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Abstract—Federated learning provides privacy protection to the collaborative training of global model based on distributed private
data. The local private data is often in the presence of long-tailed distribution in reality, which downgrades the performance and causes
biased results. In this paper, we propose a dynamic adaptive federated learning optimization algorithm with the Grey Wolf Optimizer
and Markov Chain, named FedWolf, to solve the problems of performance degradation and result bias caused by the local long-tailed
data. FedWolf is launched with a set of randomly initialized parameters instead of a shared parameter employed by existing methods.
Then multi-level participants are elected based on the F1 scores calculated from the uploaded parameters. A dynamic weighting
strategy based on the participant level is used to adaptively update parameters without artificial control. The above parameter updating
is modelled as a Markov Process. After all communication rounds are completed, the future performance (including the probability of
each participant is elected as different participant level) of participants is predicted through the historical Markov states. Finally, the
probability of each participant is elected as the level 1 is used as the contribution weight and the global model is obtained through
dynamic contribution weight aggregating. We introduce the Gini index to evaluate the bias of classification results. Extensive
experiments are conducted to validate the effectiveness of FedWolf in solving the problems of performance cracks and categorization
result bias as well as the robustness of adaptive parameter updating in resisting outliers and malicious users.

Index Terms—Federated Learning, Long-Tailed Data, Grey Wolf Optimizer, Markov Chain, Dynamic Adaptive Weighting
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1 INTRODUCTION

F Ederated learning, as a nascent distributed comput-
ing technology, ensures privacy in collaborative multi-

party computation. Nevertheless, substantial heterogeneity
arises among participants due to variations in factors such
as environment, equipment, and statistical characteristics,
which had been demonstrated to lead to instability, sluggish
convergence, and even degradation in the global model’s
quality [1]. Enhancing performance hinges on effectively
managing non-independent identically distributed (Non-
IID) data, responsible for statistical heterogeneity that can
result in parameter misalignment [2], [3]. Recent research
has honed in label imbalance, a subset of Non-IID. Label
imbalance, arising from skewed label distributions, imparts
diverse gradients to participant gradient descents [4]. Par-
ticularly, the research focus has shifted towards long-tailed
distribution data, characterized by a substantial number of
labels and a mandatory imbalance factor [5]. This study con-
centrates on the local long-tailed data, signifying datasets
with long-tailed distributions peculiar to each participant.
Code can be found in this link1.
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Deep learning’s performance is hindered by local opti-
mization issues within local long-tailed datasets, leading to
performance gaps and categorization biases in outcomes [6].
These challenges extend to federated learning. We explore
how local optimization negatively impacts federated learn-
ing’s ability to handle local long-tailed data through a com-
parative experiment. Initially, we assess the performance of
a non-federated approach, optimizing globally on CIFAR-
100 [7], establishing the upper limit of global model per-
formance (Ideal model training and Ideal model testing
in Fig. 1 (a)). Subsequently, CIFAR-100 is divided into ten
copies with long-tailed distributions, and each participant
independently trains on one copy. We randomly select
Participant 6 as an example to illustrate the limitations in
performance and classification bias arising from local long-
tailed data without aggregation (Non-aggre training and
Non-aggre testing in Fig. 1 (a), with dataset distribution
and Participant 6’s classification results shown in Fig. 1 (b)).
Finally, we evaluate the performance of the Federated Av-
eraging algorithm (FedAVG) [1] (FedAVG local training,
FedAVG local testing, and FedAVG global in Fig. 1 (a))
using a local long-tailed data copy to demonstrate how local
optimization’s impact extends to federated learning.

As shown in Fig. 1, the training accuracy of all methods
converge to a high upper bound, which proves the training
performance is not affected by the local data with long-
tailed distribution. An important experiential observation is
the local long-tailed data leads to the performance crack and
the categorization bias of testing results. The non-federated
model (Ideal model in Fig. 1 (a)) achieves the best perfor-
mance of testing accuracy and the smallest gap between
training and testing accuracy. Because the centralized data
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Fig. 1. (a): The training and testing accuracy of Ideal model, Non-aggre
model and FedAVG [1]. The performance leaps after 50 epochs due to
a smaller learning rate. (b): The bias of classification and datasets of
Participant 6.

contains implicit association, which is helpful for learn-
ing data representation in deep learning. The independent
performance (Non-aggre in Fig. 1 (a)) of each participant
with the long-tailed data is weaker than the non-federated
model. The classification results (Participant 6 in Fig. 1 (b))
of independent training by participants significantly lean
towards dense categories. Researchers expect to achieve a
balanced result where the categorization bias of the results
is small. FedAVG [1] provides a high-performance global
model by aggregating the local models of various partic-
ipants. However, the performance of FedAVG [1] is still
lower than the non-federated model. The above experimen-
tal results demonstrate the impact of local long-tailed data
on federated learning, including the performance cracks and
the bias of categorization results.

Recent work [1], [8], [9] is launched with a shared
random initialization parameter to avoid the influence of
outliers [1]. This setting leads to all participants’ gradient
decreases within a region, falling into the local optimal
solution [10]. They consider the amount of data as contri-
bution weights and repair the weak bias between local and
global parameters to improve the performance of federated
learning on Non-IID data. However, they do not further
focus on the implications of long-tailed data, such as the
performance cracks and the bias of categorization results.
These methods cannot repair the huge deviation caused
by long-tailed data. On the other hand, the single shared
initialization parameter and fixed weights adjusted by hu-
mans may promote performance to shift towards a single
direction and deviate from the global optimization. FedWolf
is launched with a set of random initialization parameters
to avoid local optimal solutions. We propose a dynamic
adaptive weighting strategy to update parameters, which
is robust in resisting outliers.

Some methods [11], [12] set a new optimization goal
based on the difference between local and global parameters
to reduce the bias among all participants. These methods
[11], [12] rely on excellent initial parameters to ensure unbi-
ased performance, which cannot be guaranteed in federated
learning because of the individual behavior differences of
participants. Some promising work [13], [14] uses the clas-
sical idea of non-federation to optimize the performance of
federated learning on long-tailed distribution data, such as
re-training classifiers [14] and logic adjustment [13]. These
methods [13], [14] are effective, but the act of leaking inter-
mediate products increases the risk of being attacked in fed-
erated learning. The dynamic adaptive weighting strategy
in FedWolf does not require additional data transmission

and strictly guarantees privacy and security.

In view of the privacy controversy of existing methods
and the lack of effective methods to solve the performance
crack and the bias of categorization results caused by the
local long-tailed data in federated learning, we propose
a novel federated learning algorithm with the Grey Wolf
Optimizer [15] and Markov Chain [16], named FedWolf.
Federated learning is a distributed computing technol-
ogy, which provides collaborative training with multiparty
participants. In this regard, we expect to use the bio-
mimetic swarm algorithms to optimize performance and
stay away from the local optima. FedWolf proposes a dy-
namic weighted parameter update strategy based on the
Grey Wolf Optimizer to solve the impact of local long-
tailed data on federated learning. Dynamic weights guide
the gradient update towards a better direction, resulting in
better performance compared to fixed weights. The weights
are adaptively updated in FedWolf, because they are de-
termined by the performance of participants in each com-
munication round, rather than being manually controlled.
The dynamic adaptive weights avoids performance bias
towards dense categories or artificially selected weights
of participants. After all communication rounds are com-
pleted, the parameter updating is modelled as a Markov
Process [16]. The Markov state is used to infer the future
performance of participants as contribution weights. Fed-
Wolf obtains the global model through aggregation with
contribution weights. The aggregated contribution weight
is also dynamic, which is determined by the performance
of each participant in all communication rounds rather than
fixed dataset weights. The model aggregation in FedWolf is
robust in resisting outliers and malicious users, because the
dynamic weights of outliers and malicious users are small
and 0, respectively. The main contributions of this work are
as follows:

(1) Instead of following FedAVG-related methods that
start from a single shared parameter, we advocate
launching federated learning with a set of random
initialization parameters to keep away from local
optimization. The statistical convergence of the al-
gorithm is theoretically proved.

