
Bytecode Obfuscation for Smart Contracts
Qifan Yu1 , Pengcheng Zhang1 , Hai Dong2 , Yan Xiao3 , Shunhui Ji1

1College of Computer and Information, Hohai University, Nanjing, China
2School of Computing Technologies, RMIT University, Melbourne, Australia

3School of Computing, National University of Singapore, Singapore
1455308407@qq.com; pchzhang@hhu.edu.cn; hai.dong@rmit.edu.au; dcsxan@nus.edu.sg; shunhuiji@hhu.edu.cn

Abstract—Ethereum smart contracts face serious security
problems, which not only cause huge economic losses, but also
destroy the Ethereum credit system. To solve this problem, code
obfuscation techniques are applied to smart contracts to improve
their complexity and security. However, the current source code
obfuscation methods have insufficient anti-decompilation ability.
Therefore, we propose a novel bytecode obfuscation approach
called BOSC based on four kinds of bytecode obfuscation
techniques, which is directed at solidity. The experimental results
show that, after the bytecode obfuscation, the failure rate of
decompilation tools is over 99% and only a small amount of gas
is consumed.

Index Terms—Ethereum, Smart Contract, Bytecode Obfusca-
tion

I. INTRODUCTION

In Ethereum, smart contracts exist in the form of contract
accounts that manage electronic cryptocurrencies stored in
the blockchain platform. Currently, Solidity is the first choice
for programming smart contracts on the Ethereum platform.
Solidity is a high-level language, the compiled bytecode files
of which will run on the Ethereum Virtual Machine (EVM).

With the wide application of smart contracts, the security
issues of smart contracts have been gradually exposed. For
example, The Dao incident resulted in a loss of $60 million [1].
Advances in reverse analysis capabilities have resulted in more
decompilation tools. With these tools, it is possible to convert
executable bytecode into readable assembly or even source
code. People with basic assembly knowledge can use decom-
pilation tools to understand program logic and make unautho-
rized use, tampering and vulnerability discovery. Source code
obfuscation technologies have been applied to smart contracts
to improve their security, via enhancing contract complexity
and decompilation cost [4]. Since decompilation tools focus on
the process of restoring bytecode to source code, source code
obfuscation techniques fall short in its ability to invalidate
decompilation tools in the bytecode level.

To address the limitation of the existing technique, we pro-
pose a novel smart contract bytecode obfuscation tool (named
BOSC1) that leverages four bytecode obfuscation techniques,
namely incomplete instruction obfuscation, false branch obfus-
cation, instruction rearrange obfuscation and flower instruction
obfuscation. By collecting a real smart contract bytecode
dataset from Ethereum, we evaluate the anti-decompilation
performance of BOSC on three advanced Solidity decompilers.
The experimental results show that BOSC can effectively fight
against decompilers with low gas consumption.

1https://anonymous.4open.science/r/APSEC2022, including datasets.

© © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.
Q. Yu, P. Zhang, H. Dong, Y. Xiao and S. Ji, "Bytecode Obfuscation for Smart Contracts," 2022 29th Asia-Pacific Software Engineering Conference (APSEC),
Japan, 2022, pp. 566-567, doi: 10.1109/APSEC57359.2022.00083.

II. THE BOSC APPROACH

Our approach comprises three steps. After receiving a
bytecode file, we perform bytecode cleaning. Next, we execute
bytecode obfuscation, which includes incomplete instruction
obfuscation, false branch obfuscation, instruction order re-
arrange obfuscation and flower instruction obfuscation [2].
Finally, we implement bytecode recovery to generate an ob-
fuscated bytecode file. The overall process is shown in Fig. 1.

Fig. 1. Flowchart of the bytecode obfuscation

[Step 1] Preprocessing. First, a bytecode file suffixed with
.hex is fed into the tool. The bytecode of Solidity contains
three parts, which are deployment, runtime and auxdata byte-
code. Deployment bytecode is responsible for deployment of a
contract. It stores runtime and auxdata bytecode and associate
the storage address of both to an contract account. The runtime
bytecode is the core expression part of the program logic.
Generally decompilers only accept the runtime bytecode for
input, so we only perform bytecode obfuscation on the runtime
bytecode. The auxdata bytecode is the encrypted fingerprint of
the code. This part is used for verification, which will not be
executed by the EVM and is optional. In summary, the major
purpose of our bytecode cleaning is to extract the runtime
bytecode and remove deployment and auxdata bytecode.

[Step 2] Bytecode Obfuscation. We aim to achieve two
main goals for bytecode obfuscation. The first is to make
decompiling as challenging as possible. The second is to make
decompiled code difficult to understand even if the decompi-
lation is successful. The following subsections introduce each
bytecode obfuscation method.
[2.1] Incomplete instruction obfuscation. The key of the

method is to create decompiler errors by inserting an in-
complete instruction, which only contains an opcode without

TABLE I
EXPERIMENTAL RESULTS OF ANTI-DECOMPILATION ABILITY.

