

MNIST 162 670 34 894

CIFAR-10 69 193 20 284

ImageNet 278 456 18 720

SUM 509 1319 72 1898

As can be seen from Table 5, DeepXplore’s performance
in each dataset is the worst. Its total number of potential
errors detected from the three datasets is only 72. Compared
with the other three approaches, CAGFuzz demonstrates an
outstanding ability to find potential errors in the models.

� Answer to RQ2: With neuron coverage guided adver-
sarial examples, CAGFuzz can find more potential model
errors.

4.2.3 Accuracy
To answer RQ3, we add adversarial examples generated by
CAGFuzz into the training set to retrain the DNN models
and measure whether it can improve their accuracy. We
select the MNIST and CIAR-10 datasets as our experimental
datasets. We employ LeNet-1, 4, 5, VGG-16, VGG-19, and
ResNet-20 models as the experimental models. We retrain
the DNN models by combining 65% of the generated ad-
versarial example set and the original training set, and
then validate the DNN models with the combination of
the remaining 35% of the adversarial example set and the
original validate set. Due to the space limitation, we ab-
breviate the model names. For instance, the model LeNet-1
is abbreviated to Le1, the model VGG-16 is abbreviated to
V16, and the model ResNet20 is abbreviated to R20. In Fig. 7,
“test acc” represents the accuracy of a model on the original
test set, “test+adver acc” represents the accuracy of a model
on the new test set with the adversarial examples (the model
is still the original one), and “retrain acc” represents the
accuracy of a model on the new test set after retraining the

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 11

model with the adversarial examples. It can be seen that,
from the comparison of “test acc” and “test+adver acc”, the
robustness of the original models is low. After the adversar-
ial examples being added into the test set, the accuracy of
the models decreases evidently. For instance, the accuracy
of the LeNet-5 model decreases from 98.63% to 93.02%. The
comparison between “test acc” and “retrain acc” shows
that the accuracy of the models has been greatly improved
after retraining them with the adversarial examples. For
instance, the accuracy of the VGG-19 network has been
increased from 93.2% to 97.96%. In general, we can see that
CAGFuzz can enhance the accuracy of the models, especially
for the models with deeper layers.

We further analyze the accuracy of the retrained models
and the original models during the training process, and
evaluate the validity of the adversarial examples generated
by CAGFuzz from the perspective of validation accuracy
variation. Fig. 8 shows the changes of validation accuracy
of those models during the training process. The origi-
nal structure parameters and learning rate of each model
are kept unchanged, and the aforementioned new training
dataset is used for retraining. During the training process,
the validation accuracy and the original validation accuracy
of the same epoch are compared. It can be found that, under
the same epoch, the validation accuracy of all the retrained
models is higher than that of their corresponding original
models. The convergence speed of the retrained models is
also apparently faster. In addition, it can be found from
the figure that the retrained models are more stable and
show smaller variation ranges during the training process.
In addition, we can observe that the trend of the retrained
models are basically consistent with the original models,
which implies that the accuracy of these models can be
greatly improved without affecting their internal structure
and logic. For instance, in Fig. 8(d), the accuracy of the
original model drops suddenly when epoch = 6, and the
retrained model follows the same pattern simultaneously. In
Fig. 8(f), the accuracy of the original model and the retrained
model both appears as a three-stage rising curve.

To further validate our approach, we pre-train these
models on the MNIST and CIFAR-10 datasets. We further
expand the training data by adding the same number of
generated adversarial examples, and train the DNN in 5
epochs. The comparison results are shown in Fig. 9. It can be
found that CAGFuzz sometimes has relatively lower initial
accuracy when the models are retrained. With the increase
of epochs, the accuracy of the models increases rapidly, and
the final accuracy based on CAGFuzz is mostly higher than
that based on the other approaches.

� Answer to RQ3: Although different DNN have diverse
performances, in general, the accuracy of the DNN can be
improved by retraining them with the adversarial examples
generated by CAGFuzz, which is reflected in the retrained
model at the same time.

4.3 Threats to Validity
In the design of this study, there are several threats. In the
following, we describe the main threats to validity of our
approach in detail.

Internal validity: The dataset used to train AEG is
manually divided into two data domains, which may lead

to subjective differences. To mitigate this threat, after the
data domain division, we ask three observers to randomly
exchange the examples of the two data domains. The ex-
changes are performed independently.