(2) We design a dynamic adaptive parameter update
strategy based on the Grey Wolf Optimizer algorithm
to solve the problem of falling into the dense head
categories in local training.

(3) The parameter updating is modelled as the Markov
Process. We propose a model aggregation strategy
via the Markov Chain, which fully considers histor-
ical and future contributions. Thus, the aggregated
global model is superior to the local model.

(4) We introduce the Gini index which is a classical
theory in economics to evaluate the bias of classifi-
cation results. The experimental evaluation validates
the effectiveness of FedWolf in solving the perfor-
mance cracks and the bias of categorization results.
We also conduct empirical research to demonstrate
the robustness of FedWolf in resisting outliers and
malicious users.
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2 RELATED WORK

In centralized learning, the advanced methods increase the
weight of sparse samples by re-sampling [17], re-weighting
[18] or re-training classifier [19] to restore balance. These
methods balance the distribution of head and tail data to
improve the performance of deep learning, because the
distribution of centralized data is easy to statistic. However,
these methods are not suitable for the compulsory privacy
protection strategy in federated learning because they col-
lect data or intermediate feature.

2.1 Federated Learning on Non-IID Data

At present, a large number of promising methods have been
proposed to optimize federated learning on Non-IID data.
These methods are discussed as the available solutions of
the local long-tailed data. Wang et al. [20] provided a generic
framework based on the first principled understanding of
the solution bias and the convergence slowdown due to
objective inconsistency. The federated proximal algorithm
(FedProx) [8] proposes a proximal term to describe the
statistical heterogeneity of data and the computational het-
erogeneity of equipments. Karimireddy et al. [9] proposed
a new stochastic controlled averaging algorithm, named
SCAFFOLD. SCAFFOLD controls the reduction of variance
to correct for the bias of parameters in local training. Dur-
mus et al. [12] proposed FedDyn that updates the dynamic
regularization for each participant at each round, so that the
global and local model solutions are aligned. Gao et al. [11]
proposed a federated algorithm with local drift decoupling
and correction (FedDC). FedDC introduces a lightweight
modification in training, in which each participant utilizes
an auxiliary local drift variable to track the gap between
the local model parameter and the global model parame-
ter. Uddin et al. [21] proposed a disentangled information
bottleneck principle-based loss function for local parameter
update and suggested a model selection strategy based on
the mutual information for global model aggregation.

The above methods assume that the performance drift
is generated by the offset in local training and aggregation,
and the proximal term is used to bring performance back on
track. However, the performance of local training falls into
the dense head categories, and the multi-directional pulling
force makes the global model lost in the solution space
instead of weak drift in the case of long-tailed data. Besides,
the proximal term proposed by the above methods cannot
fix the performance cracks caused by local long-tailed data.

2.2 Federated Learning on Long-Tailed Data

Some recent work [13], [14] focus on the impact of global
long-tailed data on federated learning performance, which
assumes the total amount of datasets for all participants
follows the long-tailed distribution. Shang et al. [14] pro-
posed a federated learning via classifier re-training with
federated feature (CReFF). CReFF recommends the classifier
should be re-trained with federated features to eliminate the
negative influence of global long-tailed data and achieve
performance comparable to real data training. Shange et al.
[13] proposed a federated ensemble distillation with imbal-
ance calibration (FEDIC), which uses the logit adjustment

and calibration gating network techniques to effectively
make the output of the ensemble model unbiased on global
long-tailed data. The above two methods [13], [14] propose
effective solutions to improve the performance on global
long-tailed data, but they do not specify the global bias
caused by local long-tailed data. Furthermore, additional
data exchange leads to a decrease in communication effi-
ciency and an increase in the risk of privacy leakage. Shi et
al. [35] use a contrastive language-image pre-training model
to optimize the federated learning between server and client
models under its vision-language supervision. Xiao et al.
[36] proposed a method termed Fed-GraB, comprised of
a self-adjusting gradient balancer module that re-weights
clients’ gradients in a closed-loop manner based on the
feedback of global long-tailed prior derived from a direct
prior analyzer module.

Zhang et al. [5] calibrated the logit before softmax
cross-entropy according to the probability of occurrence of
each class to improve the federated performance of highly
skewed data. Lu et al. [22] proposed a federated learning
method with adversarial feature augmentation (FedAFA),
which optimizes the local model for each participant by
producing a balanced feature set and enhances the local
minority classes with adversarial feature augmentation.
The above methods alleviate the performance degradation
caused by the long-tailed data. However, they ignore the
impact of local long-tailed distribution data on the unbiased
results. The augmentation of minority categories in local
data is limited in improving the global performance and
decreasing the bias of performance on local long-tailed data.

3 DYNAMIC ADAPTIVE FEDERATED LEARNING

The main notations involved in FedWolf are predefined, as
shown in Table 1.

3.1 Overview
Since FedAVG [1] was proposed by Google as a benchmark
in federated learning, FedAVG-related methods [8], [9], [11],
[12] follow a unified architecture in which federated learn-
ing is described as an iterative cycle of training in Fig. 2. This
architecture of FedAVG-related methods can be described as
follows:

(1) The server distributes initialization parameters θ0k to
participant k.

(2) In communication round r, participants indepen-
dently train with the Stochastic Gradient De-
scent (SGD) and upload parameters θr,ek to the server.

(3) The server updates new parameters θr,∗k and dis-
tributes it to participant k. Then, loop step (1)-(3)
until convergence occurs.

(4) After all communication rounds are completed, the
final global model θglobal is obtained by weighted
aggregation.

The updating and aggregating of parameters are the part
of unified architecture. The key difference between recent
work is the weight that considers different factors, for ex-
ample, the size of datasets [11], and participants’ reputation
[37], [38]. As shown in Fig. 2, the modifications of FedWolf
focus on Step (1), (3) and (4). A set of random parameters is
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Fig. 2. Comparison between FedWolf and FedAVG-related methods [8], [9], [11], [12] in parameters updating and aggregation. Our main ideas are
scattered around the initialization parameters (orange), parameters updating (green) and parameters aggregation (red).

TABLE 1
The main notations involved in FedWolf

Notations Description
R = {r|r ∈ N+} The set of communication rounds. |R| is the

total number of rounds and r ∈ R is the rth
communication round.

E = {e|e ∈ N+} The set of epochs. |E| is the total number of
epochs in each communication round and
e ∈ E is the eth epoch.

K = {k|k ∈ N+} The set of participants. |K| is the total num-
ber of participants and k ∈ K is the kth
participant.

L = {1, 2, 3} Markov state space of participant level.
θ0k Initialization parameters of participant k.
θr,ek Parameters of participant k in epoch e of

communication round r.
θr,∗k Updated parameters of participant k after

communication round r.
θglobal Global model parameters.
lrk ∈ L Level of participant k in round r.

M|K|×|R| Markov state matrix of all participants after
all communication round.

Mtran
k Markov state transition matrix of partici-

pant k.
m⃗r ∈ M|K|×|R| State column vector of all participants in

communication round r.
m⃗k ∈ M|K|×|R| State row vector of participant k after all

communication rounds.
ωr
k Updated weight of participant k in round r.

