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Abstract

Smart contracts contain many built-in security features, such as non-immutability once being deployed and non-involvement of third
parties for contract execution. These features reduce security risks and enhance users’ trust towards smart contracts. However, smart
contract security issues still persist, resulting in huge financial losses. Contract publishers cannot fully cover contract vulnerabilities
through contract version updating. These security issues affect further development of blockchain technologies. So far, there are
many related studies focusing on smart contract security issues and tend to discuss from a particular perspective (e.g., development
cycle, vulnerability attack methods, security detection tools, etc.). However, smart contract security is a complicated issue that
needs to be explored from a multi-dimensional perspective. In this paper, we explore smart contract security from the perspectives
of vulnerability data sources, vulnerability detection, and vulnerability defense. We first analyze the existing security issues and
challenges of smart contracts, investigate the existing vulnerability classification frameworks and common security vulnerabilities,
followed by reviewing the existing contract vulnerability injection, detection, and repair methods. We then analyze the performance
of existing security methods. Next, we summarize the current status of smart contract security-related research. Finally, we
summarize the state of the art and future trends of smart contract security-related research. This paper aims to provide systematic
knowledge and references to this research field.
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1. Introduction

Blockchain is a distributed ledger that enables trusted value
transfer in an environment of mutual distrust, which is a mile-
stone in the history of human credit evolution [1]. Bitcoin, the
hottest application of blockchain, can be operated by a lim-
ited number of scripts for transactions. With the emergence of
Ethereum smart contracts, the blockchain technology has en-
tered the era of programmable finance, where people can com-
plete more customized transactions with the aid of smart con-
tracts [2]. The concept of smart contracts was introduced by Sz-
abo [3], which is a digital contract that can be executed over the
Internet and designed to replace traditional paper-based con-
tracts.

At present, the implementation of smart contracts relies
heavily on the decentralized Ethernet virtual machines and
the programming language represented by Solidity [4]. A
blockchain system can be divided into a data layer, a network
layer, a consensus layer, an incentive layer, a contract layer,
and an application layer [5]. Compared with the other layers,
the security threat of the contract layer has a closer relation-
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ship with the mechanism of the blockchainthe ensuing path ex-
plosion and symbolic path constraint insolvability problem [6].
This paper mainly focuses on the following security issues of
the contract layer. First of all, a miner node can be selected to
create a block without the need to verify if the node is located in
a trusted execution environment. If the miner node is malicious,
it can manipulate the block transaction order and cause security
problems [7]. Secondly, smart contracts often need to call each
other to achieve more complex functionality. However, call-
ing an untrusted external contract may raise risks and errors.
This can lead to potential security threats to the local contract
if malicious code exists in the external contract [8]. Further-
more, since smart contracts on the blockchain can be written
and published by any user with diverse programming abilities
and development tools, there is no guarantee that a smart con-
tract will be deployed on the chain without security vulnerabili-
ties or flaws [9]. Finally, smart contracts also have some special
mechanisms that traditional codes do not have, such as the gas
mechanism of Ethereum smart contracts. These will lead to cer-
tain security risks specific to smart contracts on the blockchain.
Due to the strong correlation of smart contracts with the access
of financial currency, many attackers have been exploiting vul-
nerabilities of smart contracts for profits. In order to ensure data
consistency and transaction traceability, smart contracts cannot
be modified after deployment. Even if vulnerabilities are de-
tected, they cannot be fixed via patching or version upgrading
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Table 1: Smart Contract Security Incidents
Serial

Number Time of Attack Target of Attack Amount of Damage

1 2016-06-17 The DAO 60,000,000 USD
2 2017-07-29 Parity 30,000,000 USD
3 2018-04-22 BeautyChain 1,000,000,000 USD
4 2018-04-22 SmartMesh 140,000,000 USD
5 2020-02-15 bZx1 350,000 USD
6 2020-02-18 bZx1 645,000 USD
7 2020-04-19 Lendf.Me 24,696,616 USD
8 2020-06-18 Bancor 135,229 USD
9 2020-07-01 VETH 900,000 USD

10 2020-08-04 Opyn 371,260 USDC
11 2020-08-13 YAM 750,000 USD
12 2020-12-28 Cover Protocol 3,000,000 USD
13 2021-03-09 DODO 500,000 USD
14 2021-05-05 Value DeFi1 5,817,780 USD
15 2021-05-07 Value DeFi1 10,000,000 USD
16 2021-06-24 SharedStake 500,000 USD

17 2021-07-11 Umbrella Network
3,000,000 UMB
+300,000 DVG

18 2021-07-13 DeFiPie 124,999 BUSD
19 2021-07-16 THORChain1 7,600,000 USD
20 2021-07-23 THORChain1 8,000,000 USD
21 2021-08-11 Punk Protocol 3,950,000 USD
22 2021-08-29 xToken 4,500,000 USD
23 2021-09-04 DAO Maker 4,000,000 USD
24 2021-09-15 Nowswap 1,000,000 USD
25 2021-10-14 Compound 68,800,000 USD
26 2021-11-27 dYdX 211,000 USD
27 2021-11-28 Visor Finance 975,720 USD
28 2021-12-11 Gelato Network 744,000 USD
29 2021-12-30 SashimiSwap 200,000 USD
30 2022-03-20 Umbrella Network 700,000 USD
31 2022-03-20 Li.finance 600,000 USD
32 2022-03-27 Revest Finance 120,000 USD
33 2022-03-30 BasketDAOOrg 1,200,000 USD
34 2022-04-30 Fei Protocol 80,340,000 USD

1 An event with the same name but listed twice means that the event caused multiple
attacks.

other than self-destruction due to the tamper-evident nature. In
this regard, malicious attacks on smart contracts cannot be sim-
ply prevented. The most famous incident ”The DAO” caused
over $60 million financial losses due to a re-entry vulnerabil-
ity [10]. This incident directly led to the subsequent Ethereum
hard fork, an operation that conflicts with the ”decentralized”
nature of blockchains and caused huge controversy within the
community. The financial losses caused by blockchain security
incidents have been increasing annually since 2016, especially
from 2020 onwards. We collected the major smart contract at-
tacks since 2016, as shown in Table 11.

These smart contract attacks seriously threaten the develop-
ment of this technology. The characteristics of smart contracts
make it impossible for developers to maintain the existing vul-
nerability contracts. With the increasing attention on the secu-
rity of smart contracts, the amount of related scientific studies
is rising.

We systematically survey the papers focusing on smart con-
tract security, vulnerability collection, vulnerability detection,

1ETH DApp attacks. https://hacked.slowmist.io/?c=ETH

vulnerability repair, and security protection published from
2015-2022. According to our survey, 49 papers that are be-
lieved to represent the state of the art in this field are selected
and investigated. This paper concentrates on the overall per-
spectives of smart contract security, aiming to identify short-
comings in existing research and provide insights for solutions
and future research directions.

Contributions. The main contributions of this paper are:

1. Comprehensive analysis of smart contract security issues
and challenges. The security problems and challenges
faced by existing smart contracts are comprehensively an-
alyzed.

2. Systematic review of the existing smart contract security
detection and defense methods. In terms of the existing
security challenges of smart contracts, we analyze the ex-
isting vulnerability detection tools, performance evalua-
tion methods, and vulnerability repair methods. The se-
curity assurance methods of smart contracts are summa-
rized from the perspectives of vulnerability data sources,
vulnerability detection, and vulnerability repair.

3. Elaboration on shortcomings of existing research and fu-
ture research directions. The strengths and weaknesses of
existing smart contract security methods are analyzed for
various security challenges. In particular, we extensively
examine available evaluation datasets, existing vulnerabil-
ity repair methods and artificial intelligence-based vulner-
ability detection methods. Next, future research directions
are indicated for addressing those weaknesses.

The rest of the paper is organized as follows: Section 2 pro-
vides an introduction to the relevant review work. Section 3
provides an overview of the background knowledge. Section
4 analyzes and evaluates the literature retrieved for this paper.
Section 5 discusses the research questions based on the find-
ings. Section 6 summarizes the existing research gaps and dis-
cusses future research directions. Finally, Section 7 concludes
the entire paper.

2. Related Work

In recent years, many survey papers focusing on various as-
pects of smart contract security have been published. Kushwaha
et al. [11] discuss Ethereum smart contract security vulnera-
bilities, detection tools, and vulnerability attacks and preven-
tion mechanisms. This study does not consider the impact of
deep learning-based detection methods on smart contract secu-
rity. Harz et al. [12] investigate the verification tools and meth-
ods for the mainstream programming languages and distributed
ledgers for smart contracts. However, they do not discuss smart
contract vulnerabilities. Sayeed et al. [13] survey contract vul-
nerabilities and detection tools but do not consider how to pre-
vent contract vulnerabilities. Wang et al. [14] summarize the re-
search results on smart contract security published from 2015-
2019, mainly focusing on how contracts can be maliciously ex-
ploited and attacked. Nevertheless, they not consider the per-
spective of contract risk defense. Huang et al. [15] conducted
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a literature review on smart contract security from the software
lifecycle perspective. Surucu et al. [16] analyze the drawbacks
of existing vulnerability detection efforts and discuss the possi-
bility of applying machine learning to smart contract vulnera-
bility detection. Still, this study does not analyze smart contract
vulnerabilities and defense mechanisms. Perez et al. [17] ex-
plore the security and privacy issues of applying smart contracts
to crowdsourced systems and the existing solutions to address
the identified security and privacy issues. Atzei et al. [6] ana-
lyze existing smart contract vulnerabilities and categorize smart
contract vulnerabilities into three perspectives: programming
language, virtual machine, and blockchain.

The above studies mainly focus on vulnerability detection
tools. It is well known that vulnerability datasets are a decisive
factor in the performance assessment of the tools. The existing
survey papers, however, have not acknowledged and investi-
gated the impact of vulnerability datasets. Besides, most of the
reviews do not fully cover existing vulnerability defense and
repair solutions, which are critical mechanisms for smart con-
tract security protection apart from vulnerability detection. In
order to fill the above gaps in the field of smart contract security
literature surveys, we conduct a new survey from the perspec-
tives of vulnerability data sources, vulnerability detection, and
vulnerability defense.

3. Background

3.1. Smart Contracts

The concept of smart contract predates blockchain as a way
to automate the construction of contractual protocols, dating
back as far as 1995 when Nick Szabo published [3]. The defini-
tion refers to a promise defined in digital form that the partici-
pants can execute on a smart contract [18]. Similar to traditional
software, smart contract technologies has a life cycle, contain-
ing five phases: design, development, deployment, invocation,
and destruction. Since smart contracts cannot be changed once
they are deployed, they do not require a maintenance phase in
the traditional sense [7]. Compared with traditional contracts,
smart contracts mainly address how to ensure the validity of the
contract. While the validity of a traditional contract needs to be
guaranteed by an institution such as a court of law, a smart con-
tract codes the execution procedure. Once the conditions are
met after deployment, the coded procedure can be executed au-
tomatically and cannot be interfered with by humans. The main
scope of its application includes privacy, security, and decen-
tralized functions, such as decentralized financial lending and
decentralized crowdfunding [19].