External validity: During the experimental process, the
number of classification labels of the experimental datasets
is limited, which may lead to the reduction of the general-
isation ability of the approach. To solve this problem, we
use a cross-dataset approach to validate the generalization
performance of the approach across multiple datasets.

Conclusion validity: According to the designed exper-
iments, our approach can be validated. To further ensure
the validity of the conclusion, we validate the conclusion
through the CIFAR-100 dataset and the models from the
other researchers, and reach the same conclusion as it based
on the standard(what is standard?) dataset.

5 RELATED WORK

In this section, We review the most relevant work in the
following three aspects: adversarial examples generation,
coverage-guided fuzz testing and testing approaches of DL
systems.

5.1 Adversarial Deep Learning
A large amount of research has shown that adversarial
examples with small perturbations poses a great threat to
the security and robustness of DL systems [36], [37], [38],
[39], [40], [41]. Small perturbations added to the input
images can fool the whole DL systems, where the input
images are initially classified correctly by the DL systems.
Whereas, the modified adversarial examples are obviously
indistinguishable from the original examples in human eyes.
Goodfellow et al. [15] proposed FGSM which can craft
adversarial examples using loss function with respect to the
input feature vector. Papernot et al. [42] designed JSMA to
craft adversarial examples based on a precise understand-
ing of the mapping between inputs and outputs of DNN.
Kurakin et al. [43] devised BIM. They applied it multiple
times with small step size, and clipped pixel values of
intermediate results after each step to ensure that they are in
an ε-neighbourhood of the original image. Carlini et al. [44]
introduced CW, a new optimization-based attack technique
which is arguably the most effective in terms of the adver-
sarial success rates achieved with minimal perturbations.
At present, these approaches are not used for testing deep
learning systems. We find that it is meaningful to apply
them to the steps of example generation in deep learning
test. However, all these approaches only attempt to find
a specific kind of error behavior, that is, to force incorrect
prediction by adding minimum noise to a given example. In
this way, these approaches are designed for special DNN,
and the generated adversarial examples have unsatisfied
transferability. In contrast, our approach does not depend
on a specific DNN, and uses the distribution of general
data domains to learn from each other, so as to add small
perturbations to the original examples.

5.2 Coverage-Guided Fuzzing Testing
Coverage-guided fuzzing testing (CGF) [45], [46] is a mature
defect and vulnerability detection technique. Zest [47] and

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 12

0 10 20 30 40 50
Epoch

0.95

0.96

0.97

0.98

0.99

Va
l_a

cc

Le1-orig. Le1-retrain

(a) LeNet-1

0 10 20 30 40 50
Epoch

0.88

0.90

0.92

0.94

0.96

0.98

Va
l_a

cc

Le4-orig. Le4-retrain

(b) LeNet-4

0 10 20 30 40 50
Epoch

0.970

0.975

0.980

0.985

0.990

Va
l_a

cc

Le5-orig. Le5-retrain

(c) LeNet-5

(d) VGG-16 (e) VGG-19 (f) ResNet-20

Fig. 8: Validation accuracy contrast diagram of each model in the training process. (a) LeNet-1, training on MNIST dataset,
when epoch=50, (b) LeNet-4, training on MNIST dataset, when epoch=50, (c) LeNet-5, training on MNIST dataset, when
epoch=50, (d) VGG-16, training on CIFAR-10 dataset, when epoch=50, (e) VGG-19, training on CIFAR-10 dataset, when
epoch=50, (f) ResNet-20, training on CIFAR-10 dataset, when epoch=70.

libprotobuf mutator [48] have been proposed to improve
the mutation quality by providing structure aware mu-
tation strategies. TensorFuzz [49] is good at automatically
discovering errors that result from only a few examples.
The validation of DLFuzz [10] shows that it is feasible to
apply the fuzzy knowledge to DL testing, which can greatly
improve the performance of existing DL testing technolo-
gies. Due to the inherent difference between DL systems
and traditional software, traditional CGF cannot be directly
applied to DL systems [50]. In our approach, CGF is adopted
to adapt to DL systems. The state-of-the-art CGF mainly
consists of three parts: mutation, feedback guidance, and
fuzzing strategy, in which we replace the mutation with
the adversarial example generator trained by CycleGAN. In
the feedback part, neuron coverage is used as the guideline.
In the fuzzy strategy part, because the test is basically fed
with the same format of images, the adversarial examples
generated with higher coverage are selected and added into
the processing pool to maximize the neuron coverage of the
target DL systems.