ωk Contribution weight of participant k.
r∗ Communication round for inferring future

performance in computing the contribution
weight ωk .

used as the initialization parameters θ0k, to keep away from
the local optimization. A dynamic adaptive parameter up-
date strategy via the Grey Wolf Optimizer [15] is proposed
to solve the problem of falling into the dense head categories
on the local long-tailed data. FedWolf proposes a model-
weighted aggregation strategy via the Markov Chain [16],
which fully considers historical and future contributions to
improving the performance. This aggregation strategy with

dynamic weights is believed to be more fair and effective
than existing methods with fixed weights.

Specifically, we launch FedWolf with a set of initializa-
tion parameters instead of all participants downloading the
same one. Then the trained parameters θr,ek are uploaded to
the server. Assume the participant k is elected according to
its highest macro F1-score [23] and divided into participant
level lrk, where Level 1 participant has better performance
than Levels 2 and 3 participants. Participants hold differ-
ent participant levels in different communication rounds
(l1k ̸= l2k ̸= · · · ̸= lrk).

Inspired by the Grey Wolf Optimizer algorithm [15], we
design a parameter update rule based on the participant
level lrk. The updated parameters θr,∗k are distributed to all
participants and the next local training is launched. Steps (1)
and (2) are considered as the smallest unit that generates a
set of participant level m⃗r in the communication round r.
Step (3) is a chain that links two units, as shown in Fig. 2.
The participant level lrk is considered as the Markov state
ans steps (1)-(3) can be modelled as a Markov Process [16]
in FedWolf. After all communication rounds, the Markov
transition matrix Mtran

k of participant k is calculated from
the participant level m⃗k to infer the participant level in
future training rounds. Finally, we select the probability
of Level 1 in the inferred participant level status as its
contribution weight ωk to aggregate the parameters of the
global model θglobal.

We present the algorithm of FedWolf in Algorithm1.
Four aspects distinguishing FedWolf and the existing meth-
ods are highlighted below.

(1) FedWolf is launched with a set of random initializa-
tion parameters (θ01 ̸= θ02 ̸= · · · ≠ θ0k) instead of a
shared parameter (θ01 = θ02 = · · · = θ0k deployed
by FedAVG-related methods) to avoid the local opti-
mization.

(2) In each communication round r, the participant k is
selected according to its highest macro F1-score [23]
and divided into participant level lrk ∈ L = {1, 2, 3}
(l1k ̸= l2k ̸= · · · ̸= lrk).

(3) After each communication round r, the parameter
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Algorithm 1 Pipeline of FedWolf.

Input: R, E, K , θ0k.
Output: θglobal.

for communication round r do
for participant k do

for local training epoch e do
if r == 1 and e == 1 then
θr,ek = Local training with SGD and θ0k;

else
θr,ek = Local training with SGD and θr,e−1

k ;
end if

end for
end for
Parameter updating (Algorithm 2);

end for
Computing the state transition matrix Mtran

k of partici-
pant k (Algorithm 3);
Computing the contribution weight ωk with Mtran

k of
participant k (Algorithm 4);
θglobal = Aggregating global model with contribution
weight ωk;
return θglobal

update strategy generates dynamic update weight
ωr
k for each participant (ω1

k ̸= ω2
k ̸= · · · ̸= ωr

k and
ωr
1 ̸= ωr

2 ̸= · · · ≠ ωr
k) based on the participant level

lrk to reduce the bias caused by fixed update weight
(ω1

k = ω2
k = · · · = ωr

k in FedAVG-related methods).
The parameters are adaptively and independently
updated (θr,∗1 ̸= θr,∗2 ̸= · · · ≠ θr,∗k ) rather than shar-
ing the same parameters (θr,∗1 = θr,∗2 = · · · = θr,∗k
in FedAVG-related methods) to solve the problem
of falling into the dense head categories in local
training.

(4) The probability of each participant is elected as the
Level 1 in the inferred future performance is used
as contribution weight ωk rather than the historical
performance or the number of datasets, which is also
a dynamic weight (ωk ̸= ωr

k in FedWolf and ωk = ωr
k

in FedAVG-related methods).

3.2 Parameter Update via Grey Wolf Optimizer

The core of Grey Wolf Optimizer is the dynamic selection
of multi-level wolf and the adaptive search of solution
space based on the wolf level, which helps the algorithm
to quickly search for solution space and keep away from the
local optimization [15]. Our motivation is that participants
escape the local optimization caused by the local long-tailed
data through a set of random initialization parameters and
the Grey Wolf Optimizer [15]. We design an election strategy
to rank participant level L (multi-level wolf) and an adap-
tive parameter update algorithm based on the participant
level L (wolf level). There are 3 participant levels. Level
1 participant is a participant with the best accuracy to
represent the global optimal solution. Level 2 participants
are some participants with better accuracy in representing
the local optimal solution. Level 3 participants are some
participants with poor accuracy. Different update weights

(ωr
1 ̸= ωr

2 ̸= · · · ≠ ωr
k) are used for the participants with

different levels during parameter updates.
Specifically, the parameters θr,ek of the participant k are

uploaded to the server after communication round r. The
server calculates the macro F1-score [23] of the participant
k as the basis for electing and dividing level lrk ∈ L. lrk
is recorded in m⃗r = [lr1, l

r
2, · · · , lrk]

⊤. After the election is
completed, 3 sets P1 = {θr,ek |lrk = 1}, P2 = {θr,ek |lrk = 2},
P3 = {θr,ek |lrk = 3} are obtained, which contains the param-
eters θr,ek of the participant k different level lrk.

The parameters are updated based on the participant
level lrk. The leader (lrk = 1) holds his own parameter.
Low-level participants (lrk = 2, 3) share parameters among
peers and benefit from the parameters of leader. This is a
dynamic weight update strategy. As the election results of
each communication round change, the weight ωr

k held by
the participant k needs to be updated. FedWolf effectively
avoids the global performance and the bias of classification
results towards the heavy-weight participants. The new
parameters are sent to the participants to start the next
round of local training. We present the parameter update
algorithm in Algorithm 2.

Algorithm 2 Parameter update algorithm.

Input: θr,ek , m⃗r .
Output: θr,∗k .

Level1temp = θr,ek ∈ P1;
Level2temp = MEAN (θr,ek ∈ P2);
Level3temp = MEAN (θr,ek ∈ P3);
for lrk ∈ m⃗r and θr,ek of participant k do

if lrk == Level 1 then
θr,∗k = θr,ek ;

else if lrk == Level 2 then
θr,∗k = (θr,ek + Level1temp)/2;

else if lrk == Level 3 then
θr,∗k = (θr,ek + Level2temp + Level3temp)/3;

end if
end for
return θr,∗k

3.3 Model Aggregation via Markov Chain
The process of participant level state change in Section 3.2 is
modelled as a Markov Process [16] to infer the contribution
weight ωk of each participant, because of the independence
of participant level states and the chain structure of FedWolf
as described in Fig. 2. The advantages of the contribution
weight ωk in FedWolf are highlighted below.

(1) The state probability is consistent with the normal-
ized weight, namely, ωk ∈ [0, 1], and

∑|K|
k=1 ωk = 1.

(2) The future state probabilities are predicted from
historical states, which fully consider the long-term
performance of each participant.

Specifically, the participant level L is the Markov state
space. After each training unit, a state sequence m⃗r =

[lr1, l
r
2, · · · , lrk]

⊤ is generated and appended to the Markov
state matrix.