3.2. Ethereum

Ethereum is an open-source public blockchain platform,
which supports a variety of high-level programming languages,
by which developers can develop any decentralized applica-
tions (DApps) [20] on Ethereum. Ethereum can perfectly in-
tegrate blockchain and smart contracts. Ethereum not only in-
herits the characteristics of data disclosure, non-tamperability
and decentralization of blockchains but also is Turing complete

[21] compared to blockchains. Smart contract code is compiled
into machine code that can be executed on Ethereum through
the Ethereum virtual machine (EVM), which enables it to run
on Ethereum. The EVM is an entirely isolated sandbox en-
vironment, so smart contracts have only very limited access to
each other [22]. Since the information in the blockchain is open
and transparent, while the information of each node is synchro-
nized. Once a smart contract is successfully deployed, each
node can execute the smart contract, and everyone can publish
the smart contract on Ethereum. In order to prevent attackers
from releasing malicious contracts, each operation performed
by smart contracts on Ethereum will generate gas consumption.

Since smart contracts usually involve money transactions, it
is crucial to secure them effectively as they can cause huge
losses if they have security problems and are exploited by at-
tackers.

3.3. Smart Contract Security

Smart contract development is still at the early stage of devel-
opment. Smart contracts are usually written by developers and
deployed on Ether. Their life cycle is similar to that of software
programs, so there will inevitably be some security problems
[9]. Smart contracts cannot be changed once they are deployed.
Even if security problems are found, they cannot be maintained
by patching or version updating like traditional software. In
other words, adding a self-destruct function not only increases
the risk of contract attacks but also does not recover the eco-
nomic loss already caused. A comprehensive audit of smart
contract security is the most effective way to eliminate the se-
curity risks of smart contracts. However, no security audit can
guarantee that a smart contract is 100% problem-free. There-
fore, the repair work after the discovery of security problems is
equally important.

4. Overview Methodology

The Systematic Literature Review (SLR) method provides an
in-depth and broad overview of a particular area by searching
and evaluating the existing literature [23]. In this paper, SLR is
selected as the research method, given that the goal of this paper
is to investigate and analyze the current state of art in smart
contract security and provide directions for future research. We
follow the SLR guidelines to conduct the literature analysis.

4.1. Research Questions

The research questions need to indicate the goal of the re-
view article. Smart contract security is a multi-dimensional is-
sue that should be explored from a holistic perspective. For ex-
ample, the diversity of vulnerability data is an important dimen-
sion to measure the feasibility of contract security solutions.
Therefore, we explore smart contract security from four per-
spectives: current status of smart contract security, vulnerabil-
ity data sources, vulnerability detection, and vulnerability de-
fense. We distill the four security issues and their sub-problems
as follows.
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1. RQ1: Security status of smart contracts. RQ1.1: What are
security issues faced by smart contracts? RQ1.2: What are
typical smart contract vulnerabilities?

2. RQ2: Source of smart contract vulnerability data. RQ2.1:
What are existing smart contract vulnerability datasets?
RQ2.2: What are the major methods for generating smart
contract vulnerability datasets? RQ2.3: How many vul-
nerabilities are covered in the existing datasets?

3. RQ3: Security detection methods for smart contracts.
RQ3.1: What are the existing vulnerability detection
methods? RQ3.2: What are the advantages and disadvan-
tages of those detection methods?

4. RQ4: Defense mechanisms against vulnerabilities.
RQ4.1: What are the existing vulnerability defense meth-
ods? RQ4.2: What are the strengths and limitations of
those repair methods? RQ4.3: What vulnerabilities are
covered by those vulnerability repair methods?

4.2. Literature Search

This section focuses on how to select the relevant literature
for answering the research questions above. Two major steps,
namely comprehensive search and primary screening, are in-
cluded.

4.2.1. Comprehensive Search
First, we conduct a comprehensive search to find references

related to the research questions. We adopt the PIO (Popula-
tion, Intervention, and Outcome) principle [24] to help us iden-
tify relevant keywords and databases specifically, where popu-
lation represents terms related to technology and standards, and
intervention means specific issues in the field. The search is
performed using Population AND Intervention, with detailed
PIO information shown in table 2.

To avoid the influence of preference factors on the research
results, only the characters listed in table 2 are used as our
query words. We target seven scientific databases as the sources
for the literature search, as shown below.

• Google Scholar(https://scholar.google.com/)

• IEEE Xplore(https://ieeexplore.ieee.org/)

• DBLP(https://dblp.org/)

• Spring Link(https://link.springer.com/)

• ACM Digital Library(https://dl.acm.org/)

• Web of Science(https://www.webofscience.com/)

• EI Compendex(https://www.engineeringvillage.com/)

These databases contain relevant scientific results published
in the field of computing. To conduct our research, we first
manually remove the duplicated results retrieved. Although the
concept of smart contracts was proposed as early as 1992, the
smart contract application platform Ether was proposed by Vi-
talik Buterin in 2015. Hence, the starting year of our literature
collection is 2015. In addition, to ensure the completeness of

our search results, we also check the related references from the
retrieved relevant papers and monitor the lists of papers recently
accepted by relevant top conferences.

4.2.2. Literature Screening
After the above-mentioned search steps, we retrieved hun-

dreds of papers. However, many of them are not quite rele-
vant to the theme of this survey. Therefore, we screen the key-
words, abstracts, main contributions, and conclusions of each
paper and select the papers containing smart contract security
related topics in those areas.

4.3. Quality Evaluation

We identify the key information of each article by scanning
its keywords, abstract, contribution, method, and conclusion,
which facilitates us to classify the articles. As a result, we clas-
sify the literature into the classes of vulnerability data collec-
tion, vulnerability detection, and vulnerability remediation. In
addition, to ensure the quality of our selected literature, we as-
sessed the quality of the publications based on the Computing
Research and Education (CORE) [25] ranking, which contains
five categories: A*, A, B, C and No Grade. In addition, we
also adopted the journal and conference ranking released by the
China Computer Federation (CCF) to evaluate the quality of the
publication venues [26], and marked them in Table 3. The rank-
ing results of the two quality assessment methods are shown in
Figure 1. Smart contract vulnerability detection-related papers
accounted for the most significant proportion of 85.7% (42/49),
of which 11 papers were published in the high-level platform,
followed by smart contract vulnerability repair-related papers
proportion of 10.2% (5/49), of which four papers published in
the high-level platform, smart contract vulnerability injection-
related papers less, accounting for 2% (1/49), but the paper
published in the high-level platform. This paper argues that
the main reasons for this uneven distribution are: first, the
most effective way to avoid defects in smart contracts is smart
contract vulnerability detection, and accurate, comprehensive
smart contract vulnerability detection can directly prevent the
existence of security risks in smart contracts. Second, the de-
velopment of smart contracts is relatively short, and a sound
smart contract security protection mechanism requires time to
accumulate. So, there are still relatively few papers on smart
contract vulnerability repair. Finally, smart contract vulnera-
bility datasets with logos require the development of complete
and comprehensive vulnerability identification rules, which is
difficult, so work on smart contract vulnerability injection still
needs to be accumulated.

4.4. Paper Distribution

We collected information (including year of publication and
source) of each research paper and divides all the papers in term
of conference and journal articles (see Table 3). Next, we anal-
ysed the trend of publication number each year from 2015 to
2023. In 2015, smart contract was still in its early stage. The
DAO incident in 2016 causing substantial financial losses be-
gan to attract attention of researchers. In 2017, research related
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Table 2: Application of PIO Principle in Smart Contract Security
Type Concept Keyword

Population Technology and Standards Related Terminology
Model Checking OR Static Analysis

OR Symbol Execution OR Formal Validation
OR Abstract Semantic OR Fuzzing

Intervention Specific Behaviors and Methods

Smart Contract Attack OR Smart Contract Safety{Security}
OR Contract Verification OR Contract Analysis

OR Contract Vulnerability OR Code Vulnerability
OR Code Safety{Security} OR Contract Repair{Patch}

Figure 1: Literature Quality Statistic

to smart contract security began to appear. In 2018, the num-
ber of research papers on smart contract vulnerability detection
increased rapidly, while experiencing a slight decrease in 2019.
Starting from 2020, researchers are no longer limited to focus-
ing on the single direction of vulnerability detection. Although
the number of papers has reduced in the past two years, many
high-quality papers were published.

Of the 49 papers investigated, most of the research was pub-
lished in conferences, including 7 papers in top software engi-
neering conferences and 6 in top security conferences. In addi-
tion, 3 papers were published in top software engineering jour-
nals. It is clear from the data that the amount of literature on
smart contract security has been increasing. As an emerging
area of research, the amount of literature is significant.

5. Findings

In this section, we present the major findings of the 49 arti-
cles related to the smart contract security of this paper. Table 3
presents an overview of all the articles, which includes the year,
author, and a brief summary of each article. Then, we answer
the four research questions based on those findings.

5.1. Existing Security Issues

To answer RQ1, we found that smart contracts are designed
for decentralized, secure, and trustworthy management, with
features such as gas consumption mechanism, immutability,
etc. These features are designed for specific application sce-
narios, but they also embed threats to smart contract security.
Smart contracts mainly face security issues in the design phase
and contract implementation phase.

In the smart contract design phase, the smart contract devel-
opment language is still in the development stage, lacking a per-
fect specification mechanism. High-quality design documents
are the prerequisite to guarantee the standard development of
smart contracts. The application scenarios of smart contracts
are diverse, and the requirements for designers in different ap-
plication scenarios are also dynamic. In the face of such com-
plex situations, if designers do not have a sound understanding
of the requirements and design a flawed design solution, it will
have a negative impact on the subsequent development work.

In the smart contract development phase, the programming
ability of contract developers directly affects the quality of a
smart contract. If a developer does not fully follow the de-
sign plan, it may lead to problems such as missing or incorrect
functions of a contract. At the same time, developers who do
not fully comply with the security programming guidelines of
the contract language often write code that is not easily under-
stood and maintained, which may also cause security problems
of smart contracts.

Until now, there have been many studies on vulnerability
classification frameworks. Atzei et al. [6] first classify smart
contract vulnerabilities into three levels: programming lan-
guage, virtual machine, and blockchain. Dika et al. [27] fol-
low the classification of Atzei et al. and further classified the
smart contract security issues into low, medium, and high-risk
security levels. The Decentralized Application Security Project
(DASP) summarized 10 high-risk Ethereum smart contract vul-
nerabilities. Chen et al. [28] define 20 smart contract flaws
in terms of potential security, usability, maintainability, and
reusability. Zhang et al. [29] propose a vulnerability classifi-
cation framework called JiuZhou by extending IEEE Standard
Classification for Software Anomalies, which summarizes 49
smart contract vulnerability types and defines their severity lev-
els.