5.3 DL Testing Systems

In traditional software testing, the main means of machine
learning system and deep learning system evaluation is
to randomly extract adversarial examples from manually
labeled datasets [51] and hoc simulations [52] to measure
their accuracy. In some special cases, such as autopilot,
special non-guided simulations are used. However, without
understanding the internal mechanism of the models to be
tested, such black-box test paradigms cannot find different

situations that may lead to error behaviors in the future [8],
[53]. DeepXplore [8] proposes a white-box differential test-
ing technique for generating test inputs that may trigger
inconsistencies between different DNN, which may identify
incorrect behaviors. DeepHunter [9] performs mutations to
generate new semantic retention tests, and uses multiple
pluggable coverage criteria as feedback to guide test gen-
eration from different perspectives. DeepTest [14] runs a tool
for automated testing of DNN-driven autonomous cars. In
addition, many testing approaches [51], [52], [53], [54] for
traditional software have also been adopted and applied to
testing DL systems, such as MC/DC coverage [11], concolic
test [55], combinatorial test [56] and mutation test [57].
Furthermore, various forms of neuron coverage [12] have
been defined, and are demonstrated as important metrics
to guide test generation. In general, these approaches do
not consider adversarial examples and test DL systems from
other aspects.

6 CONCLUSIONS

We design and implement CAGFuzz, a coverage-guided ad-
versarial generative fuzzing auto-testing approach for deep
learning systems. CAGFuzz trains an adversarial example
generator for a specified dataset. It generates adversarial
examples for target DNN by iteratively taking original
examples, and finds potential errors in the development
and deployment phase of DNN. We have done extensive
experiments to prove the effectiveness of CAGFuzz in dis-
covering potential errors in DNN and improving model
accuracy. Although neuron coverage is a disputable metric,

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 13

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Retrain_epoch

0.9880

0.9885

0.9890

0.9895

0.9900

0.9905

Ac
cu
ra
cy

CAGFuzz
DeepXplore

FGSM
DeepHunter

(a) LeNet-1

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Retrain_epoch

0.9896

0.9898

0.9900

0.9902

0.9904

0.9906

0.9908

0.9910

Ac
cu
ra
cy

CAGFuzz
DeepXplore

FGSM
DeepHunter

(b) LeNet-4

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Retrain_epoch

0.9955

0.9960

0.9965

0.9970

0.9975

0.9980

0.9985

Ac
cu

ra
cy

CAGFuzz
DeepXplore

FGSM
DeepHunter

(c) LeNet-5

(d) VGG-16 (e) VGG-19 (f) ResNet-20

Fig. 9: Accuracy variation of DNN models when training set is augmented with the same number of inputs generated
by different approaches. (a) LeNet-1, training on MNIST dataset, when epoch=5, (b) LeNet-4, training on MNIST dataset,
when epoch=5, (c) LeNet-5, training on MNIST dataset, when epoch=5, (d) VGG-16, training on CIFAR-10 dataset, when
epoch=5, (e) VGG-19, training on CIFAR-10 dataset, when epoch=5, (f) ResNet-20, training on CIFAR-10 dataset, when
epoch=5.

our experimental results show that CAGFuzz guided by
neuron coverage can discover more potential errors in dif-
ferent kinds of DNN models, improve their model accuracy,
and further enhance the transferability of the generated
adversarial samples.

For future work, we plan to employ multidimensional
coverage feedback to improve the scope of the information
that adversarial examples can cover. We also try to train
effective adversarial example generators for other input
forms, such as text information and voice information.

ACKNOWLEDGMENTS

The work is supported by the National Natural Science
Foundation of China (61572171,61702159), the Natural Sci-
ence Foundation of Jiangsu Province (BK20191297) and the
Fundamental Research Funds for the Central Universities of
China (B210202075).

REFERENCES

[1] P. Sermanet and Y. LeCun, “Traffic sign recognition with multi-
scale convolutional networks.,” in IJCNN, pp. 2809–2813, 2011.

[2] A. Stocco, M. Weiss, M. Calzana, and P. Tonella, “Misbehaviour
prediction for autonomous driving systems,” arXiv preprint
arXiv:1910.04443, 2019.

[3] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “Towards
vision-based deep reinforcement learning for robotic motion con-
trol,” arXiv preprint arXiv:1511.03791, 2015.

[4] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[5] M. Latah and L. Toker, “Artificial intelligence enabled software-
defined networking: a comprehensive overview,” IET Networks,
vol. 8, no. 2, pp. 79–99, 2018.