After all communication rounds, the status sequence
m⃗k =

[
l1k, l

2
k, · · · , lrk

]
of participant k can be extracted from
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Algorithm 3 Computing the state transition matrix Mtran
k .

Input: m⃗k.
Output: Mtran

k .
Mtran

k = O3×3;
for (lrk, lr+1

k ) in m⃗k do
Mtran

k [lrk][lr+1
k ] += 1;

end for
for row in Mtran

k do
S = SUM(row);
if S > 0 then

row[:] = [F/S for F in row];
else if then

row[:] = fulfil with 0;
end if

end for
return Mtran

k

Algorithm 4 Computing the contribution weight ωk.

Input: Mtran
k , r∗.

Output: ωk.
Random initial state s;
while r∗ > 0 do
s = s ∗Mtran

k ;
r∗ −−;

end while
ωk = s[0];
return ωk

the Markov state matrix M|K|×|R|. The state transition ma-
trix Mtran

k of participant k is calculated with the state matrix
m⃗k (Algorithm 3). Given a random initial state s, the state of
participant k in future communication rounds r∗ is inferred
with the state transition matrix Mtran

k (Algorithm 4). We se-
lect the probability that participants become Level 1 as their
contribution weights ωk and obtain the final global model
θglobal through weighted aggregation. Participant holds dif-
ferent contribution weight ωk (ω1 ̸= ω2 ̸= · · · ≠ ωk), which
is dynamically determined based on the performance of
participant k during the whole training process, to avoid
the performance bias towards the dictator.

4 ALGORITHM CONVERGENCE ANALYSIS

FedWolf is launched with a set of random initialization
parameters and the updated parameters are independent
of the training process. To prove that the convergence of
FedWolf is not compromised, the statistical convergence is
given.

Problem formulation. FedWolf aims to optimize the
following distributed objective function.

F = minimize

|K|∑
k=1

fk(g(X, θr,ek ), Y ), (1)

where X , Y are datasets and labels, separately. g(X, θr,ek )
predicts the maximum category probability of X with θr,ek .
fk(·) is the loss function of the participant k. We provide a
statistical convergence proof of each participant fk(·), thus
obtaining the proof of global F convergence.

Algorithm description. Here, we define the notation
T = {t|t ∈ N+}, t = r × e + r, |T | = |R| × |E| + |R| to
describe the time of parameters change. θtk is the parameter
of participant k in parameters change t, including θr,ek
and θglobal. ωt

k is the weight of the participant k in the
parameters change t, including ωr,e

k and ωk. θ∗k is the optimal
solution. Each participant starts local training with random
initialization parameters and enters the next round with the
independent updated parameters in FedWolf. The process
of parameter updating is described as follows.

θt+1
k =


θtk − ηtkg

t
k, local training with SGD.

|K|∑
k=1

ωt
kθ

t
k, updating with weight ωt

k.
(2)

where ηtk is the learning rate and gtk=∇fk(·) is the gradient
of the participant k in time t.

Assumption. We make the following standard assump-
tion [8], [9] on the loss function fk(·). These assumptions are
set in the optimization problem. They ensure that the loss
decays after SGD and the amount of attenuation decreases.

(1) fk(·) is convex: for all θtk, fk(θtk) ≥ fk(θ
t−1
k ) +

⟨∇fk(θ
t−1
k ), θtk − θt−1

k ⟩.
(2) Variables bounded: ∥θtk − θ∗k∥2 ≤ V,∀θtk, θ∗k.
(3) Gradient bounded: ∥gtk∥2 ≤ G,∀t.

Theorem 1 (Convergence of each participant). For con-
vex loss function fk(·).

R(T ) =

|T |∑
t=1

ωt
kfk(θ

t
k)−min

|T |∑
t=1

fk(θ
t
k)

≤ V 2

2ηtk
+

G2

2

|T |∑
t=1

ηtk (3)

Based on Assumption (2) and (3), V and G decay with T
increases, so

lim
T→∞

R(T )

T
= 0.

And the loss
∑|T |

t=1 ω
t
kfk(θ

t
k) is equal to the minimum loss

min
∑|T |

t=1 fk(θ
t
k), which means the loss function fk(·) con-

verges.
Proof.
Expand function3.

R(T ) =

|T |∑
t=1

ωt
kfk(θ

t
k)−min

|T |∑
t=1

fk(θ
t
k)

=

|T |∑
t=1

[ωt
kfk(θ

t
k)− fk(θ

∗
k)]︸ ︷︷ ︸

A

. (4)

We need to determine the upper bound of the term A
in function 4. According to Assumption (1), we have the
following results.

fk(θ
∗
k)− fk(θ

t
k) ≤ ⟨gtk, θ∗k − θtk⟩. (5)

ωt
k ∈ [0, 1] because the update weight ωr,e

k satisfies
ωr,e
k ∈ (0, 1] and the contribution weight ωk satisfies
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ωk ∈ [0, 1], respectively, as described in Section 3.2 and
Section 3.3.

∴ ωt
kfk(θ

t
k)− fk(θ

∗
k) ≤ ⟨gtk, θtk − θ∗k⟩. (6)

According to function 6, it can be concluded that the
term A in function 4 has an upper bound.

R(T ) =

|T |∑
t=1

[ωt
kfk(θ

t
k)− fk(θ

∗
k)]

≤
|T |∑
t=1

⟨gtk, θtk − θ∗k⟩︸ ︷︷ ︸
B

. (7)

Furthermore, we verify that the term B in function 7 has
an upper bound.

∵ θt+1
k = θtk − ηtkg

t
k

∴ ∥θt+1
k − θ∗k∥22 = ∥θtk − θ∗k − ηtkg

t
k∥22

∴ ∥θt+1
k − θ∗k∥22 = ∥θtk − θ∗k∥22 − 2ηtk⟨gtk, θtk − θ∗k⟩

+(ηtk)∥gtk∥22
∴ ⟨gtk, θtk − θ∗k⟩ =

1

2ηtk
[∥θtk − θ∗k∥22 − ∥θt+1

k − θ∗k∥22]

+
ηtk
2
∥gtk∥22. (8)

Combining function 7 and 8, the upper bound of func-
tion 4 is determined.

R(T ) ≤
|T |∑
t=1

(
1

2ηtk
[∥θtk − θ∗k∥22 − ∥θt+1

k − θ∗k∥22])︸ ︷︷ ︸
C

+

|T |∑
t=1

(
ηtk
2
∥gtk∥22)︸ ︷︷ ︸

D

. (9)

Then, we simplify the terms C and D in function 9.

C =

|T |∑
t=1

(
1

2ηtk
[∥θtk − θ∗k∥22 − ∥θt+1

k − θ∗k∥22])

=
1

2η1k
∥θ1k − θ∗k∥22 +

|T |∑
t=2

(
1

2ηtk
− 1

2ηt−1
k

)∥θtk − θ∗k∥22

− 1

2ηtk
∥θt+1

k − θ∗k∥22. (10)

The last item in function 10 has an upper bound of 0.

− 1

2ηtk
∥θt+1

k − θ∗k∥22 ≤ 0. (11)

The term C is simplified based on Assumption (2) and
function 11.

C =
1

2η1k
∥θ1k − θ∗k∥22 +

|T |∑
t=2

(
1

2ηtk
− 1

2ηt−1
k

)∥θtk − θ∗k∥22

− 1

2ηtk
∥θt+1

k − θ∗k∥22

=
V 2

2ηtk
. (12)

The upper bound of the term D is determined based on
Assumption (3).