In this paper, we classify those smart contract vulnerabilities
in terms of three levels: Solidity language, EVM virtual ma-
chine, and blockchain. We consider the vulnerability of smart
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Table 3: Research Literature Summary
Number Year Author Specific Description

1 2020 Ghaleb et al
SolidiFI, an automated and systematic approach for evaluating static analysis tools for smart contracts.
ISSTA, CCF-A

2 2017 Chen et al
GASPER, a model for automatically locating gas-consuming highs by analyzing the bytecode of smart contracts.
SANER, CCF-B

3 2018 Nikolić et al
MAIAN, a dynamic analysis tool that uses symbolic analysis to detect three smart contract vulnerabilities.
ACSAC, CCF-B

4 2019 Mossberg et al Manticore, a dynamic symbolic execution framework, platform-independent symbolic restrictions. ASE, CCF-A

5 2016 Luu et al
Oyente, a symbolic execution detection tool for building contract control flow graphs at the bytecode level.
CCS, CCF-A

6 2018 Torres et al
Osiris, an instrumentation tool that leverages symbolic execution and taint analysis at the bytecode level.
ACSAC, CCF-B

7 2018 Tsankov et al Securify, a security analyzer for smart contracts. CCS, CCF-A

8 2019 Feist et al
Slither, a static analysis framework that provides code inspection, code optimization, code understanding and code review.
WETSEB, CCF-Non

9 2018 Tikhomirov et al
SmartCheck, a static analysis tool that converts source code into an XML intermediate representation for inspection.
WETSEB, CCF-Non

10 2018 Kalra et al
ZEUS, a security analysis framework for smart contracts using abstract interpretation and symbolic model checking.
NDSS, CCF-B

11 2018 Jiang et al ContractFuzzer, a novel fuzzer for testing security vulnerabilities in ethereum smart contracts. ASE, CCF-A
12 2021 Torres et al ConFuzzius, a hybrid test fuzzifier combining evolutionary fuzzy testing and constraint solving. EuroS&P, CCF-Non
13 2020 Wüstholz et al Harvey, a grey-box fuzzy testing method for contract vulnerability mining. FSE/ESEC, CCF-A
14 2018 Liu et al ReGuard, a dynamic analyzer for reentry errors in smart contracts. ICSE-Companion, CCF-A
15 2020 Nguyen et al sFuzz, an adaptive fuzzing engine for EVM smart contracts. ICSE, CCF-A
16 2019 Fu et al EVMFuzzer, a tool for detecting EVM vulnerabilities using differential fuzzy techniques. FSE/ESEC, CCF-A
17 2018 Zhou et al SASC, a static analysis method for ethereum smart contracts. NTMS, CCF-Non

18 2021 Jiang et al
WANA, a scalable smart contract vulnerability detection tool based on Wasm bytecode symbolic execution.
QRS, CCF-C

19 2021 Yu et al ReDetect, a symbolic execution vulnerability detection tool for EVM bytecode level. MSN, CCF-C
20 2020 Wang et al Artemis, an improved smart contract validation tool. DSA, CCF-Non

21 2020 Huang et al
EOSFuzzer, a generic black-box fuzz testing framework for detecting vulnerabilities in EOSIO smart contracts.
Internetware, CCF-Non

22 2020 Ji et al DEPOSafe, an automated detection tool for fake deposit vulnerabilities in smart contracts. ICECCS, CCF-C

23 2019 Fu et al
A symbolic execution model for multi-objective path-oriented search (MOPS) strategies based on path prioritization.
Access, CCF-Non

24 2018 Tann et al A Sequence Learning Approach to Detecting Smart Contract Vulnerabilities. arXiv, CCF-Non
25 2022 Hwang et al CodeNet, a CNN-based vulnerability detection method. Access, CCF-Non

26 2019 Liao et al
SoliAudit, an approach to smart contract vulnerability assessment using machine learning and fuzzy testing.
IOTSMS, CCF-Non

27 2021 Zhou et al SC-VDM, a CNN-based lightweight smart contract vulnerability detection model. DMBDA, CCF-Non
28 2021 Eshghie et al Dynamic, a monitoring framework for detecting re-entry vulnerabilities in smart contracts. EASE, CCF-C
29 2021 Lutz et al ESCORT, a deep neural network based framework for detecting vulnerabilities in smart contracts. arXiv, CCF-Non
30 2019 Song et al A method for detecting vulnerabilities in ethereum smart contracts using machine learning. NSS, CCF-Non
31 2021 Ashizawa et al Eth2Vec, a machine learning-based static analysis tool for vulnerability detection in smart contracts. BSCI, CCF-Non
32 2021 Liu et al Propose a vulnerability detection method that combines deep learning with expert models. TKDE, CCF-A
33 2021 Gao et al SMARTEMBED, a Solidity detection method based on structural code embedding and similarity checking. TSE, CCF-A
34 2020 Zhuang et al A method for smart contract vulnerability detection using graph neural networks. IJCAI, CCF-A

35 2021 Wu et al
Peculiar, a vulnerability detection method based on pre-training techniques and critical data flow graphs.
ISSRE, CCF-B

36 2022 Mi et al VSCL, an automated smart contract vulnerability detection framework using deep neural networks. ICBC, CCF-Non
37 2020 Gogineni et al A Multi-Classification Technique for Learning Smart Contracts Based on AWD-LSTM Model. IOP SciNotes, CCF-Non
38 2018 Liu et al S-GRAM, a new semantic-aware security auditing technology. ASE, CCF-B
39 2022 Huang et al Developing a multi-task learning-based vulnerability detection model for smart contracts. Sensors, CCF-Non
40 2020 Wang et al Contractward, a model for smart contract vulnerability detection using machine learning algorithms. TNSE, CCF-Non
41 2021 Yu et al DeeSCVHunter, a modular and systematic deep learning framework to detect contract vulnerabilities. IJCNN, CCF-C
42 2023 Cai et al A GNN-based vulnerability detection method for smart contracts is proposed. JSS, CCF-B

43 2022 Zhang et al
ASGVulDetector and BASGVulDetector to detect vulnerabilities from source code and bytecode perspective.
Future Internet, CCF-Non

44 2022 Ye et al Vulpedia, a detection method based on detection rules composed of vulnerability signatures. JSS, CCF-B
45 2021 Nguyen et al SGUARD, a high precision overlay for smart contract vulnerability detection and remediation. S&P, CCF-A

46 2021 Rodler et al
EVMPATCH, a framework that supports automatic repair of contract errors based on bytecode rewriting.
USENIX Security, CCF-A

47 2020 Yu et al SCRepair, an automated smart contract repair algorithm using genetic programming search. TOSEM, CCF-A

48 2020 Zhang et al
SMARTSHIELD, an automatic bytecode correction method for fixing unsafe cases of unsafe code patterns in smart contracts.
SANER, CCF-B

49 2020 Jin et al
Aroc, a generic smart contract fixer that automatically patches deployed contracts that are vulnerable to attacks.
TSE, CCF-A
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Table 4: Smart Contract Vulnerability Types and Threat Levels
Threat Level Vulnerability Type

Solidity
Language

Reentrancy
Integer Overflow and Underflow

Unchecked Request
Unhandled Exception

Unprotected Selfdestruct Instruction
Uninitialized State Variables

Locked Ether

EVM Short Address Attack
Storage Overlap Attack

Blockchain
Timestamp Dependency

Transaction Order Dependency
Replay Attack

Figure 2: Reentrancy Vulnerability

contracts while taking into account the generality of vulnera-
bilities. The remaining of this subsection will analyze twelve
major security vulnerabilities at these three levels in detail.

5.1.1. Solidity language level
Solidity is a Turing-complete high-level language, which is

the main language used by developers to write smart contracts.
The security threats brought to smart contracts at the language
level mainly originate from two aspects, i.e., design flaws of
the Solidity language, and mistakes of developers during smart
contract coding.

Reentrancy Vulnerability. This vulnerability also appears
when contracts call each other, and its implementation principle
is similar to the recursive call of a function [30]. An attacker
takes advantage of a developer’s negligence to make a program
execute malicious code designed by the attacker repeatedly in a
transaction until the gas is exhausted, thus causing huge finan-
cial losses. The root cause of the famous Ethereum hard fork
DAO incident is the reentrancy vulnerability. As shown in Fig-
ure 2, the attacker attacks the contract to initiate a transaction
by repeatedly calling the withdraw function until the victim’s
account balance is 0 or gas is depleted.

Integer Overflow and Underflow Vulnerability. When
there is a computation operation on an integer variable in a
statement or expression, an integer overflow and underflow oc-
curs if the developer does not pay attention to the bounding
value of the variable, resulting in a value that exceeds the upper

Figure 3: Integer Overflow and Underflow Vulnerability

or lower bound of the variable type and is different from the
value expected by the developer [31]. If the developer fails to
check that variable’s final result before subsequent operations,
financial losses can occur. As shown in Figure 3, there is no
overflow judgment for amount on line 257. If an attacker makes
amount overflow, then the attacker can bypass the code used to
check the account balance on line 259. Through this vulnera-
bility, an attacker can transfer a large number of tokens at a low
cost.

Unchecked Request Vulnerability. This type of vulnerabil-
ity occurs in connection with external calls to smart contracts
[29]. If an external control calls data or addresses, an attacker
can arbitrarily specify the call address, function, and parame-
ters. Suppose an external transfer request is initiated without
careful checksumming of the contract. In that case, an attacker
could use this type of vulnerability to make the smart contract
perform functions that the developer does not expect [6]. Such
vulnerabilities could affect the contract’s functionality, allowing
even an unauthorized user to transfer tokens from the account
and potentially cause financial losses.

Unhandled Exception Vulnerability. The vulnerabil-
ity arises from calls between Ethernet smart contracts,
which send tokens using statements such as <address>.send,
<address>.call.value, or calling methods of other contracts us-
ing statements such as call. If there is an exception during the
call, such as running out of gas, the call will terminate and roll
back the state, returning false to the calling contract [32]. Sup-
pose the caller uses a lower-level call statement and does not
check this return value. In that case, the subsequent operation
will continue, resulting in a method that is not implemented as
expected by the developer.

Unprotected Selfdestruct Instruction Vulnerability. Be-
cause smart contracts cannot be deleted once deployed, the So-
lidity language provides a destruction function that requires the
user to introduce a suicide function when developing a contract.
Once a contract is faulty, property loss can be avoided by call-
ing the suicide function to destroy the contract and transfer the
Ether to the specified address. However, suppose a smart con-
tract with a suicide function lacks permission control. In that
case, any user can call the suicide function to kill the contract
and transfer the contract’s Ether to an address of their designa-
tion [33]. This error can affect the functionality of the contract
and cause financial loss.

Uninitialized State Variables Vulnerability. The occur-
rence of this vulnerability is related to the state variables of a
smart contract. If the smart contract does not initialize the state
variables during the development phase, these variables will be
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automatically assigned with default values [29]. If these unini-
tialized state variables can be accessed directly, these variables
will point to unknown storage contents. This causes that the
contract functions inconsistently compared to expectations and
increases the risk of vulnerabilities.

Locked Ether Vulnerability. Smart contracts can be used
to manage digital assets on a blockchain. In contrast to ac-
counts on Ethereum, where transactions are made through pri-
vate keys, smart contract accounts do not have their private keys
and can only manage assets through code. Once a developer
writes only the function of receiving ether but not the function
of sending ether during the development of a smart contract,
the ether in the contract will be locked permanently [34]. All
the ether transferred into this contract cannot be transferred out,
thus causing financial losses.

