
Smart Contract Vulnerability Detection Using Code
Representation Fusion

Ben Wang1 , Hanting Chu1 , Pengcheng Zhang1 , Hai Dong2

1College of Computer and Information, Hohai University, Nanjing, China
2School of Computing Technologies, RMIT University, Melbourne, Australia

shawnwb@163.com; 1354868944@qq.com; pchzhang@hhu.edu.cn; hai.dong@rmit.edu.au

Abstract—At present, most smart contract vulnerability detec-
tion use manually-defined patterns, which is time-consuming and
far from satisfactory. To address this issue, researchers attempt
to deploy deep learning techniques for automatic vulnerability
detection in smart contracts. Nevertheless, current work mostly
relies on a single code representation such as AST (Abstract
Syntax Tree) or code tokens to learn vulnerability characteris-
tics, which might lead to incompleteness of learned semantics
information. In addition, the number of available vulnerability
datasets is also insufficient. To address these limitations, first, we
construct a dataset covering most typical types of smart contract
vulnerabilities, which can accurately indicate the specific row
number where a vulnerability may exist. Second, for each single
code representation, we propose a novel way called AFS (AST
Fuse program Slicing) to fuse code characteristic information.
AFS can fuse the structured information of AST with program
slicing information and detect vulnerabilities by learning new
vulnerability characteristic information.

Index Terms—vulnerability detection, deep learning, code rep-
resentation fusion, AST, program slicing

I. INTRODUCTION AND MOTIVATION

Smart contracts are autonomous programs that run on the
blockchain, which are susceptible to coding threats due to
the design issues of the blockchain, Ethereum and Solidity.
Many scholars have developed tools based on traditional
vulnerability detection techniques for smart contract vulner-
ability detection [1]. A common limitation (problem 1) with
this type of approaches is that they use manually-defined
patterns to detect vulnerabilities. Although these approaches
achieve certain progress in detecting vulnerabilities, their
accuracy rates are relatively low [2]. Vulnerability detection
based on deep learning usually achieves high accuracy and
completeness [5]. A common limitation (problem 2) for this
category of detection approaches is that they mostly rely on
a single form of code representation, such as code tokens,
AST, control flow graphs, etc, which may not contain rich
semantic and syntactic code features. Inspired by [2], we aim
to explore new applications based on fused features for smart
contract vulnerability detection. The 3rd pending issue in this
area (problem 3) is the shortfall of accurately labelled and
multi-vulnerability based public smart contract datasets for
vulnerability detection.

To address the above problems, we propose an approach
called AFS to automatically detect vulnerabilities in Solidity
based smart contracts, instead of refined rules for matching
vulnerability templates. The contributions of this paper are:

(a) we combine program slicing information and structured
information of AST to capture more semantic information of
the vulnerabilities; (b) we aim to create an expandable and
up-to-date real dataset with typical types of manually labeled
vulnerabilities, including integer overflow and underflow, reen-
trancy, time-stamp dependency, suicide contracts, etc. This
dataset is expected to be used for researchers to accurately and
completely evaluate the performance of existing smart contract
vulnerability detection approaches.

Fig. 1. Flowchart of the AFS data processing

II. PROPOSED APPROACH

We briefly describe the process of data collection be-
fore formally introducing the proposed vulnerability de-
tection approach. The source of the dataset is twofold:
First, we used the keywords of smart contract vulner-
ability, vulnerable smart contracts, and smart contracts
defects to search smart contracts on GitHub and Gitter
chat room (https://gitter.im/orgs/ethereum/rooms/); Second,
we used Karl (https://github.com/cleanunicorn/karl) to collect
new smart contracts from the Ethereum blockchain website
(https://etherscan.io), where Karl is a tool used together with
Mythril [1] for real-time blockchain monitoring. They can
provide addresses of smart contracts that may cause vulnera-
bilities. For data labelling, we adopted Mythril, Slither, Oyente
and SmartCheck [1] to detect the collected contracts. When
3/4 of the tools report that there is a problem with a certain
line of a contract, we conduct a manual verification and label
the vulnerability once it is verified. We then add the labelled
contract into the vulnerability dataset.

© © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
B. Wang, H. Chu, P. Zhang and H. Dong, "Smart Contract Vulnerability Detection Using Code Representation Fusion," 2021 28th Asia-
Pacific Software Engineering Conference (APSEC), Taipei, Taiwan, 2021, pp. 564-565, doi: 10.1109/APSEC53868.2021.00069.