[6] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao,
A. Prakash, T. Kohno, and D. Song, “Robust physical-world
attacks on deep learning visual classification,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 1625–1634, 2018.

[7] A. Bertolino, “Software testing research: Achievements, chal-
lenges, dreams,” in 2007 Future of Software Engineering, pp. 85–103,
IEEE Computer Society, 2007.

[8] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated
whitebox testing of deep learning systems,” in Proceedings of the
26th Symposium on Operating Systems Principles, pp. 1–18, ACM,
2017.

[9] X. Xie, L. Ma, F. Juefei-Xu, H. Chen, M. Xue, B. Li, Y. Liu,
J. Zhao, J. Yin, and S. See, “Deephunter: Hunting deep neural net-
work defects via coverage-guided fuzzing,” arXiv preprint arXiv:
1809.01266, 2018.

[10] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “Dlfuzz: Differential
fuzzing testing of deep learning systems,” in Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pp. 739–
743, ACM, 2018.

[11] Y. Sun, X. Huang, and D. Kroening, “Testing deep neural net-
works,” arXiv preprint arXiv:1803.04792, 2018.

[12] L. Ma, F. Juefei-Xu, F. Zhang, J. Sun, M. Xue, B. Li, C. Chen, T. Su,
L. Li, Y. Liu, et al., “Deepgauge: Multi-granularity testing criteria
for deep learning systems,” in Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, pp. 120–
131, ACM, 2018.

[13] Z. Wang, M. Yan, J. Chen, S. Liu, and D. Zhang, “Deep learn-
ing library testing via effective model generation,” in ESEC/FSE
’20: 28th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Virtual Event,
USA, November 8-13, 2020 (P. Devanbu, M. B. Cohen, and T. Zim-
mermann, eds.), pp. 788–799, ACM, 2020.

[14] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 14

of deep-neural-network-driven autonomous cars,” in Proceedings
of the 40th international conference on software engineering, pp. 303–
314, ACM, 2018.

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” arXiv preprint arXiv:1412.6572,
2014.

[16] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
2014.

[17] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-
image translation using cycle-consistent adversarial networks,” in
Proceedings of the IEEE international conference on computer vision,
pp. 2223–2232, 2017.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[19] L. Deng, “The mnist database of handwritten digit images for ma-
chine learning research [best of the web],” IEEE Signal Processing
Magazine, vol. 29, no. 6, pp. 141–142, 2012.

[20] H. Li, H. Liu, X. Ji, G. Li, and L. Shi, “Cifar10-dvs: An event-stream
dataset for object classification,” Frontiers in neuroscience, vol. 11,
p. 309, 2017.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet
large scale visual recognition challenge,” International journal of
computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[22] X. Xie, H. Chen, Y. Li, L. Ma, Y. Liu, and J. Zhao, “Coverage-guided
fuzzing for feedforward neural networks,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 1162–1165, IEEE, 2019.

[23] M. Zalewski, “American fuzzy lop,” URL: http://lcamtuf. coredump.
cx/afl, 2017.

[24] K. Serebryany, “libfuzzer a library for coverage-guided fuzz test-
ing,” LLVM project, 2015.

[25] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos,
“Vuzzer: Application-aware evolutionary fuzzing.,” in NDSS,
vol. 17, pp. 1–14, 2017.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Advances in neural information processing systems, pp. 2672–
2680, 2014.

[27] L. Zheng, Y. Zhao, S. Wang, J. Wang, and Q. Tian, “Good practice
in cnn feature transfer,” arXiv preprint arXiv:1604.00133, 2016.

[28] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng,
and T. Darrell, “Decaf: A deep convolutional activation feature for
generic visual recognition,” in International conference on machine
learning, pp. 647–655, 2014.

[29] A. Babenko, A. Slesarev, A. Chigorin, and V. Lempitsky, “Neural
codes for image retrieval,” in European conference on computer
vision, pp. 584–599, Springer, 2014.

[30] X. Hou, J. Duan, and G. Qiu, “Deep feature consistent deep
image transformations: Downscaling, decolorization and hdr tone
mapping,” arXiv preprint arXiv:1707.09482, 2017.

[31] F. Salfner, M. Lenk, and M. Malek, “A survey of online failure
prediction methods,” ACM Computing Surveys (CSUR), vol. 42,
no. 3, pp. 1–42, 2010.

[32] F. Chollet et al., “Keras applications,” 2018.
[33] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine learn-

ing testing: Survey, landscapes and horizons,” arXiv preprint
arXiv:1906.10742, 2019.