5.1.2. Virtual Machine Level
The Ethereum virtual machine is the executor of the com-

piled bytecode of smart contracts. The virtual machine’s design
specification and bytecode are defined in the Ethereum Techni-
cal Yellow Book [35]. The virtual machine level brings smart
contract security threats from two primary sources, i.e., the de-
fects of the virtual machine’s operation mechanism, and the se-
curity problems caused by the non-standard operation of dif-
ferent Ethereum platforms in the process of implementing the
virtual machine.

Short Address Attack Vulnerability. The vulnerability
arises from the auto-completion operation of the Ethernet vir-
tual machine. The actual operation of smart contracts relies
on the Ethernet virtual machine [14]. The input parameters re-
quired for the operation of functions in the contract will appear
in the virtual machine in the form of fixed-length bytecodes.
There are some pitfalls in this way of handling, as the func-
tion input parameters may be subject to short address attacks
when they include address-based parameters with insufficient
bits [6]. For example, when using a transfer function with the
address and transfer amount as input parameters, an attacker
can carefully construct a short address input with insufficient
bits to make the auto-completion of the transfer amount expo-
nentially larger, resulting in a large financial loss.

Storage Overlap Attack Vulnerability. The data in a smart
contract is shared in the storage space. Different clients do not
have the same implementation for the virtual machine, so there
will be different running results of the contract data during the
invocation [11]. Since the blockchain only synchronizes the
transaction information between contracts and does not syn-
chronize the runtime results, the difference in the runtime re-
sults is not easily detected. This type of vulnerability can lead
to data overwriting in the contract, which may break the con-
tract’s functionality [36].

5.1.3. Blockchain Level
Smart contracts achieve decentralization and tamper-proof

for the blockchain, which provides a platform for the imple-
mentation of smart contracts. However, the features of the
blockchain also bring certain security threats to smart contracts.

Figure 4: Timestamp Dependency Vulnerability

Timestamp Dependency Vulnerability. As the name im-
plies, the vulnerability stems from the global variable of the
smart contract, i.e., the timestamp. The timestamp of the block
to which the smart contract belongs is available to developers
as a global variable [27]. The timestamp is determined by the
system at the time of mining, allowing for a deviation of 900
seconds so that miners can control the timestamp to some ex-
tent. If the functionality implemented by the smart contract
changes with the timestamp, then a malicious miner can con-
trol the outcome of the smart contract to some extent to make
it meet his/her needs. As shown in Figure 4, block.timestamp
is used in the Timestamp contract as a condition for perform-
ing key operation. The contract decides whether to win by the
timestamp of the block where the transaction is sent. Only the
first transaction in each block is allowed to win. If the lowest bit
of the block timestamp is 5, the sender of this transaction will
win the prize. Since the miner has the right to set the times-
tamp anywhere from 0 to 900s, the miner can know in advance
whether the lowest bit of the timestamp of the next block is 5
or not and then manipulate the result of the prize.

Transaction Order Dependency Vulnerability. This vul-
nerability is a security flaw that relies on the order of transac-
tion execution and causes differences in transaction results [37].
Since transactions are packaged and sent to the transaction pool
for storage, the miner nodes will select transactions from the
transaction pool and put them into the newly generated blocks
according to certain rules. The transactions and transaction or-
ders selected by different miners are not fixed, so the order of
transactions executed by the contract is uncertain. Miners gen-
erally give priority to transactions with high gas content and
put them into the new blocks. An attacker can make such an
attack by increasing the gas cost. The attacker can make his/her
transactions written into the block before other transactions by
increasing the gas cost, which affects the final result by influ-
encing the contract’s execution order.

Replay Attack Vulnerability. Because there is a hard fork
of the public chain of Ethernet due to a major security event,
many chains exist on Ethernet now [38]. As a result, if an at-
tacker can predict the validation value used by a transaction, the
attacker can replay that transaction on another chain [29]. Such
vulnerabilities could lead to an attacker having the ability to re-
play the transaction on another chain, causing financial losses
to the owner of the smart contract.
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5.2. Existing Vulnerability Sources
To deal with the security threats in smart contracts, re-

searchers have been analyzing contract vulnerabilities and de-
veloping various detection tools. However, how to evaluate the
performance of these tools is also a problem worthy of study.
An ideal evaluation benchmark can discover the blind spots of
vulnerability detection tools, improve the performance of detec-
tion tools and broaden their usage scenarios, which is required
by vulnerability analysis. To answer RQ2, we found that the
existing construction methods of evaluation benchmarks mainly
fall into three categories: manually constructing vulnerabilities,
collecting vulnerabilities, and automatically generating vulner-
abilities based on vulnerability injection technologies.

5.2.1. Manually Constructed Vulnerabilities
To address the problem of lack of open source data,

many studies choose to use manually constructed vulnerabil-
ity datasets for benchmark assessments. A manually written
benchmark dataset for evaluation ensures that each test sam-
ple contains the required vulnerability information and provides
reasonable assurance that the scope of the assessment covers all
the required vulnerabilities. However, over-reliance on manu-
ally generated data inevitably makes the evaluation results less
objective and the models less capable of identifying diverse real
vulnerabilities. In addition, manual vulnerability construction
often has the problem of poor scalability and consumes labor
and resources once the data needs to be extended.

5.2.2. Manually Collected Vulnerability
Large-scale collection of vulnerability data in real environ-

ments and construction of objective vulnerability datasets as
evaluation benchmarks are also a research hot spot. The method
of manual vulnerability data collection ensures the authenticity
of vulnerability data compared to manually constructed vulner-
ability data. However, subjectivity cannot be ignored during the
collection process. In addition, not every kind of vulnerability
data has an extensive distribution in the real environment. Re-
lying entirely on manual collection and construction of datasets
does not guarantee the adequacy and diversity of vulnerability
data. A few researchers provide smart contract datasets with
vulnerability labels. For example, SmartContractSecurity [39]
provides 122 smart contracts containing 33 vulnerability cat-
egories. However, SmartContractSecurity does not classify
these vulnerabilities. Crytic [40] provides a dataset containing
12 vulnerability categories. The NCC Group [41] proposes a
classification of smart contract vulnerabilities based on the De-
centralized Application Security Project (DASP) of smart con-
tract vulnerability classification [42]. They provide 69 smart
contracts containing 10 vulnerability categories. Apart from
the aforementioned labelled datasets, Zhuang et al. [43] collect
42,000 unlabelled Ethereum smart contracts.

5.2.3. Vulnerability Injection Method
To ensure that the vulnerability samples used for evaluation

are sufficiently realistic, objective, and comprehensive in cov-
erage, some studies have proposed to automate the construc-
tion of vulnerability datasets based on vulnerability injection

and evaluate the performance of detection tools accordingly.
In terms of technical implementation, vulnerability injection
can be further divided into two main categories: finding sen-
sitive locations in program code through static analysis tech-
niques and using them to construct an objective vulnerability
dataset by injecting vulnerability fragments in these locations;
and inserting vulnerabilities into the source program by identi-
fying situations where user-controlled inputs may trigger out-
of-bounds reads and writes. Compared with the manual con-
struction of vulnerabilities and manual collection of vulnera-
bilities, the method of constructing vulnerability datasets based
on vulnerability injection removes the over-reliance on man-
ual work. It can more easily construct vulnerability samples
on a large scale to provide objective and realistic performance
evaluation of vulnerability detection tools. At the same time,
part of the vulnerability injection techniques also enable the
customization of vulnerability samples to match the evaluation
needs of various vulnerability detection tools flexibly. Asem et
al. developed the first vulnerability injection tool for Ethereum
smart contracts, SolidiFi [44]. This tool introduces targeted se-
curity vulnerabilities by injecting predefined vulnerability frag-
ments into all potential locations of a smart contract. This tool
can inject seven types of smart contract vulnerabilities, includ-
ing reentrancy vulnerabilities.

5.2.4. Summary
An ideal evaluation benchmark can discover the blind spots

of vulnerability detection tools and improve the performance
of detection tools, which is demanded by smart contract vul-
nerability analysis. Existing evaluation benchmark construc-
tion methods are mainly divided into three categories: man-
ually constructed vulnerabilities, collected vulnerabilities, and
automatically generated vulnerabilities based on vulnerability
injection techniques. Their strengths and weakness are summa-
rized as follows.

• Manually constructed smart contracts contain vulnerabil-
ities with high diversity. However, this category of ap-
proaches may make the data set less objective.

• Collected vulnerability data ensures the authenticity of the
constructed data sets. Its defect is that it cannot guarantee
the sufficiency and diversity of the vulnerability data.

• Vulnerability injection based vulnerability data sets reduce
the excessive dependence on manual work. The existing
vulnerability injection methods mostly base on artificially
formed vulnerability fragments. Although the volume of
the data set can be guaranteed, the authenticity of the gen-
erated smart contract vulnerabilities cannot be insured.

5.3. Contract Security Detection Methods
Sections 5.1 and 5.2 describe the security issues faced by

smart contracts and the existing vulnerability data sources. Un-
derstanding the main security issues faced by smart contracts
can help developers develop practical detection tools. In addi-
tion, rich contract vulnerability data can help users effectively
evaluate detection tools’ performance. To answer RQ3, we
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divide contract security detection tools into conventional and
deep learning-based detection methods. Conventional detec-
tion methods are divided into symbolic execution, formal veri-
fication, and fuzzing. We will provide detail below. We analyze
and introduce different types of methods and compare their ad-
vantages and disadvantages.

5.3.1. Symbolic Execution
The principle of symbolic execution is to abstract the exter-

nal input into symbolic values, abstract the program in a smart
contract into an execution tree, and then traverse the execution
tree based on the external input values and the semantics of the
program. The main idea of symbolic execution is to convert
uncertain inputs into symbolic values during execution to drive
the execution of the program. Symbolic execution is also di-
vided into two types: static symbolic execution and dynamic
symbolic execution.

In terms of static execution, Oyente [45] is the first static
analysis detection tool proposed. Oyente takes the bytecode of
a smart contract and the state of Ether as input and explores the
control flow graph information of the contract during symbolic
execution, and performs vulnerability detection by path con-
straints and other information. This paper introduces Oyente to
detect four types of vulnerabilities: reentrancy, conditional con-
tention, timestamp dependency, and unhandled exceptions, and
the authors subsequently supplement the open source code with
code for integer overflow vulnerabilities. The types of vulner-
abilities detected by Oyente are not comprehensive. However,
as the first tool available for smart contract vulnerability de-
tection, it provides sound foundation for subsequent research.
Osiris [46], an improved version of Oyente, is proposed by Tor-
res et al. to detect integer-like vulnerabilities in smart contracts
using symbolic execution methods, including security issues
such as integer overflow, integer underflow, and value trunca-
tion due to improper type conversion. Chen et al. [47] propose
a static analysis tool GASPER based on symbolic execution,
which automatically locates contracts with high gas consump-
tion for analysis by analyzing smart contracts at the bytecode
level. This tool can automatically discover 3 types of gas con-
sumption patterns, i.e., SLOAD (load a byte from memory),
STORE (save a byte to memory) and BALANCE (get account
balance operation). Mythril [48] is a symbolic execution en-
gine proposed by Consensys et al. This approach combines
taint analysis and control flow inspection on top of symbolic ex-
ecution to allow vulnerability analysis of contracts at the byte-
code level. Mythril can be used to detect 14 types of vulnera-
bilities such as reentrancy, integer overflow and underflow, and
timestamp dependencies. WANA [49] proposed by Jiang et
al. is a generic symbolic execution engine for Wasm bytecode,
which can support vulnerability analysis of EOSIO smart con-
tracts. ReDetect [50] is a symbolic execution-based detection
tool proposed by Yu et al. for detecting reentrancy vulnerabil-
ities in smart contracts at the EVM bytecode level. Artemis is
an improved smart contract validation tool [51]. Artemis is built
on the Oyente symbolic execution framework. To support the
detection of new types of vulnerabilities, Artemis extends its
vulnerability detection module to support the analysis of new

vulnerability patterns, which can be used to detect four types of
vulnerabilities including dangerous delegate calls. DEPOSafe
[52] is an automated detection tool for false deposit vulnera-
bilities in smart contracts. DEPOSafe includes both symbolic
execution-based analysis and dynamic verification based on be-
havioral modeling. DEPOSafe feeds the bytecode of a smart
contract and its contract address through a pipeline consisting
of a static detector and dynamic verifier components to generate
security reports.