Original Bytecodes Obfuscated Bytecodes

PF FF SUC F-Total PF FF SUC F-Total

OSD 2.5%(5/200) 0.0%(0/200) 97.5%(195/200) 2.5%(5/200) 47.0%(94/200) 52.0%(104/200) 1.0%(2/200) 99.0%(198/200)

Vandal 3.5%(7/200) 0.5%(1/200) 96.0%(192/200) 4.0%(8/200) 89.5%(179/200) 10.5%(21/200) 0.0%(0/200) 100%(200/200)

Gigahorse 1.5%(3/200) 0.5%(1/200) 98.0%(196/200) 2.0%(4/200) 98.5%(197/200) 1.5%(3/200) 0.0%(0/200) 100%(200/200)

an operand or incomplete operand [2]. When a decompiler
encounters this instruction fragment, it will naturally read the
subsequent data to make it a complete instruction, so that the
subsequent instruction cannot be correctly identified.

[2.2] False branch obfuscation. Jump instructions are based
on calculation results, which rely on the input data. For most
jumps, decompilers can only assume each of branches is
reachable. Based on this feature, an unconditional jump can
be converted into a conditional jump, while in fact one of
branches is never reachable and false [2]. Any jumps and loops
can be inserted into this false branch to make the decompiler
iteratively visit this branch layer by layer until it dies.

[2.3] Instruction sequence rearrange obfuscation. It is a
simple obfuscation technique, the main mission of which is
to change the execution sequence of mutually independent
instructions [3]. A pair of independent instructions refer to
a precedent instruction and a decedent instruction that do not
influence each other. The change of their sequence does not
affect the program. However, the sequence reflects developers’
design thinking. Hence, changing the order of independent
instructions makes the program more difficult to comprehend.

[2.4] Flower instruction obfuscation. Flower instructions,
also known as dirty bytes, refer to junk instructions or redun-
dant instructions, which are generally meaningless [3]. Insert-
ing flower instructions while ensuring the correct execution of
the original program can effectively interfere with the thinking
of attacker’s decompilation, making it difficult to understand
the program content and achieving the effect of obfuscation.

[Step 3] Bytecode Recovery. The previously removed
bytecode part, such as deployment and auxdata bytecode is
restored in the final generated obfuscated bytecode file.

III. EVALUATION
We evaluate BOSC from three aspects, i.e., consistency,

anti-decompilation ability and extra gas consumption. We
randomly collect 200 bytecode files of real smart contracts
from Ethereum. These bytecode files are relatively complex,
with an average bytecode number of 15, 725.

Consistency. The purpose of this experiment is to verify if
the original logic of the bytecode does not change. Through a
manual review, the logic of these 200 bytecode files has not
changed after obfuscation.

Anti-decompilation. Experiments are carried out with three
common and advanced Solidity decompilers, i.e., Online So-
lidity Decompiler (OSD), Vandal and Gigahorse. The results
of the anti-decompilation ability are shown in table I. PF

(part-failure) refers to that the decompilation tool can output
a result, but the result reports an error or lacks the jump logic.
FF (full-failue) means that the decompilation tool cannot
output the result at all. SUC (success) refers to the successful
output of the decompilation result. F-Total is the sum of PF
and FF. The experimental results show that almost all of
these decompilation tools can run normally before bytecode
obfuscation. However, after the bytecode obfuscation, the
overall failure rates of OSD, vandal, and gigahorse respectively
reach 99%, 100% and 100%. This result proves that BOSC has
an effective anti-decompilation capability.

Extra Gas Consumption. To assess the extra gas consump-
tion, we measure the maximum number of extra instructions
introduced for each bytecode obfuscation method to calculate
the worst-case gas consumption. We take gwei as 54, which
is much larger than the average price. In this case, each unit
of gas will cost about 0.0007$. The average time to run each
bytecode obfuscation method is provided, which is acceptable.
It can be seen that, in the worst case, BOSC only generates
1180 extra gas consumption, which is worth about 0.82453$.
The experimental results are shown in table II.

TABLE II
EXPERIMENTAL RESULTS OF EXTRA GAS CONSUMPTION

Methods
Metrics Extra Gas(gwei) Dollar($) Time(ms)

Incomplete instruction 200 0.13975 137
False branch 230 0.16071 283

Instruction sequence rearrange 0 0 114
Flower instruction 750 0.52407 159

IV. CONCLUSION

This paper proposes a novel bytecode obfuscation method
for Ethereum smart contract, which can greatly improve the
anti-decompilation ability of smart contracts and generate only
a small amount of extra gas consumption.

ACKNOWLEDGEMENT

This work is funded by the National Natural Science Foun-
dation of China under Grant No.62272145 and No.U21B2016.

REFERENCES

[1] Chen, H. , et al. ”A Survey on Ethereum Systems Security: Vulnerabili-
ties, Attacks, and Defenses.” ACM Computing Surveys 53.3(2020):1-43.

[2] Wroblewski G . General Method of Program Code Obfuscation. 2002.
[3] Linn C , Debray S . Obfuscation of executable code to improve

resistance to static disassembly[C]// Computer and Communications
Security. ACM, 2003.

[4] Zhang, M., Zhang, P., Luo, X., & Xiao, F. (2020, December). Source
Code Obfuscation for Smart Contracts. In 2020 27th Asia-Pacific
Software Engineering Conference (APSEC) (pp. 513-514). IEEE.