D =

|T |∑
t=1

ηtk
2
∥gtk∥22 ≤ G2

2

|T |∑
t=1

ηtk. (13)

By substituting the items C and D into function 9, we
can obtain the following results.

R(T ) ≤ V 2

2ηtk
+

G2

2

|T |∑
t=1

ηtk. (14)

In summary, we complete the proof of Theorem 1. The
loss function of the participant k converges to the bound,
and then F in function 1 is convergent.

5 EXPERIMENTS AND ANALYSIS

5.1 Experimental Setting
To investigate the impact of extreme imbalance and a large
number of labels with the local long-tailed distribution,
we conduct experiments on the CIFAR100 [7] and Ima-
geNet [24] datasets with the extreme imbalance factors (IF).
Let ci be the number of datasets with the i th category,
C = max(c1, c2, · · · , ci) and c = min(c1, c2, · · · , ci) be the
maximum and minimum of datasets {c1, c2, · · · , ci} with all
categories, respectively. IF calculates the ratio of head and
tail category as follows:

IF =
C

c
. (15)

Firstly, we calculate the number of data in each cate-
gory with the local long-tailed distribution and IF=100. The
maximum and minimum number of categories is 500 and 5
on CIFAR100. Secondly, the Dirichlet distribution [25] with
the parameter α = 0.1 is used to extract various categories
images. This is a sampling with replacement, so there are
some repetitions among the data of each participant. Then
we randomly select the peak of head category for each
participant and reassemble the data sequence. Finally, the
local long-tailed data with inconsistent peaks are allocated
to each participant. Besides, we partition ImageNet [24]
into subsets with 300, 500, and 800 categories as the stage
evaluation datasets.

ResNet-18 [26] and ResNet-34 [26] are used as the back-
bone network. The standards of ImageNet [24] classification
competition are followed to set network hyperparameters
[24], [26]. We launch 100 communication rounds and 5
local epochs in each round. There are 10 participants fully
selected in each communication round. The batch size is set
at 256 with a learning rate of 0.01 and SGD as the optimizer
in local training. The learning rate is reset to 0.001 after
half communication rounds. r∗ is set at 100 in computing
contribution weight.

5.2 Comparison and Analysis
We compare FedWolf with several advanced methods, in-
cluding FedAVG [1], FedDC [11], FedDyn [12], FedProx [8],
SCAFFOLD [9], FEDIC [13], CReFF [14], FedAFA [22], Fed-
CLIP [35] and Fed-grab [36]. All the comparative methods
are implemented with the experimental settings described
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TABLE 2
Testing accuracy (%) achieved by comparison methods and FedWolf

with different initialization parameters.

Single Parameter Discrete Parameters

Methods Normal Uniform Normal Uniform Normal
+Uniform

FedAVG 52.13 51.57 66.29 66.02 66.66
FedDC 62.29 55.94 46.41 45.70 45.72
FedDyn 62.69 56.86 48.01 48.34 46.47
FedProx 52.31 51.12 64.12 64.50 64.52
SCAFFOLD 51.57 50.23 64.83 64.71 63.21
FEDIC 61.78 61.60 61.90 61.95 62.15
CReFF 63.94 64.02 64.12 63.97 64.25
FedAFA 60.23 60.33 60.56 61.50 60.49
FedCLIP 65.24 65.28 66.21 65.31 65.12
Fed-grab 66.12 65.48 67.33 66.34 65.98
FedWolf 68.14 68.63 70.10 69.76 69.85

in Section 5.1. FedAVG is a classic benchmark proposed
by Google. FedDC, FedDyn, FedProx and SCAFFOLD are
excellent representations of Non-IID data, which focus on
minimizing bias in model parameters. FEDIC and CReFF
are the promising developments in the global long-tailed
distribution data. FedAFA is an outstanding personalized
federated learning algorithm in dealing with the long-tailed
data. FedCLIP and Fed-grab improve the performance of
federated learning by text encoder and self-adjusting gradi-
ent balancer, respectively.

5.2.1 Comparison on Different Initialization Parameters
We advocate starting federated learning with a set of ran-
dom initialization parameters to keep away from the local
optimization. We implement the following experiments to
discuss the practicality of the above idea. ResNet18 [26] is
used as a backbone network.

All the methods are launched from a single parameter
or some discrete random parameters with normal [28] or
uniform [27] distribution respectively, to compare the dif-
ferences in performance caused by different initialization
parameters. To evaluate the impact of mixed parameters,
we randomly selected 5 participants with normal param-
eters and 5 participants with uniform parameters to form
the group with mixed parameters. The testing accuracy
achieved by the compared methods and FedWolf is recorded
in Table 2. Some important observations are presented from
the experimental results.

(1) FedWolf achieves better performance than the com-
parison methods with different initialization param-
eters.

(2) The performance achieved by most methods [1], [8],
[9], [13], [14], [22] with discrete parameters (columns
4, 5 in Table 2) is superior to the case with a single
shared parameter (columns 2, 3 in Table 2). The
performance of FedDC [11] and FedDyn [12] with
discrete initialization parameters decreases, because
they are designed to improve the setting of a sin-
gle initialization parameter and minimize the bias
between updated parameters and initial parameters,
which is disrupted by discrete initial parameters.

(3) The testing accuracy achieved by FedWolf with
normal discrete initialization parameters is 70.10%

which is 1.96% higher than the case with normal
single initialization parameters.

(4) The mixed parameters lead to a decrease in the
performance of some methods [9], [22], and the per-
formance of FedWolf is reduced by 0.25% compared
to the case with normal initialization parameters.

In federated learning, an important prerequisite for
achieving the best performance of the global model is
that all participants are rational and harmless. The ratio-
nal participants tend to configure reasonable initialization
parameters to help federated learning achieve excellent
global performance, for example, normal distribution [28]
and pre-trained parameters. Reasonable discrete parameters
are beneficial for improving the performance of federated
learning. But unrestricted initialization parameters increase
the risk of outliers and malicious users. Some inappropri-
ate initialization parameters reduce learning potential and
even damage the performance of federated learning. We
report these negative performances caused by inappropriate
initialization parameters and demonstrate the robustness
of FedWolf in defensing outliers and malicious users in
sections 5.4 and 5.5.

5.2.2 Comparison on Local Long-tailed Data
Table 3 reports the global model performance of the com-
parative methods and FedWolf on the local long-tailed data.
FedWolf achieves better performance on the multi-stage
datasets and different backbone networks than the com-
parative methods. Specifically, FedWolf achieves 17.97%
performance improvement than FedAVG [1] and 6.16%
performance improvement than CReFF [14] on CIFAR100
and ResNet18. Compared to the promising methods, such
as FedDC [11], CReFF [14] and FedAFA [22], FedWolf
improves the accuracy by 3.85%, 5.69% and 4.07% on
ImageNet1000 and ResNet34, respectively. Compared to the
state-of-the-art methods, such as FedCLIP [35] and Fed-grab
[36], FedWolf improve the accuracy by 4.86% 3.98% on
CIFAR100 and ResNet18. The above experimental results
are favorable evidence that FedWolf is effective in solving
the performance cracks caused by the local long-tailed data.
In addition, we provide some important experimental ob-
servations as follows:

(1) ImageNet provides larger size of images than CI-
FAR100, which helps to improve performance. Fed-
Wolf achieves 70.10% and 75.45% testing accuracy
on CIFAR100 and ImageNet300.

(2) ImageNet is also more suitable for training with the
deeper network (ResNet34) compared to CIFAR100,
because the larger image provides more feature infor-
mation. FedWolf achieves 70.10% and 60.44% testing
accuracy by ResNet18 and ResNet34 on CIFAR100,
respectively.