Dynamic symbolic execution, also known as hybrid sym-
bolic execution, improves detection accuracy by generating
constrained program inputs through identified paths. Nikolić et
al. propose a tool called MAIAN [33], which detects vulnera-
bilities by tracing the execution path of a contract via analyzing
multiple invocations during its lifecycle (each run of a contract
is called a single invocation). MAIAN can detect three types
of vulnerabilities: greedy contracts, self-destructive contracts,
and prodigal contracts. Manticore is a dynamic symbolic exe-
cution framework [53] that implements a platform-independent
generic symbolic execution engine that makes no assumptions
about the underlying execution model and operates and man-
ages the program based on the lifecycle of the state. Compared
to other detection tools that analyze a single contract, Manti-
core supports the analysis of multiple contracts simultaneously.
Fu et al. [54] propose a multi-objective path search (MOPS)
strategy based on path priority. First, it obtains the code re-
gions with security threats and their critical paths by improving
Mythril. Then, a multi-objective-oriented path search strategy
is proposed to guide dynamic symbolic execution to cover crit-
ical paths quickly. Finally, security rules are described and cor-
responding detection logic is proposed for different vulnerabil-
ity classes.

5.3.2. Formal Verification
Formal verification is an effective technique to verify that a

program conforms to predefined design properties and security
specifications. Traditional verification techniques ascertain the
logic of programs and code by describing them in a logical or
descriptive language. Next, these techniques apply mathemat-
ical logic proofs to reason about their actual behavior to test
whether the program meets the functional requirements of the
intended design.

ZEUS [55] is an automated formal verification tool for smart
contracts. Zeus translates Solidity source code into the LLVM
intermediate language and uses XACML to write verification
rules on top of it. It further uses the SeaHorn verifier for formal
verification. Zeus designs five security vulnerability detection
rules that can determine the security of the target program in
the process of formal verification. Securify [56] is a security
analyzer for the bytecode level of smart contracts. Securify ob-
tains semantic information from the bytecode of smart contracts
and describes the semantic facts in Datalog syntax. After infer-
ring the semantic information, Securify checks it against the
predefined security property rules. The security attribute rules
are divided into obedience mode and violation mode, and the
security of the contract is checked by matching the semantic
information with the security attribute rules.
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5.3.3. Fuzzing
Fuzzing is a popular and effective software testing technique

that detects anomalies by feeding a large amount of unexpected
data to a smart contract for potential vulnerability discovery.
Compared with the complex design of symbolic execution and
formal verification methods, fuzzing is simple and efficient. It
helps uncover more profound vulnerabilities in smart contracts.
It is tested during operation of smart contracts.

ContractFuzzer [34] is the first framework applying fuzz
testing techniques to smart contracts for vulnerability detec-
tion. It analyzes the ABI specification of smart contracts, gen-
erates inputs that match the syntax of the contract invocation
under test, and defines the characteristics of different defects
for detecting contract defects. ContractFuzzer can be used to
detect seven types of vulnerabilities, including re-entry, times-
tamp dependency, transaction order dependency, etc. Among
them, for the re-entry vulnerability, ContractFuzzer designs a
specific attack contract and detects it by invoking the specific
attack contract to the contract under test, which in turn trig-
gers the re-entry vulnerability of the contract. Echidna [57] is
a smart contract fuzzy testing framework published by Trail of
Bits, which performs analysis and fuzzy execution in the smart
contract source code, and fuzzy tests the contract under test by
generating random transaction data that meet the contract in-
vocation specification. ConFuzzius is a hybrid test fuzzifier
combining evolutionary fuzz testing and constraint solving pro-
posed by Torres et al. [58]. Harvey is a grey-box fuzzy test-
ing method for smart contract vulnerability mining proposed by
Wüstholz et al. [59]. Harvey generates simple call sequences
by obtaining the dependencies of different functions seen on
global variables to improve the impact of sequences on pro-
gram coverage. ReGuard [30] is a dynamic analyzer for reen-
trancy errors in smart contracts. ReGuard uses fuzzy test-based
techniques to generate random and diverse transaction data as
possible attacks. ReGuard then dynamically identifies poten-
tial re-entry vulnerabilities in smart contracts by logging crit-
ical execution traces. sFuzz [60] is a fully automated engine
for testing against smart contracts . sFuzz generates smart con-
tract execution traces through fuzzy testing and uses vulnerabil-
ity analysis pattern analysis to discover potential vulnerabilities
in a contract. EOSFuzzer [61] is a generic black-box fuzzy
testing framework for detecting vulnerabilities in EOSIO smart
contracts. EosFuzzer consists of four parts: fuzzy input genera-
tor, fuzzy executor, Wasm VM Instrumentation, and vulnerabil-
ity detection engine. EVMFuzzer [62] is the first tool to detect
EVM vulnerabilities using differential fuzzy testing. The core
idea of EVMFuzzer is to continuously generate seed contracts
and make them available to the target EVM and the benchmark
EVM to find as many inconsistencies between execution results
as possible and eventually discover output cross-references of
vulnerabilities.

5.3.4. Other Traditional Technology
In addition to the symbolic execution, formal verification,

and fuzzy testing techniques mentioned above, program anal-
ysis and taint analysis are often adopted for smart contract vul-
nerability detection. Program analysis is mainly divided into

static program analysis and dynamic program analysis. Static
program analysis specifically analyzes a program through its
control flow and data flow information, while dynamic program
analysis requires further access to a program’s operation infor-
mation. Taint analysis is a unique program analysis technique
used to achieve more accurate program analysis by labeling
critical data and tracing its flow direction.

Slither [36] is a static analysis framework that provides code
detection, code optimization, code understanding, and code re-
view. Slither performs lexical and syntactic analysis at the
source code level of smart contracts. It uses abstract syn-
tax trees to generate inheritance graphs, control flow graphs,
and contract expressions and creates an intermediate language
called SlitherIR. This intermediate language implements all
static program analysis work at the intermediate language level,
which helps the analysis framework to extend to different high-
level languages and types. SASC [63] is a static program analy-
sis tool for smart contract vulnerability detection. SASC gener-
ates a topology graph by performing syntactic topology analysis
through smart contract invocation relationships and then iden-
tifies potential security risks in a contract by marking the loca-
tion of logical risks on the topology graph. SmartCheck [64]
is also a static analysis tool for smart contracts. SmartCheck
converts smart contract source code into an XML-based parse
tree as an intermediate representation (IR) and performs smart
contract vulnerability checking using XPath schema queries on
the IR.

Apart from the aforementioned three tools, other tools such
as Oyente [45], Mythril [48], etc. Combine taint analysis with
different data flow analysis techniques to improve the tools’ vul-
nerability detection accuracy.

5.3.5. Deep Learning-based Approaches
Deep learning is a branch of artificial intelligence that uses

algorithms for autonomous learning of data with the ability to
improve itself. Deep learning models have been regarded as
black boxes, where the user is entirely unaware of how the
model learns. There is no way to intervene in the model’s output
manually. Applying deep learning techniques to smart contract
vulnerability detection is a trendy topic.

Tann et al. [65] use a sequence learning approach to detect
smart contract vulnerabilities, which is the earliest approach to
applying deep learning in the area of smart contract vulnera-
bility detection. Liao et al. [66] propose a vulnerability detec-
tion method called SoliAudit. SoliAudit uses machine learn-
ing and fuzzy testing for smart contract vulnerability assess-
ment. Gogineni et al. [67] propose a multi-classification tech-
nique based on Average Stochastic Gradient Descent Weight-
Dropped LSTM (AWD-LSTM) models for learning smart con-
tracts by using two neural network models to learn the semantic
information of the input data and classify them. Gao et al. [68]
propose a Solidity code checking method named SmartEm-
bed based on code embedding and similarity checking, which
can be used for similar contract code detection, error detection,
and contract verification. Zhuang et al. [43] propose a degree-
free graph convolutional neural network (DR-GCN) and a tem-
poral message propagation network (TMP). The overall flow
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chart of the method is shown in Fig 5. Firstly, the control flow
and data flow information is extracted from the smart contract
code, followed by extracting representative key function calls or
variables as nodes and call relationships between functions as
edges and then normalizing the proposed graph. This method
supports reentrancy vulnerabilities, timestamp-dependent vul-
nerabilities, and infinite loop vulnerabilities. Zhou et al. [69]
propose a lightweight convolutional neural network (CNN)-
based smart contract vulnerability detection model (SC-VDM)
that automatically detects vulnerabilities in smart contracts on
lightweight computers without expert knowledge. Eshghie et
al. [70] propose a monitoring framework named Dynamit for
detecting reentrancy vulnerabilities in smart contracts. Dyna-
mit classifies transaction data by obtaining feature informa-
tion from transaction data and using a machine learning model.
Wang et al. [71] propose a smart contract vulnerability detec-
tion model (Contractward) using machine learning that can be
used to detect six types of smart contract vulnerabilities, in-
cluding reentrancy vulnerabilities. Song et al. [72] propose
a model for detecting smart contract vulnerabilities using ma-
chine learning techniques. Ashizawa et al. [73] propose a static
analysis tool, Eth2Vec, which learns smart contract code by
bytecode, assembly code, and abstract syntax trees to iden-
tify smart contract vulnerabilities. Mi et al. [74] propose an
Automating Vulnerability Detection in Smart Contracts with
Deep Learning (VSCL) model that converts bytecode to se-
quence code by decompiling. It then generates new sequences
using control flow graphs and depth-first search algorithms. Fi-
nally it uses deep neural networks for vulnerability analysis and
detection. Hwang et al. [75] propose a vulnerability detec-
tion method called CodeNet. Feature extraction by convert-
ing smart contract bytecodes into images and inputting the ex-
tracted images into a CNN model for vulnerability detection.
It can detect four types of vulnerabilities, including reentrancy
vulnerabilities. Lutz et al. [76] propose the first deep neu-
ral network (DNN)-based smart contract vulnerability detection
framework, ESCORT, which supports lightweight migration
learning for invisible security vulnerabilities. Wu et al. [77]
propose a method, Peculiar, to detect smart contract vulner-
abilities based on critical data flow graphs using pre-training
techniques, which is mainly used to detect re-entry vulnerabil-
ities. Liu et al. [78] propose a linguistic model-based contract
vulnerability prediction technique, S-GRAM, which predicts
potential vulnerabilities of contracts by serializing contract in-
formation and analyzing it using statistical linguistic models.
Yu et al. [79] design a modular and systematic deep learn-
ing vulnerability detection framework, DeeSCVHunter, which
contains four preprocessing modules, embedding, training, and
evaluation to detect reentrancy vulnerabilities and timestamp-
dependent vulnerabilities. Zhang et al. [80]. propose two static
analysis methods, ASGVulDetector and BASGVulDetector,
to detect vulnerabilities in Ethereum smart contracts from the
source code and bytecode perspectives. Ye et al. [81]. propose a
detection method called Vulpedia by extracting structured pro-
gram features from vulnerable and non-vulnerable contracts as
vulnerability signatures and constructing a systematic detection
method based on detection rules composed of vulnerability sig-