AFS adopts a supervised learning paradigm, the process of
which includes data processing, model training and model
prediction. Among them, data processing is the most im-
portant stage. Fig 1 illustrates the main data processing
steps for handling reentrancy vulnerability, where each box
shows the result of the processing. The characteristic of a
reentrancy vulnerability is that a contract uses call-statements
to deposit ethers into a contract and then repeatedly con-
trols the call-statements to deduct tokens held by the payee
address [3]. This would trigger multiple invocations of the
call-statements and even drain the deposit contract. Data
processing is divided into 4 steps. First, we analyze the
global function-call graph generated by Slither to extract a
complete function-call path from a contract. For vulnerable
contracts, we extract paths containing call-statements in the
collected dataset. For non-vulnerable contracts, the deposit
paths in which a function is declared as payable will be ex-
tracted. We then extract the corresponding complete functional
fragment according to the function paths. Second, to obtain
the structured information of the functional fragments, we
adopt ANTLR (https://github.com/solidity-parser/antlr) (AN-
other Tool for Language Recognition) to parse those function
fragments into AST (Abstract Syntax Tree). ANTLR is a
powerful parser generator for translating structured text and
analysing language. AST is a tree-like representation of ab-
stract syntax structure of source code. We then deploy depth-
first search to serialize the AST of the function fragments. In
Figure 1, the sample result of the AST serialization on line 6-
7 of a functional fragment withdraw is illustrated. The AST
serialization can preserve the structured information of vul-
nerabilities. Third, program slicing techniques are applied to
extract the semantic information of the code. Specifically, for
reentrancy vulnerability, we first extract the address variable
in front of the call-statements based on the complete function
call path in step 1, and all the statements that operate on
the address variable to form program slices. In Figure 1, for
address variable to, line 3,6,7 will be added to the program
slices. Then, we clean up the slices to remove some semantic-
irrelevant information. For instance, we standardize variable
names as ’VAR’ for user-defined variable names. We then
tokenize the AST information and the sliced code information
and enter them straightly into the word2vec model for training
two respective word vectors. Specifically, we set the length of
the function fragment to be 100 through clustering, and the
dimension of each token is searched in [100, 150]. Fourth,
we concatenate these two word vectors as a new fusion vector.
The new vector is a code representation combining these two
sets of feature information. Finally, the concatenated vector is
utilized as the input to train a deep learning based vulnerability
detection model.

We plan to conduct the evaluation by comparing the pro-
posed approach with the traditional vulnerability detection ap-
proaches and deep learning based approaches based on single
code representations [4]. The comparison will be performed
in 1) commonly used detection metrics, e.g. Accuracy, Recall,
F1, etc, 2) detection speed and 3) capability of the approaches

on learning undefined vulnerability types. The scalability of
these approaches will also be tested in terms of these metrics.

III. EVALUATION

We evaluate the performance of the approach on reentrancy
vulnerability detection. Based on the proposed data collection
approach, we analyzed 20,000 smart contracts, of which 1,832
(531,049 lines) meet the above requirements in step 1. We
then used 1,832 smart contracts to conduct experiments, of
which 207 (101,497 lines) contain reentrancy vulnerability.
We divided them into a training set (80%) and a testing set
(20%). We adopted LSTM, BLSTM-ATT [4] to evaluate the
testing set. We also compared AFS with the method proposed
in [4]. For each model, we repeat the experiments 10 times
to calculate the average values. The experimental results are
shown in TABLE 1. The aforementioned models are performed
with learning rate = 0.002 (decaying every 10 epochs with a
factor of 0.2), dropout rate = 0.5, batch size = 32, and the
dimension of each token vector = 100.

TABLE I
PERFORMANCE EVALUATION FOR LSTM, BLSTM-ATT

Model
Metrics ACC(%) FP(%) FN(%) Recall(%) F1(%)

LSTM(AST) 85.42 10.91 18.22 81.78 84.80
LSTM(AFS) 89.76 10.99 9.50 90.50 89.81

BLSTM-ATT([4]) 90.48 9.85 9.13 90.87 90.56
BLSTM-ATT(AFS) 93.07 8.48 5.40 94.60 93.21

As shown in Table 1, in the LSTM model, AFS outperforms
AST based on a single representation. AFS also performs well
in BLSTM-ATT model, with 93.07% accuracy on the testing
datasets, which can prove the effectiveness of AFS. It is worth
noting that we currently only conduct experiments on a small
number of reentrancy datasets. We will increase the amount of
experimental data and apply AFS to other vulnerabilities in the
future. Meanwhile, we will carry out the scheduled evaluation
so as to prove the effectiveness of the proposed method.

ACKNOWLEDGEMENTS

The work is supported by the Natural Science Foundation
of Jiangsu Province (No.BK20191297).

REFERENCES

[1] Durieux T, Ferreira J F, Abreu R, et al. Empirical review of automated
analysis tools on 47,587 ethereum smart contracts[C]//Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering.
2020: 530-541.

[2] Zou D, Wang S, Xu S, et al. µVulDeePecker: A deep learning-based
system for multiclass vulnerability detection[J]. IEEE Transactions on
Dependable and Secure Computing, 2019.

[3] Zhang P, Xiao F, Luo X. A framework and dataset for bugs in ethereum
smart contracts[C]//2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). IEEE, 2020: 139-150.

[4] Qian P, Liu Z, He Q, et al. Towards automated reentrancy detection for
smart contracts based on sequential models[J]. IEEE Access, 2020, 8:
19685-19695.

[5] Li Y, Huang CL, Wang ZF, Yuan L, Wang XC. Survey of soft-
ware vulnerability mining methods based on machine learning. Ruan
Jian Xue Bao/Journal of Software, 2020,31(7):20402061 (in Chinese).
http://www.jos.org.cn/1000-9825/6055.html