(3) As the number of categories and images increases
(from ImageNet300 to ImageNet1000), the perfor-
mance of all the methods drops to a valley, which is
an important observation of the performance cracks
caused by the local long-tailed distribution data.

(4) The deeper network (ResNet34) provides more
robust performance on imbalanced data than
ResNet18. The rate of performance degradation
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TABLE 3
Testing accuracy (%) achieved by comparative methods and FedWolf on different datasets with the local long-tailed distribution.

Network Methods CIFAR100 ImageNet300 ImageNet500 ImageNet800 ImageNet1000

ResNet18

FedAVG 52.13 53.01 50.91 46.01 38.33
FedDC 62.29 70.30 68.28 56.97 49.64
FedDyn 62.69 70.45 67.76 54.39 48.23
FedProx 52.31 57.81 55.10 51.09 45.21
SCAFFOLD 51.57 56.92 54.39 50.12 44.39
FEDIC 61.78 64.33 59.98 53.01 48.83
CReFF 63.94 70.88 66.15 53.98 49.90
FedAFA 60.23 64.39 65.10 52.19 47.98
FedCLIP 65.24 68.21 67.98 61.28 54.36
Fed-grab 66.12 68.73 68.21 60.81 55.41
FedWolf 70.10 75.45 73.88 68.80 56.20

ResNet34

FedAVG 53.21 56.98 54.31 52.12 50.90
FedDC 52.14 73.02 69.12 68.83 68.13
FedDyn 50.72 72.86 70.09 68.34 67.99
FedProx 50.98 60.81 60.13 57.89 55.29
SCAFFOLD 54.89 59.93 56.98 54.14 52.98
FEDIC 51.29 66.38 63.94 59.87 58.84
CReFF 52.33 71.29 69.21 67.93 66.29
FedAFA 51.29 70.98 69.33 69.12 67.91
FedCLIP 53.21 74.33 72.89 71.14 69.88
Fed-grab 53.78 75.80 73.19 71.23 68.51
FedWolf 60.44 77.01 74.12 72.11 71.98

TABLE 4
The Gini index and IF of classification results of comparative methods
and FedWolf on different datasets with the local long-tailed distribution.

Gini IF

Methods CIFAR
100

ImageNet
1000

CIFAR
100

ImageNet
1000

FedAVG 0.20 0.32 12.28 23.10
FedDC 0.12 0.21 2.81 12.97
FedDyn 0.14 0.22 4.83 15.03
FedProx 0.19 0.32 10.75 24.89
SCAFFOLD 0.20 0.33 17.80 27.50
FEDIC 0.20 0.31 17.30 27.33
CReFF 0.12 0.28 15.03 24.00
FedAFA 0.13 0.28 8.18 20.01
FedCLIP 0.12 0.21 14.31 20.88
Fed-grab 0.13 0.20 8.72 11.03
FedWolf 0.10 0.18 2.31 10.10

on ResNet34 is slower than ResNet18 (from Ima-
geNet300 to ImageNet1000).

The above experimental results and observations prove
that FedWolf can solve the performance cracks caused by
the local long-tailed data. Another aspect of the local op-
timization caused by the local long-tailed distribution data
is the imbalanced classification results. IF is not competent
in evaluating the balance of classification results, because
it calculates the ratio of head and tail category to evaluate
the imbalance of distribution, without considering the fluc-
tuations in the middle category (as shown in Equation 15).
There are obvious peaks at the head and tail but tend to
flatten in the middle in the distribution of classification
results, which causes unfair evaluation results. So, we in-

troduce the Gini index [29] which is a classical theory in
economics to objectively evaluate the bias of classification
results. The Gini index is used as the basis for selecting and
splitting features in decision trees [34]. Let ri be the correct
quantity of the i th category in classification results, the
Gini index calculates the cumulative shift of all categories
{r1, r2, · · · , ri} to evaluate the bias of classification results
as follows:

Gini =
1

2n2

∑n
i=1

∑n
j=1 |ri − rj |

1
n

∑n
i=1 ri

, (16)

where
∑n

i=1

∑n
j=1 |ri − rj | calculates the sum of offsets for

all category pairs ri and rj in classification results. From
function 15 and 16, it can be seen that the smaller the values
of IF and Gini, the more balanced the results are. The Gini
index is a more effective and fairer evaluation than IF to
avoid erroneous results because it considers the balance of
middle categories. We count the classification results of all
the compared methods and use an approximate solution
method [30] to calculate their Gini index. The Gini index
and IF of classification results of compared methods and
FedWolf are shown in Table 4 to discuss the effectiveness
and fairness of the Gini index.

The imbalance of classification results is amplified with
IF, such as the difference of 7.05 in IF between FedProx [8]
and SCAFFOLD [9]. However, an important experimental
observation is that the mid-range category distribution in
classification results of FedProx [8] and SCAFFOLD [9]
is flat, and IF cannot fairly evaluate this distribution of
results. The difference in Gini index between FedProx [8]
and SCAFFOLD [9] is only 0.01, which is consistent with our
experimental observations and shows the Gini index is fairer
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than IF. As the number of categories and images increases,
the imbalance of classification results of all the methods
increases, which also proves the damage caused by local
long-tailed data to federated learning. FedWolf achieves
0.10 and 0.18 at the Gini index, respectively, which is a
more balanced performance compared to the comparative
methods on CIFAR100 and ImageNet1000.

5.2.3 Comparison on Uniform Data
We also evaluate the performance of comparative methods
and FedWolf on the dataset with uniform distribution to ex-
plore the potential of FedWolf as a benchmark for updating
and aggregating parameters in federated learning. All the
participants use ResNet18 [26] as the backbone network to
train local models on an independent subset of datasets. The
comparison results are shown in Table 5.

The rise of performance achieved by all comparative
methods on uniform data is firm evidence that proves
the impact of local long-tailed data on federated learning.
FedWolf achieves 75.33% testing accuracy on CIFAR100 [7]
with uniform distribution, which is 4.46% higher than the
advanced methods such as FedDC [11]. FedWolf achieves
superior performance on all datasets, which shows the
potential of FedWolf as a benchmark for updating and
aggregating parameters in federated learning.

TABLE 5
Testing accuracy (%) achieved by compared methods and FedWolf on

different datasets with the uniform distribution.

Methods CIFAR
100

ImageNet
300

ImageNet
500

ImageNet
800

ImageNet
1000

FedAVG 56.98 58.21 55.94 53.43 50.79
FedDC 70.87 72.49 70.22 67.91 64.30
FedDyn 67.99 71.83 70.01 68.89 66.12
FedProx 60.21 63.01 61.09 59.82 55.98
SCAFFOLD 60.34 62.48 57.98 56.63 55.03
FEDIC 64.30 66.08 63.07 60.66 58.97
CReFF 65.68 71.98 68.90 66.31 64.09
FedAFA 65.79 68.92 67.59 65.87 62.93
FedCLIP 68.23 72.30 68.82 66.49 65.09
Fed-grab 69.97 72.81 68.77 67.18 66.38
FedWolf 75.33 76.89 75.51 74.12 72.10

5.2.4 Comparison on Communication Cost and Privacy
Communication cost and privacy protection play important
roles in federated learning. We compare the communication
rounds and additional cost required to achieve 50% testing
accuracy between FedWolf and the existing methods on
CIFAR100 and ResNet18 to demonstrate the positive effects
of FedWolf in communication cost and privacy protection.
The results are shown in Table 6.