natures.
The above methods usually perform feature learning for a

single representation of information. To learn a more com-
prehensive set of smart contract vulnerability features, Liu et
al. [68] propose combining graph neural networks with cus-
tom expert knowledge for smart contract vulnerability detec-
tion, which can be used to detect reentrancy vulnerabilities,
timestamp-dependent vulnerabilities, and infinite loop vulner-
abilities. Huang et al. [82] propose a multi-task learning-based
smart contract vulnerability detection model, which improves
the detection capability of the model by setting auxiliary tasks
to learn more directional vulnerability features. Cai et al. [83]
propose a GNN-based approach for smart contract vulnerabil-
ity detection. A graphical representation of smart contract func-
tions is constructed by combining an abstract syntax tree (AST),
a control flow graph (CFG), and a program dependency graph
(PDG). Program slicing is employed to normalize the graph. Fi-
nally, a bidirectional gated graph neural network model with a
hybrid attention pool is used to identify potential vulnerabilities
in smart contract functions.

5.3.6. Summary
Vulnerability detection is one of the most active research di-

rections in smart contract security. It is well acknowledged as
one of the most effective ways to prevent contracts from be-
ing attacked [36]. Existing smart contract vulnerability detec-
tion methods are mainly divided into conventional detection
methods and deep learning-based detection methods. Among
the conventional detection methods, fuzz testing, symbolic ex-
ecution and formal verification are the three most commonly
used techniques. Most existing literature focuses on fuzz test-
ing, symbolic execution, formal verification and deep learning-
based detection methods.

• Fuzzy testing techniques rely on the runtime information
of smart contract programs. The targeted vulnerabilities
must be path reachable to make the vulnerability detection
more accurate. The challenge lies in how to generate better
input to improve the coverage of a program.

• Symbolic execution techniques can explore the execution
path of a program more precisely by collecting and solv-
ing constraints. Such techniques can even analyze the de-
pendencies between transactions to solve the appropriate
sequence of transactions. However, this type of methods
can be stranded by contracts with complex constraints and
long sequences of transactions.

• Formal verification is capable of analyzing more semantic
information and ensuring that a contract program matches
the targeted design. Nevertheless, custom vulnerability de-
tection modeling relies on knowledge of domain experts,
and the vulnerabilities detected are not necessarily realis-
tic.

• Deep learning-based detection methods do not rely on ex-
perts to develop detection rules, which have higher scal-
ability in comparison to conventional approaches. How-
ever, since users usually treat deep learning models as
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Figure 5: Workflow of TMP

black boxes, they are completely unaware how the model
learns and there is the problem of poor interpretability.

5.4. Vulnerability Defense Method

Smart contract vulnerability defense is an important part of
smart contract security. Due to the immutability of smart con-
tracts, traditional software vulnerability repair methods cannot
be applied to smart contracts. This also makes it challenging
to repair smart contract vulnerabilities. In response to RQ4, we
mainly divide smart contract vulnerability defense methods into
two aspects: security programming and vulnerability repair.

5.4.1. Secure Programming
Since smart contracts cannot be modified once being de-

ployed on Ethereum, it becomes especially important to write
more secure code that does not contain vulnerabilities. The ex-
isting work is divided into two main classes: developing a more
secure third-party library for Solidity, and developing a more
secure language for writing smart contracts. Both of them re-
duce security risks by advancing the quality of smart contract
code.

OpenZeppelin has developed a variety of third-party code
libraries 2 for Solidity, which include ERC standard tokens,
access rights control, secure arithmetic runs, etc. Smart con-
tract developers can simply import these code bases during
the contract development process with these libraries. One of
OpenZeppelin’s most famous third-party libraries is Safemath,
which can be referenced in contracts to prevent integer overflow
vulnerabilities when performing arithmetic operations.

Vyper [84] is a Python-influenced programming language
tailored specifically for smart contract development. The Vyper
language does not provide features such as Modifiers, Class
inheritance, Function overloading, Infinite-length loops, etc.
which can easily cause contract security problems. The Vyper
language adds Bounds and overflow checking, support for
signed integers and decimal fixed-point numbers, and other fea-
tures to improve the security of smart contracts. Digital Asset

2https://docs.openzeppelin.com/contracts/4.x/

Modeling Language (DAML) [85] is a high-performance pro-
gramming language for developing and deploying distributed
applications in a blockchain environment. The DAML lan-
guage has a variety of built-in modules that developers can
call by simply importing the modules they need, avoiding in-
put errors that developers make in the process of writing code.
DAML language has a variety of built-in modules that develop-
ers can call by simply importing the modules they need, avoid-
ing input errors that developers make while writing code. In
addition, the DAML language provides a locking mode where
only designated users can lock assets through active and autho-
rized operations. When a contract is locked, some or all of the
choices specified on that contract may not be executed, which
improves the security of smart contracts.

5.4.2. Vulnerability Repair
At the smart contract source code level, Yu et al. [86] propose

the first generic automated contract repair method, SCRepair,
which uses a parallel genetic repair algorithm. Given a smart
contract with security vulnerabilities and a test suite, this tool
is able to repair the given vulnerabilities by performing a ran-
dom search on the contract. In addition, taking into account the
gas consumption, the generated patches are sorted by gas and
used to generate gas-optimized security contracts. Nguyen et
al. [87] develope a method, SGUARD, to automatically trans-
form smart contracts. SGUARD first collects symbolic execu-
tion traces of smart contracts, and then statically analyzes the
collected traces to identify potential vulnerability types in the
contracts. Next, based on the contract’s AST, it identifies the
source code corresponding to the vulnerability and apply a spe-
cific fix pattern for each vulnerability type to fix the contract
vulnerability.

At the smart contract bytecode level, Zhang et al. [88] pro-
pose a bytecode correction system called SMARTSHIELD
to fix three smart contract vulnerabilities. The workflow of
this method is shown in Figure 6. SMARTSHIELD first ana-
lyzes the AST and EVM bytecodes of the contract to extract
bytecode-level semantic information. Next, based on the ex-
tracted semantic information, it fixes the insecure control flow
and data operations. Finally, it generates the corrected EVM
bytecode and a fix report. Rodler et al. [89] propose a frame-
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Figure 6: Workflow of SMARTSHIELD

work called EVMPATCH that can immediately and automat-
ically patch faulty smart contracts. This framework consists
of four main components: a vulnerability detection engine, a
bytecode rewriter, a patch testing component, and a contract de-
ployment component. EVMPATCH utilizes a bytecode rewriter
to ensure that patches are minimally invasive and that newly
patched contracts are compatible with the original contract. It
is verified that EVMPATCH can fix both integer overflow and
permission control flaws.

The above approaches all target vulnerability fixing for un-
deployed off-chain smart contracts. In contrast, Jin et al. [90]
propose a generic smart contract fixer named Aroc that patches
vulnerable deployed on-chain contracts. Aroc first generates a
patch contract containing security rules based on the fixed tem-
plate and deploys it to the blockchain, Next, the contract with
the security vulnerability is bundled with the patch contract so
that subsequent transactions need to invoke the patch contract
before invoking the original contract. In this way, the smart
contract is repaired to ensure that transactions that trigger po-
tential vulnerabilities are blocked in the patch contract.

5.4.3. Summary
Vulnerability defense is an important means to combat smart

contract attacks. It is also one of the important goals of se-
curity research. Smart contracts have the characteristics that
1) the code cannot be modified once the it is deployed and 2)
they are run in a decentralized environment. In this regard, its
security defense is more difficult than traditional programs. Ex-
isting work mainly focuses on two research directions of smart
contract security defense, namely, smart contract security pro-
gramming and vulnerability repair.

• Smart contract security programming is mainly divided
into developing safer third-party libraries and safer smart
contract writing languages. Both of them aim to reduce
smart contract security risks by improving the quality of
code. However, this type of method cannot deal with all
smart contract vulnerabilities. It can only provide protec-

tion for smart contracts in the development stage, which
cannot interfere with deployed smart contracts.

• Vulnerability repair methods are mainly divided into on-
chain repair and off-chain repair. Developers can adopt
this technique to improve the security of smart contracts.
Although on-chain repair can fix deployed smart contracts,
this type of method also destroys immutability of smart
contracts.

6. Discussion

We discuss limitations of the existing research on smart con-
tract security and future research directions.

6.1. Inadequacy of Existing Research

6.1.1. Inadequacy of Data Sources
The existing open source datasets suffer from low data vol-

ume and insufficient coverage of vulnerabilities. The manu-
ally constructed smart contract datasets rely heavily on human
factors and cannot objectively reflect the real performance of
tools. Hence, few people adopt this approach to build datasets
and conduct evaluations. The manual collection approach en-
sures the authenticity of the data compared to the manual con-
struction approach. Nevertheless, the distribution of the data
volumes among the vulnerability types is sparse, which has a
certain deviation compared to the real environment. The auto-
mated injection approach can avoid the subjective influence of
human factors on dataset construction. Researchers can con-
struct vulnerability samples in large quantities to ensure the
variety of vulnerabilities in the generated contracts. However,
compared to real contracts, the vulnerability fragments injected
by tools are manually constructed, which often encounter the
problem of poor authenticity. Hence, the quality of automated
generated contracts still needs to be improved.
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Table 5: Comparison of the main methods of vulnerability data collection
Main Technology Tools Number Type Method Comparison

Manually Constructed - - -
Advantages, increase the richness of vulnerability types.

Disadvantages, the evaluation results are not objective enough,
and the interference of human factors cannot be avoided.

Manually Collected
SmartContractSecurity 122 37 Advantages, ensures the authenticity of the data.

Disadvantages, the adequacy and diversity of the number
and types of vulnerabilities cannot be guaranteed.

DASP 69 10
crytic 25 12

Vulnerability Injection SolidiFi 50 7
Advantages, it avoids over-reliance on manual labor and

ensures the richness and diversity of data distribution.
Disadvantages, the quality of generated contracts needs to be improved.

We summarize the existing vulnerability data sources in
terms of the amount of vulnerability data and the types of vul-
nerabilities included, and analyze the advantages and disadvan-
tages among these methods. The results are shown in Table 5.