[34] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” arXiv preprint arXiv:1611.01236, 2016.

[35] A. Kurakin, I. Goodfellow, S. Bengio, et al., “Adversarial examples
in the physical world,” 2016.

[36] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks
are easily fooled: High confidence predictions for unrecognizable
images,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 427–436, 2015.

[37] Z. Zhao, D. Dua, and S. Singh, “Generating natural adversarial
examples,” arXiv preprint arXiv:1710.11342, 2017.

[38] P. Samangouei, M. Kabkab, and R. Chellappa, “Defense-gan:
Protecting classifiers against adversarial attacks using generative
models,” arXiv preprint arXiv:1805.06605, 2018.

[39] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks
and defenses for deep learning,” IEEE transactions on neural net-
works and learning systems, 2019.

[40] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S.
Dong, and T. Dai, “White-box fairness testing through adversarial
sampling,” in ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020 (G. Rothermel
and D. Bae, eds.), pp. 949–960, ACM, 2020.

[41] S. A. Seshia, S. Jha, and T. Dreossi, “Semantic adversarial deep
learning,” IEEE Des. Test, vol. 37, no. 2, pp. 8–18, 2020.

[42] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS&P), pp. 372–387, IEEE, 2016.

[43] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” arXiv preprint arXiv:1607.02533, 2016.

[44] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 IEEE Symposium on Security and Privacy
(SP), pp. 39–57, IEEE, 2017.

[45] S. Gan, C. Zhang, X. Qin, X. Tu, K. Li, Z. Pei, and Z. Chen, “Collafl:
Path sensitive fuzzing,” in 2018 IEEE Symposium on Security and
Privacy (SP), pp. 679–696, IEEE, 2018.

[46] Y. Chen, B. Xuan, C. M. Poskitt, J. Sun, and F. Zhang, “Active
fuzzing for testing and securing cyber-physical systems,” in ISSTA
’20: 29th ACM SIGSOFT International Symposium on Software Testing
and Analysis, Virtual Event, USA, July 18-22, 2020 (S. Khurshid and
C. S. Pasareanu, eds.), pp. 14–26, ACM, 2020.

[47] R. Padhye, C. Lemieux, K. Sen, M. Papadakis, and Y. L. Traon,
“Zest: Validity fuzzing and parametric generators for effective
random testing,” arXiv preprint arXiv:1812.00078, 2018.

[48] K. Serebryany, V. Buka, and M. Morehouse, “Structure-aware
fuzzing for clang and llvm with libprotobuf-mutator,” 2017.

[49] A. Odena and I. Goodfellow, “Tensorfuzz: Debugging neu-
ral networks with coverage-guided fuzzing,” arXiv preprint
arXiv:1807.10875, 2018.

[50] X. Gao, R. K. Saha, M. R. Prasad, and A. Roychoudhury, “Fuzz
testing based data augmentation to improve robustness of deep
neural networks,”

[51] I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining:
Practical machine learning tools and techniques. Morgan Kaufmann,
2016.

[52] D. L. Rosenband, “Inside waymo’s self-driving car: My favorite
transistors,” in 2017 Symposium on VLSI Circuits, pp. C20–C22,
IEEE, 2017.

[53] I. Goodfellow and N. Papernot, “The challenge of verification and
testing of machine learning,” Cleverhans-blog, 2017.

[54] S. Gerasimou, H. F. Eniser, A. Sen, and A. Cakan, “Importance-
driven deep learning system testing,” in ICSE ’20: 42nd Interna-
tional Conference on Software Engineering, Seoul, South Korea, 27 June
- 19 July, 2020 (G. Rothermel and D. Bae, eds.), pp. 702–713, ACM,
2020.

[55] Y. Sun, M. Wu, W. Ruan, X. Huang, M. Kwiatkowska, and
D. Kroening, “Concolic testing for deep neural networks,” in Pro-
ceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 109–119, ACM, 2018.

[56] L. Ma, F. Zhang, M. Xue, B. Li, Y. Liu, J. Zhao, and Y. Wang,
“Combinatorial testing for deep learning systems,” arXiv preprint
arXiv:1806.07723, 2018.

[57] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li,
Y. Liu, J. Zhao, et al., “Deepmutation: Mutation testing of deep
learning systems,” in 2018 IEEE 29th International Symposium on
Software Reliability Engineering (ISSRE), pp. 100–111, IEEE, 2018.