As shown in the second column of Table 6, FedWolf only
needs 10 communication rounds to achieve 50% testing ac-
curacy, which is 9 and 50 communication rounds faster than
the advanced methods (FedDC, FedDyn) and the slowest
method (SCAFFOLD), respectively.

Then we measure the additional communication cost
without model parameters. The FedAVG-related methods
upload the number of datasets (a positive integer) to the
server as a contribution. FedWolf does not need to upload
the additional data to the server, so the total additional cost
is 0. FEDIC uploads the number of datasets and auxiliary

TABLE 6
Comparison results of additional communication cost and privacy

protection required to reach 50% testing accuracy between related
work and FedWolf.

Methods Rounds Total Additional
Cost (KB)

Addtional
Transmission Data

FedAVG 50 0.027 Number of datasets
FedDC 19 0.027 Number of datasets
FedDyn 19 0.027 Number of datasets
FedProx 50 0.027 Number of datasets
SCAFFOLD 60 0.027 Number of datasets

FEDIC 42 0.027 Number of datasets,
Auxiliary data

CReFF 51 2,352.760 Gradient
FedAFA 35 0.027 Number of datasets

FedCLIP 30 1,492.281 Number of datasets,
Text feature

Fed-grab 40 0.027 Number of datasets
FedWolf 10 0 None

data to the server. Table 6 only reports the cost of upload-
ing the number of datasets in FEDIC because the cost of
uploading auxiliary data depends on the total amount of
auxiliary data. CReFF and FedCLIP upload the gradient
and text feature to the server, so the total cost (2,352.76 KB
and 1,492.281 KB) is higher than the other methods. The
above experimental results verify that FedWolf reduces the
communication cost.

The privacy protection of the comparative methods and
FedWolf is investigated. FedCLIP, CReFF and FEDIC ad-
ditionally upload the text feature, gradient and auxiliary
data to the server, respectively, which increases the risks
of privacy exposure. The additional transmission data of
FedWolf is none, so FedWolf is reliable in privacy protection.

5.3 Method Validation

5.3.1 Influence of Each Module
We conduct an ablation study to evaluate the necessity of
the parameter update based on the Grey Wolf Optimizer
and the model aggregation based on the Markov Chain in
FedWolf. The results are shown in Table 7.

Because each participant holds the independent param-
eters during the parameter updating phase, we report the
testing accuracy achieved by the leader participant in Ta-
ble 7, Line 2, to state the effectiveness of the parameter
update algorithm in FedWolf. Compared to FedAVG [1]
(52.13% and 38.33% as shown in Table 3), the performance
of the leader participant is improved by 16.83% and 16.82%
on CIFAR100 and ImageNet1000, respectively.

Then, we report the testing accuracy after model aggre-
gation in Table 7, Line 3 to evaluate the necessity of the
model aggregation algorithm in FedWolf. Compared to the
performance of the leader participant, the performance of
the global model is improved by 1.14% and 1.05% after
the model aggregation on CIFAR100 and ImageNet1000,
respectively. The global model contains the representations
of all participants’ data. Instead, the representations of
leader participant’s datasets are long-tailed and inadequate.
Therefore, the global model achieves better performance
than the leader participant. Federated learning improves the
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performance of global model by adjusting the weights of lo-
cal models in model aggregation. Some potential factors in-
clude the quality, quantity, and distribution of participants’
data. FedWolf achieved competitive global performance by
predicting participants’ future performance as weights. The
above results are empirical evidence that demonstrates the
effectiveness and necessity of the two modules adopted in
FedWolf.

TABLE 7
Testing accuracy (%) achieved by each module of FedWolf on

CIFAR100 and ImageNet1000.

Module CIFAR100 ImageNet1000
Wolf 68.96 55.15
Wolf + Markov 70.10 56.20

5.3.2 Influence of Participant Pruning Strategy
We empirically assess the impact of pruning different num-
bers of participants in each participant level L = {1 , 2, 3}.
Four strategies are provided in FedWolf, including [1, 1, 8],
[1, 2, 7], [1, 3, 6], [1, 4, 5]. For example, [1, 1, 8] means the
number of participants is 1, 1, 8 in level 1, 2, 3, respectively.
Table 8 reports the results for these participant pruning
strategies. Then, the process of participant level change
with different strategies is recorded in Fig. 3 to discuss the
rationality of the participant pruning strategy.

The experimental results show that FedWolf achieves the
optimal performance (70.10% and 56.20%) with strategy
[1, 2, 7] on CIFAR100 and ImageNet1000, respectively. The
analysis on the experimental results of the four strategies is
as follows:

(1) As shown in Fig. 3 (a), Participant 1 is in the domi-
nant position, and Participants 7 and 8 are disadvan-
taged when the strategy is [1, 1, 8]. The contribution
weights ωki

of Participants 1, 7 and 8 are 87.31%, 0%
and 0% respectively in model aggregation, because
Participants 7 and 8 never achieved leadership posi-
tions. The performance of the global model is similar
to the performance of Participant 1.

(2) When the strategy is [1, 2, 7], the outstanding leaders
(Participant 5) are elected, and the other participants
also have the potential to become leaders, as shown
in Fig. 3 (b), which can fairly aggregate the contribu-
tions of all participants.

(3) Increasing the number of participants at level 2 re-
sults in the superior (level 1, 2 participants) occu-
pying a favourable position in the election for a
long time but there is no outstanding leader. So,
the contribution weight is divided equally when the
number of participants in each level is set to [1, 3, 6]
or [1, 4, 5], as shown in Fig. 3 (c) and (d).

5.4 Robustness in Resisting Outliers

Outliers are honest participants who achieve the lowest
testing accuracy and damage the performance of the global
model, because of the unreasonable initial parameters. Fed-
Wolf is launched with a set of inconsistent parameters,

TABLE 8
Testing accuracy (%) achieved by FedWolf with different participant

pruning strategies.

Strategy CIFAR100 ImageNet1000
1, 1, 8 65.71 54.69
1, 2, 7 70.10 56.20
1, 3, 6 69.59 55.02
1, 4, 5 69.64 55.87

Fig. 3. The process of participant level change with four different par-
ticipant pruning strategies. Different colours are used to represent the
participant level L = {1 , 2, 3}, as shown in the caption. The colour
change in each row represents the change in participant level.

which is not recommended in FedAVG [1] due to interfer-
ence from outliers. We conduct an experiment to evaluate
the robustness of FedWolf in resisting outliers. We randomly
select 1 and 5 participants, and fulfil the initialization pa-
rameters of them with 1 to simulate outliers, which disturbs
back-propagation because of the symmetry breaking [28].
FedWolf and all the comparison methods are launched
with a set of initialization parameters containing outliers on
CIFAR100, and the ResNet18 is used as a backbone network.

The experimental results in Table 9 indicate that the
robustness of FedWolf in resisting outliers is superior to
the comparative methods. The testing accuracy achieved
by all the comparative methods with outliers is less than
10.00%, which indicates they are affected by outliers. The
testing accuracy achieved by FedWolf with 1 and 5 outliers
is 69.90% and 69.02%, decreased by 0.2% and 1.08% than
the normal performance without outliers, respectively. The
performance degradation of FedWolf is lower than all the
comparison methods, which proves the robustness of Fed-
Wolf in resisting outliers.

The process of participant level change and testing ac-
curacy change in parameter updating are tracked to analyse
the robustness of FedWolf in resisting outliers. The results
are shown in Fig. 4. At the early stages of FedWolf (1-
10 communication rounds), the outlier achieves the worst
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TABLE 9
Testing accuracy (%) achieved by comparative methods and FedWolf

with different numbers of outliers.