6.1.2. Inadequacy of Existing Vulnerability Detection Methods
Smart contract vulnerability detection is one of the most ex-

tensively studied directions in smart contract security. Existing
vulnerability detection methods are mainly divided into two as-
pects: traditional detection and deep learning-based detection.
Symbolic execution, formal verification, and fuzzy testing are
the three mainstream methods of traditional smart contract vul-
nerability detection, which have their advantages and disadvan-
tages. Symbolic execution techniques need to rely on constraint
collection and solution, how to explore a more comprehensive
execution path, and dependencies between transactions with the
knowledge of the sequence of transactions. The problem of
state space explosion makes it difficult to solve the complex
constraints, which seriously limits the accuracy of detection.
Formal verification can obtain more semantic-level informa-
tion. However, the models used for vulnerability detection is
often restricted by limited human experience, the low level of
automation of such tools, and the problem of unreachable paths.
Fuzzy testing is simple and efficient. However, fuzzy testing
techniques rely heavily on contract runtime information. Fuzzy
testing can successfully discover vulnerabilities only if the path
is reachable. The technical difficulty of fuzzy testing lies on
generating better quality input information to improve the test
coverage.

Traditional detection relies heavily on manual rules. It has
the problem of poor extendibility. Attackers can deliberately
design dangerous contracts that bypass detection performed by
traditional tools based on these designed detection rules, thus
causing financial losses. On contrast, deep learning-based de-
tection methods do not need experts to develop detection rules.
They are more extendable than traditional detection methods.
However, because of the black-box nature of deep learning
models, the results detected by the models cannot explain the
cause.

We summarize the most representative research work and
vulnerability detection tools and analyze the advantages and
disadvantages of these approaches in terms of the auxiliary ap-
proach, the analysis level of the tools, the number of detectable
vulnerabilities, and whether they are open source. The results
are shown in Table 6.

6.1.3. Inadequacy of Existing Vulnerability Defense Methods
For vulnerability defense of smart contracts, existing re-

search focuses on two aspects: secure programming and vul-
nerability remediation.

Most researchers focus on secure programming in the smart
contract language level to reduce the security risk of contracts.
Secure programming is mainly divided into developing a more
secure third-party code base in solidity language and using a
more secure language to write smart contracts. These two meth-
ods can reduce the risk of introducing security vulnerabilities in
the development phase of smart contracts. Still, this approach
cannot solve the smart contract vulnerability defense problem.
Once these third-party inventories in security vulnerabilities or
new programming language contain vulnerability flaws, these
flaws will impact smart contract security.

In the area of smart contract security, it is important to dis-
cover abnormal contract behavior and flaws in a smart contract.
It is even more challenging to fix contract errors and ensure the
correctness of deployed contracts in a timely manner. Existing
smart contract fixes focus on providing fixes for non-deployed
smart contracts and new smart contract vulnerabilities are con-
stantly being discovered. However, even if all known vulner-
abilities are fixed, these off-chain fixes cannot help once new
vulnerability issues arise for contracts that are running on Ether.
Aroc [90] can fix the deployed contract by bundling the prob-
lematic contract with the patch contract for invocation. Still,
the extendibility is limited because it relies on the repair tem-
plate to generate the patch contract. In addition, this method
breaches the tamper-evident property of the contract and the
fairness of the contract participants. How to balance contract
security and fairness requires researchers to conduct more pro-
found research.

We summarize the existing vulnerability remediation tools
and analyze the advantages and disadvantages of these ap-
proaches in terms of the analysis level of the tools, the number
of fixable vulnerabilities and whether they are open source. The
results are shown in Table 7.

6.1.4. Inadequacy of Existing Review Studies
Parizi et al. [32] empirically evaluate open source smart

contract detection tools for smart contract vulnerabilities on
Ether, including four tools, i.e., Oyente, Mythril, Security, and
SmaerCheck. This review does not systematically analyze and
classify contract vulnerabilities and detection tools. Sayeed et
al. [13] classify smart contract vulnerabilities into four types
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Table 6: Comparison of the main methods of vulnerability detection tools
Main

Technology Tools Assistive Technology Analysis Level Number Open Source Method Comparison

Symbol
Execution

Oyente - Bytecode 5 Yes

Advantages, the most widely used method in traditional tools,
Disadvantages, in the face of multi-layer deep calling sequences,

there will be a path explosion problem.

Osiris Taint Analysis Bytecode 1 Yes
Mythril Taint Analysis Bytecode 14 Yes

DEPOSafe Behavior Modeling Bytecode 1 No
Artemis - Bytecode 4 No
MAIAN - Source Code 3 Yes

Formal
Verification

ZEUS - Source Code 7 No Advantages, security specifications are used to detect contracts.
Disadvantages, there is a problem with unreachable execution paths.Securify - Source Code 4 Yes

Fuzzing

ConFuzzius - Bytecode 7 Yes
Advantages, different inputs and coverage can be customized.

Disadvantages, it cannot be tested for smart contracts without source code.
Harvey Program Analysis Source Code 4 Yes
sFuzz - Bytecode 9 Yes

EVMFuzzer - Bytecode 5 Yes
Other

Technology
Slither Program Analysis Source Code 26 Yes Advantages, the daily overhead is relatively small.

Disadvantages, the detection rate of false positives is high.SmartCheck Program Analysis Source Code 20 Yes

Deep
Learning

TMP - Source Code 3 Yes

Advantages, no need to manually formulate detection rules.
Disadvantages, the method has the problem of poor interpretability.

CodeNet - Bytecode 4 No
AME Expert Knowledge Source Code 3 Yes
CGE Expert Knowledge Source Code 3 Yes

ContractWard - Bytecode 6 No
DeeSCVHunter - Source Code 2 No

Table 7: Comparison of vulnerability repair tool methods
Main Technology Tools Analysis Level Number Open Source Method Comparison

Off-Chain Repair

SCRepair Source Code 4 Yes
Advantages, uulnerability can be fixed with a specific fix template

Disadvantages, increase gas consumption for new contracts.
SGUARD Source Code 4 Yes

SMARTSHIELD Bytecode 3 No
EVMPATCH Bytecode 2 Yes

On-Chain Repair Aroc Source Code 4 No
Advantages, it can fix deployed smart contracts.

Disadvantages, it can break the tamper-evident nature
of the contract and affect fairness.

using attack principles and systematically analyze seven smart
contract vulnerabilities and ten vulnerability detection tools.
Kushwaha et al. [11] systematically review the security vul-
nerabilities in the Ethereum blockchain. They discuss the cor-
responding prevention mechanism by analyzing the existing
smart contract vulnerability attack mechanism, and analyze 25
vulnerability detection tools.

Compared with the existing review literature, the strength of
this paper is that we have conducted a more comprehensive
analysis through three aspects of smart contract security, i.e.,
vulnerability detection, vulnerability sources, and vulnerability
repair. This paper discusses security issues and security assur-
ance methods at different stages, from contract design, imple-
mentation, and testing to operation. It summarizes ten main-
stream vulnerabilities from three levels: language, virtual ma-
chine, and blockchain. We examine 49 vulnerability injection,
detection, and repair methods, and analyze the shortcomings of
existing research results.

6.2. Future Research Direction

This paper summarizes the following three future research
directions based on our above discussion on the shortcomings
of existing smart contract security methods.

1. Combining secure programming specifications and
risk detection blocking. Since smart contracts cannot be
changed once being deployed, it is important to ensure
they are secure and reliable. As the existing smart con-
tract development language Solidity is in the development

stage, many challenges still have not yet been solved. De-
veloping a more secure programming specification can re-
duce the contract security risk in the development stage.
In addition, all-round security testing can be conducted
by means of vulnerability testing for developed and un-
deployed smart contracts, and real-time operational moni-
toring and analysis can be conducted for deployed smart
contracts. Timely security risk detection and blocking
for post-deployment contracts can ensure the security of
the contracts at runtime. Combining secure programming
specifications with security risk blocking ensures the se-
curity of smart contracts at all stages, from design and de-
velopment to operation.

2. Constructing large-scale and high-diversity baseline
vulnerability assessment datasets. Due to the exist-
ing vulnerability data collection methods, the constructed
benchmark datasets generally have problems such as in-
sufficient data volume and uneven distribution of vulner-
ability types. In order to build a benchmark dataset with
a sufficient amount and rich variety of vulnerability data,
we may consider using automatic vulnerability injection
technologies to improve the quality of the vulnerability
fragments for injection and ensure the authenticity of the
generated smart contracts under the premise of manually
collecting real smart contract vulnerability data. This ap-
proach avoids the subjectivity of manual construction and
enriches the types of vulnerabilities in the dataset. The fi-
nal goal is to build labelled benchmark datasets containing
multiple vulnerability types to facilitate the evaluation of
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vulnerability detection and remediation tools.
3. Combining traditional detection methods with deep

learning methods. For the smart contract security prob-
lem, most existing research uses a single traditional or
deep learning method for contract vulnerability detec-
tion. To achieve broader coverage of contract vulnerabil-
ity detection, we may consider the organic combination
of traditional detection and deep learning methods. This
paradigm can realize targeted extraction of feature infor-
mation for different contract vulnerability features, inte-
gration of the smart contract’s syntax and semantic infor-
mation, and construction of a complete contract security
analysis framework for more accurate smart contract se-
curity analysis.

4. Combining on-chain and off-chain repair. For well-
developed smart contracts, it is necessary to strengthen the
security protection of smart contracts based on vulnerabil-
ity repair. The existing research mainly focuses on how
to repair the detected vulnerabilities before contract de-
ployment. For the non-deployed smart contracts, off-chain
repair solutions with better performance are required to
ensure contract security. For the deployed contracts, on-
chain repair technologies need to be further developed to
update the patch contract in real time to ensure contract
security. In this regard, comprehensive contract security
repair frameworks are demanded to protect smart contract
security from both off-chain and on-chain.

Overall, future research on smart contract security can be
carried out in the above directions, including customizing the
corresponding specification mechanism for different research
goals, creating large-scale evaluation datasets with reasonable
diversity, solving existing security problems while gradually
improving the security of existing methods, and fixing vulner-
abilities both off-chain and on-chain, to achieve a full range of
smart contract security protection.

6.3. Threat to Validity

Two potential limitations may exist in the methodology of
this review: (1) limitations in the scope of the publication
search and (2) lack of accuracy and completeness in the data
extraction process.

First, to ensure the fairness of the research literature selec-
tion process, we develop a literature search strategy and define
keywords and search terms that enable us to search for relevant
literature. However, selecting keywords is somewhat subjec-
tive, which may lead to omitting some relevant studies. In addi-
tion, we select a set of mainstream computer science databases
as the sources of the literature search to cover as many rele-
vant studies as possible. Nonetheless, although the concept of
smart contracts emerged relatively early, the academic research
on smart contracts is still in its infancy stage. The relevant
industry websites may contain more current information than
the academic websites. Hence, our findings may have missed
some industry conducted studies. Second, the data extraction
results may be somewhat inaccurate. Due to the short develop-
ment time of smart contracts, there is no official specification

of vulnerability definition. Consequently, existing studies have
diverse definitions or descriptions regarding smart contract se-
curity problems. When we categorise and summarize the 45
relevant articles, we find that some studies lack sufficient infor-
mation to adequately describe the characteristics of vulnerabili-
ties. The vulnerability test samples and experimental settings in
some works are also inadequately presented, which can affect
the accuracy of our analysis.