Methods Without Outlier 1 Outlier 5 Outliers
FedAVG 52.13 1.81 1.50
FedDC 62.29 5.77 2.11
FedDyn 62.69 6.47 2.09
FedProx 52.31 1.50 1.12
SCAFFOLD 51.57 1.60 1.21
FEDIC 61.78 1.21 1.02
CReFF 63.94 1.10 0.83
FedAFA 60.23 0.89 0.51
FedCLIP 65.24 3.24 1.41
Fed-grab 66.12 2.87 1.17
FedWolf 70.10 69.90 69.02

Fig. 4. (a): The process of participant level change of all participants
with 1 outlier. (b): The testing accuracy achieved by all participants
with 1 outlier. The partial enlargement shows that the performance of
participants at level 3 decreases in communication round 2, because of
outlier and increases after communication round 10. The performance
leaps after 50 communication rounds due to the smaller learning rate.

performance because of the unreasonable initial parameters
(as shown in Fig. 4 (b)). FedWolf effectively isolates out-
liers to level 3 and allows errors to propagate only among
participants at level 3, which results in the performance of
participants at level 3 remaining low and the performance
of participants at levels 1, and 2 being unharmed (as the
partial enlargement shown in Fig. 4 (b)). On the other hand,
FedWolf allows the high-performance participants (levels 1,
and 2) to share parameters with the weak participants (level
3), which helps the outlier to escape the trap of incorrect
initialization parameters. The performance of the outlier
returns to normal, after 10 communication rounds (as the
partial enlargement shown in Fig. 4 (b)). The parameter
update algorithm adopted by FedWolf effectively weakens
the impact of outliers.

The early disadvantage makes it difficult for participants
at level 3 to gain a favourable position in the election
despite achieving normal accuracy performance, so they
hold lower occurrences for becoming level 1 (as shown in
Fig. 4 (a)) and their contribution weights ωki

are small in
model aggregation. The model aggregating in FedWolf also
weakens the influence of outliers.

The parameter update algorithms of the existing meth-
ods mix the parameters of all participants, which makes
it easy for errors to spread to all participants and pollute
the global model performance. FedWolf effectively isolates
outliers to level 3 by the election mechanism, to avoid pol-
lution spreading upwards. The proposed parameter update
algorithm allows high-quality participants to propagate

Fig. 5. (a): The process of participant level change of all participants
with 1 malicious user. (b): The testing accuracy achieved by all par-
ticipants with 1 malicious user. The partial enlargement shows that
the performance of participants at level 3 decreases in communication
round 2, because of malicious users. The performance leaps after 50
communication rounds due to the smaller learning rate.

their parameters downwards, to weaken the performance
bias caused by outliers. The contribution weight ωki

of the
outlier is small in model aggregation because of the early
disadvantage, which also weakens the impact of outliers.

5.5 Robustness in Resisting Malicious Users

Malicious users aim to disrupt the performance by continu-
ously poisoning during local training. We provide respective
examples for data poisoning [32] and model poisoning [33]
to verify the robustness of FedWolf in resisting malicious
users. We randomly select 1 and 5 participants as malicious
users, respectively. The datasets of the malicious users are
mixed with Gaussian noise in data poisoning and the up-
dated parameters of the malicious users are biased in model
poisoning. All the comparison methods are launched with
a set of initial parameters containing malicious users on
CIFAR100, and the ResNet18 is used as a backbone network.

Table 10 reports the testing accuracy achieved by the
comparative methods and FedWolf. The performance of all
the methods is decreased in data poisoning. The testing
accuracy achieved by FedWolf is 66.33% and 66.29% with 1
and 5 malicious users in data poisoning, which is decreased
by 3.77% and 3.81% compared to its performance without
malicious users (70.10%). All the comparison methods fail
with the model poisoning and their performance is less than
1.00%. The testing accuracy achieved by FedWolf is 66.28%
and 65.21% with 1 and 5 malicious users in model poison-
ing, which is decreased by 3.82% and 4.89% compared to its
performance without malicious users (70.10%). The above
experiential results show that FedWolf is more robust than
existing methods in resisting malicious users.

Fig. 5 shows the participant level change and the testing
accuracy change of all the participants with 1 malicious user
(model poisoning) to explain the robustness of FedWolf in
resisting malicious users. The malicious user continuously
uploads contaminated model parameters, resulting in the
lowest performance (as shown in Fig. 5 (b)). FedWolf isolates
the malicious users to level 3, which causes the performance
of all the participants at level 3 to be decreased (as the
partial enlargement shown in Fig. 5 (b)) and prevents con-
tamination from spreading to better-performing participants
(at levels 1 and 2). In model aggregation, the contribu-
tion weight ωki

of the malicious user and the infected
participants (malicious user and Participants 3,4,5,6,8,9 in
Fig. 5 (a)) is 0, because they never become level 1. The aggre-



IEEE TRANSACTIONS ON SERVICES COMPUTING 13

TABLE 10
Testing accuracy (%) achieved by comparing existing methods and FedWolf with different numbers of malicious users.

Data Poisoning Model Poisoning

Methods Without
Malicious User

1
Malicious User

5
Malicious Users

1
Malicious User

5
Malicious Users

FedAVG 52.13 43.19 38.19 0.55 0.31
FedDC 62.29 47.68 40.01 0.48 0.44
FedDyn 62.69 47.43 41.03 0.19 0.25
FedProx 52.31 45.90 39.23 0.32 0.31
SCAFFOLD 51.57 41.28 38.19 0.18 0.10
FEDIC 61.78 43.09 37.98 0.19 0.11
CReFF 63.94 48.25 37.66 0.10 0.08
FedAFA 60.23 46.12 36.29 0.29 0.21
FedCLIP 65.24 44.36 35.19 0.41 0.14
Fed-grab 66.12 47.18 38.22 0.27 0.12
FedWolf 70.10 66.33 66.29 66.28 65.21

gation with dynamic adaptive contribution weights achieve
exclusion, which means the malicious users completed all
training, but their parameters are not aggregated into the
global model.

The difference in mechanism for resisting outliers and
malicious users is the weight of aggregation. Outliers hold
small weight than other participants and the weight of ma-
licious users is 0. FedWolf does not perform any additional
detection to outliers and malicious users during the training
process. This method relies solely on the dynamic adaptive
weights to eliminate the adverse effects caused by outliers
and malicious users on the performance of federated learn-
ing.

6 CONCLUSION
FedWolf is proposed to solve the performance cracks and
the bias of categorization results caused by the local long-
tailed data, which is a dynamic adaptive federated learning
algorithm with the Grey Wolf Optimizer and Markov Chain.
FedWolf is launched with a set of initialization parameters
and the parameters are updated based on the Grey Wolf
Optimizer. After all communication rounds are completed,
the parameter update is modelled as a Markov Process
and the future performance of each participant is inferred
from the Markov state as a contribution weight to aggregate
the global model. We provide the convergence analysis
and validity analysis of FedWolf. Besides, the Gini index
is introduced to evaluate the bias of classification results
in this work. Extensive experimental evaluation validates
the effectiveness of FedWolf in solving the performance
cracks and the bias of categorization results caused by the
local long-tailed data. We also conduct empirical research to
demonstrate the robustness of FedWolf in resisting outliers
and malicious users.

FedWolf effectively improves the global performance
and alleviates the bias of categorization results on the local
long-tailed data. There are some limitations and challenges
during the experiment. For example, the impact of data
repetition and missing on the performance of federated
learning is significant. However, due to the limitation of
dataset’ size, these challenges have not been explored on
the long-tailed distribution data.
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