7. Conclusion

This paper surveys the main features of smart contracts and
analyzes the main threats faced by smart contracts at three lev-
els: language, virtual machine and blockchain. It explores
smart contract security assessment and analysis with a com-
prehensive set of dimensions. These include a review of the
source of vulnerability data and the existing ways of collect-
ing vulnerability data, followed by introducing the progress of
existing smart contract security research work on vulnerabil-
ity injection, vulnerability detection and vulnerability defense.
Next, we analyze the advantages and disadvantages of these re-
search techniques, upon which four future research directions
for smart contract security research are summarized.

References

[1] M. Alharby and A. Van Moorsel, “Blockchain-based smart contracts: A
systematic mapping study,” arXiv preprint arXiv:1710.06372, 2017.

[2] R. Gupta, S. Tanwar, F. Al-Turjman, P. Italiya, A. Nauman, and S. W.
Kim, “Smart contract privacy protection using ai in cyber-physical sys-
tems: tools, techniques and challenges,” IEEE access, vol. 8, pp. 24746–
24772, 2020.

[3] N. Szabo, “Formalizing and securing relationships on public networks,”
First monday, 1997.

[4] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the
ethereum ecosystem and solidity,” in 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), pp. 2–8, IEEE,
2018.

[5] Y. Yuan, F.-Y. Wang, et al., “Blockchain: the state of the art and future
trends,” Acta Automatica Sinica, vol. 42, no. 4, pp. 481–494, 2016.

[6] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International conference on principles of secu-
rity and trust, pp. 164–186, Springer, 2017.

[7] Y. Liu, F. R. Yu, X. Li, H. Ji, and V. C. Leung, “Blockchain and machine
learning for communications and networking systems,” IEEE Communi-
cations Surveys & Tutorials, vol. 22, no. 2, pp. 1392–1431, 2020.

[8] S. Wang, L. Ouyang, Y. Yuan, X. Ni, X. Han, and F.-Y. Wang,
“Blockchain-enabled smart contracts: architecture, applications, and fu-
ture trends,” IEEE Transactions on Systems, Man, and Cybernetics: Sys-
tems, vol. 49, no. 11, pp. 2266–2277, 2019.

[9] M. Kaulartz and J. Heckmann, “Smart contracts–anwendungen der
blockchain-technologie,” Computer und Recht, vol. 32, no. 9, pp. 618–
624, 2016.

[10] M. I. Mehar, C. L. Shier, A. Giambattista, E. Gong, G. Fletcher, R. Sanay-
hie, H. M. Kim, and M. Laskowski, “Understanding a revolutionary and
flawed grand experiment in blockchain: the dao attack,” Journal of Cases
on Information Technology (JCIT), vol. 21, no. 1, pp. 19–32, 2019.

[11] S. S. Kushwaha, S. Joshi, D. Singh, M. Kaur, and H.-N. Lee, “Systematic
review of security vulnerabilities in ethereum blockchain smart contract,”
IEEE Access, 2022.

[12] D. Harz and W. Knottenbelt, “Towards safer smart contracts: A survey of
languages and verification methods,” arXiv preprint arXiv:1809.09805,
2018.

[13] S. Sayeed, H. Marco-Gisbert, and T. Caira, “Smart contract: Attacks and
protections,” IEEE Access, vol. 8, pp. 24416–24427, 2020.

17



[14] Z. Wang, H. Jin, W. Dai, K.-K. R. Choo, and D. Zou, “Ethereum smart
contract security research: survey and future research opportunities,”
Frontiers of Computer Science, vol. 15, no. 2, pp. 1–18, 2021.

[15] Y. Huang, Y. Bian, R. Li, J. L. Zhao, and P. Shi, “Smart contract secu-
rity: A software lifecycle perspective,” IEEE Access, vol. 7, pp. 150184–
150202, 2019.
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[59] V. Wüstholz and M. Christakis, “Harvey: A greybox fuzzer for smart
contracts,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of

18



Software Engineering, pp. 1398–1409, 2020.
[60] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “sfuzz: An

efficient adaptive fuzzer for solidity smart contracts,” in Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering,
pp. 778–788, 2020.

[61] Y. Huang, B. Jiang, and W. K. Chan, “Eosfuzzer: Fuzzing eosio smart
contracts for vulnerability detection,” in 12th Asia-Pacific Symposium on
Internetware, pp. 99–109, 2020.

[62] Y. Fu, M. Ren, F. Ma, H. Shi, X. Yang, Y. Jiang, H. Li, and X. Shi,
“Evmfuzzer: detect evm vulnerabilities via fuzz testing,” in Proceedings
of the 2019 27th ACM joint meeting on european software engineering
conference and symposium on the foundations of software engineering,
pp. 1110–1114, 2019.

[63] E. Zhou, S. Hua, B. Pi, J. Sun, Y. Nomura, K. Yamashita, and H. Kurihara,
“Security assurance for smart contract,” in 2018 9th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), pp. 1–
5, IEEE, 2018.

[64] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International Work-
shop on Emerging Trends in Software Engineering for Blockchain, pp. 9–
16, 2018.

[65] W. J.-W. Tann, X. J. Han, S. S. Gupta, and Y.-S. Ong, “Towards safer
smart contracts: A sequence learning approach to detecting security
threats,” arXiv preprint arXiv:1811.06632, 2018.

[66] J.-W. Liao, T.-T. Tsai, C.-K. He, and C.-W. Tien, “Soliaudit: Smart con-
tract vulnerability assessment based on machine learning and fuzz test-
ing,” in 2019 Sixth International Conference on Internet of Things: Sys-
tems, Management and Security (IOTSMS), pp. 458–465, IEEE, 2019.

[67] A. K. Gogineni, S. Swayamjyoti, D. Sahoo, K. K. Sahu, and R. Kishore,
“Multi-class classification of vulnerabilities in smart contracts using awd-
lstm, with pre-trained encoder inspired from natural language process-
ing,” IOP SciNotes, vol. 1, no. 3, p. 035002, 2020.

[68] Z. Liu, P. Qian, X. Wang, Y. Zhuang, L. Qiu, and X. Wang, “Combining
graph neural networks with expert knowledge for smart contract vulner-
ability detection,” IEEE Transactions on Knowledge and Data Engineer-
ing, 2021.

[69] K. Zhou, J. Cheng, H. Li, Y. Yuan, L. Liu, and X. Li, “Sc-vdm: A
lightweight smart contract vulnerability detection model,” in Interna-
tional Conference on Data Mining and Big Data, pp. 138–149, Springer,
2021.

[70] M. Eshghie, C. Artho, and D. Gurov, “Dynamic vulnerability detection on
smart contracts using machine learning,” in Evaluation and Assessment in
Software Engineering, pp. 305–312, 2021.

[71] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward:
Automated vulnerability detection models for ethereum smart contracts,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 1133–1144, 2020.

[72] J. Song, H. He, Z. Lv, C. Su, G. Xu, and W. Wang, “An efficient vulner-
ability detection model for ethereum smart contracts,” in International
Conference on Network and System Security, pp. 433–442, Springer,
2019.

[73] N. Ashizawa, N. Yanai, J. P. Cruz, and S. Okamura, “Eth2vec: learn-
ing contract-wide code representations for vulnerability detection on
ethereum smart contracts,” in Proceedings of the 3rd ACM International
Symposium on Blockchain and Secure Critical Infrastructure, pp. 47–59,
2021.

[74] F. Mi, Z. Wang, C. Zhao, J. Guo, F. Ahmed, and L. Khan, “Vscl: Au-
tomating vulnerability detection in smart contracts with deep learning,” in
2021 IEEE International Conference on Blockchain and Cryptocurrency
(ICBC), pp. 1–9, IEEE, 2021.

[75] S.-J. Hwang, S.-H. Choi, J. Shin, and Y.-H. Choi, “Codenet: Code-
targeted convolutional neural network architecture for smart contract vul-
nerability detection,” IEEE Access, vol. 10, pp. 32595–32607, 2022.

[76] O. Lutz, H. Chen, H. Fereidooni, C. Sendner, A. Dmitrienko, A. R.
Sadeghi, and F. Koushanfar, “Escort: ethereum smart contracts vulner-
ability detection using deep neural network and transfer learning,” arXiv
preprint arXiv:2103.12607, 2021.

[77] H. Wu, Z. Zhang, S. Wang, Y. Lei, B. Lin, Y. Qin, H. Zhang, and X. Mao,
“Peculiar: Smart contract vulnerability detection based on crucial data
flow graph and pre-training techniques,” in 2021 IEEE 32nd International

Symposium on Software Reliability Engineering (ISSRE), pp. 378–389,
IEEE, 2021.

[78] H. Liu, C. Liu, W. Zhao, Y. Jiang, and J. Sun, “S-gram: towards semantic-
aware security auditing for ethereum smart contracts,” in 2018 33rd
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE), pp. 814–819, IEEE, 2018.

[79] X. Yu, H. Zhao, B. Hou, Z. Ying, and B. Wu, “Deescvhunter: A deep
learning-based framework for smart contract vulnerability detection,” in
2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–
8, IEEE, 2021.

[80] Y. Zhang and D. Liu, “Toward vulnerability detection for ethereum smart
contracts using graph-matching network,” Future Internet, vol. 14, no. 11,
p. 326, 2022.

[81] J. Ye, M. Ma, Y. Lin, L. Ma, Y. Xue, and J. Zhao, “Vulpedia: Detecting
vulnerable ethereum smart contracts via abstracted vulnerability signa-
tures,” Journal of Systems and Software, vol. 192, p. 111410, 2022.

[82] J. Huang, K. Zhou, A. Xiong, and D. Li, “Smart contract vulnerability
detection model based on multi-task learning,” Sensors, vol. 22, no. 5,
p. 1829, 2022.

[83] J. Cai, B. Li, J. Zhang, X. Sun, and B. Chen, “Combine sliced joint graph
with graph neural networks for smart contract vulnerability detection,”
Journal of Systems and Software, vol. 195, p. 111550, 2023.

[84] “Vyper.” https://vyper.readthedocs.io/.
[85] “Daml.” www.digitalasset.com.
[86] X. L. Yu, O. Al-Bataineh, D. Lo, and A. Roychoudhury, “Smart contract

repair,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 29, no. 4, pp. 1–32, 2020.

[87] T. D. Nguyen, L. H. Pham, and J. Sun, “Sguard: towards fixing vulnerable
smart contracts automatically,” in 2021 IEEE Symposium on Security and
Privacy (SP), pp. 1215–1229, IEEE, 2021.

[88] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, “Smartshield: Au-
tomatic smart contract protection made easy,” in 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER), pp. 23–34, IEEE, 2020.

[89] M. Rodler, W. Li, G. O. Karame, and L. Davi, “{EVMPatch}: Timely
and automated patching of ethereum smart contracts,” in 30th USENIX
Security Symposium (USENIX Security 21), pp. 1289–1306, 2021.

[90] H. Jin, Z. Wang, M. Wen, W. Dai, Y. Zhu, and D. Zou, “Aroc: An auto-
matic repair framework for on-chain smart contracts,” IEEE Transactions
on Software Engineering, 2021.

19


