
Federated Learning-driven Trust Prediction for
Mobile Edge Computing-based IoT Systems

Jiahui Bai, Hai Dong§
School of Computing Technologies, RMIT University, Melbourne, Australia

Email: s3735049@student.rmit.edu.au, hai.dong@rmit.edu.au

Abstract—We propose a federated learning-based data-driven
trust prediction method to meet the demand of high-accuracy IoT
service trustworthiness prediction in Mobile Edge Computing
(MEC) with low convergence time. Our research focuses on
the mixture distribution and heterogeneity features of IoT trust
information in distributed MEC environments and formulates the
task of distributed IoT trust prediction on top of MEC network
topologies as a federated optimization problem. We then employ
Federated Expectation-Maximization to mitigate the federated
optimization problem by taking into account the data mixture
distribution and heterogeneity. We conduct a series of experi-
ments upon simulated MEC-based IoT environments crafted on
top of a real-world IoT dataset. The experimental results show
that our proposed methods can achieve better balance between
prediction accuracy and model training efficiency than a state-
of-the-art data-driven MEC-based IoT service trust prediction
method and a Federated Averaging-based method.

Index Terms—IoT Service Trust, Data-driven Trust Predic-
tion, Mobile Edge Computing-based IoT Systems, Federated
Expectation-Maximization

I. INTRODUCTION

IoT services base on cloud computing and IoT technology
provides data collection, storage, analysis and application ser-
vices through connecting various devices, sensors and systems.
Trust of an Internet of Things (IoT) service is used to measure
the belief how much a service consumer believes a service
provider can deliver the requested IoT service [1]. Trust is
a critical prerequisite for IoT to provide safe and reliable
services [2]. Untrustworthy IoT devices may provide low-
quality even malicious services, which can generate high risks
for service consumers.

There are various ways to measure service trust in IoT
systems. For example, trust values can be generated upon
service consumers’ subjective evaluation and quality of ser-
vice (QoS) measured by third parties [3]. These types of
information can be used to measure service trust in terms
of certain trust attributes, such as availability, reliability, risk,
etc. These trust attributes can be aggregated to model the
trustworthiness of IoT services in a specific application con-
text. However, the domain-specific modelling of IoT service
trust requires extensive domain knowledge, which is expensive
in term of labour cost [2] [4]. Data-driven approaches use
machine learning or statistical analysis to learn the relationship
among trust information. In comparison to the model-driven

§Corresponding Author

approaches, the data-driven approaches do not require expert
advice and domain-specific expertise. In addition, the data-
driven approaches can be applied to model multiple contexts,
which are suitable for addressing diverse needs of various IoT
service domains [5].

Trust measurement and prediction also poses challenges to
network infrastructure. Traditionally trust information is stored
in centralized clouds for service providers and consumers to
share. With the broad application of IoT technologies, the
numbers of IoT devices, services, providers and customers
keep sharply increasing, leading to rapid generation of trust-
related information [6] [7]. In this regard, the network capacity
(e.g. network bandwidth) of centralized clouds cannot meet
the requirement of transmitting high-volume and ever-growing
trust information from IoT devices to cloud data centers.
Since IoT business is sensitive to network delay, it usually
needs to provide services within tens of milliseconds [7]. For
example, intelligent transportation systems need to receive
and analyze local messages from in-vehicle applications and
roadside sensors, to issue hazard warnings in a short time.
This allows adjacent vehicles to receive data in a very short
time, enabling drivers to react in a timely manner [7]. There-
fore, a centralized cloud-based infrastructure is no longer a
viable solution, considering that it cannot provide high-speed
information transmission and low-latency service delivery.

Mobile Edge Computing (MEC) is a distributed computing
paradigm that moves computing, storage and network re-
sources close to data sources and end users. It enables efficient
transmission and processing of rapidly generated high-volume
IoT service trust information by allowing cellular base stations
to provide computing and storage resources to IoT devices
nearby [6] [7]. In this way, MEC can mitigate the bottleneck
of transmitting IoT service trust information to centralized
clouds and deliver low-latency service. This is significant for
improving the efficiency and quality of IoT services.

However, simply turning to MEC infrastructure is inade-
quate to fully solve the problem of trust prediction in IoT.
In fact, the introduction of novel trust information processing
techniques is also crucial to overcome the typical challenges
posed by MEC-based IoT systems. In such systems, trust
information is typically accumulated in a massively distributed
manner within each MEC environment, creating distributed
data silos. Since the trust information generated by each
MEC environment is different, it will lead to non-identical

© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
J. Bai and H. Dong, "Federated Learning-driven Trust Prediction for Mobile Edge Computing-based IoT Systems," 2023 IEEE International Conference on Web Services (ICWS), Chicago, IL, USA, 2023, pp. 131-137, doi: 10.1109/
ICWS60048.2023.00031.

and independent data distribution (non-IID), which severely
impacts the performance of trust measurement [8]. Therefore,
for the same services provided in different MEC environments,
different trust characteristics need to be considered for the
performance of the trust prediction model.

There are existing works, such as [5] [9] [10], that mainly
focuses on predicting the trustworthiness of MEC-base IoT
services. These works adopt machine learning to complete
trust prediction models. However, the existing work in this
field suffers from the following key challenges, which orig-
inate from the intrinsic characteristics of IoT service trust
information in distributed MEC environments and the low-
latency requirement of IoT service trust prediction.

1) The IoT service trust information heterogeneity problem
resulted from a mixture of various data distributions
in different MEC environments has not been properly
addressed by existing data-driven trust prediction ap-
proaches. IoT service trust information based on MEC is
context-dependent. Different MEC environments would
generate IoT service trust information with diverse data
distributions and sample sizes, leading to a data hetero-
geneity problem. However, most of the existing works
are not specifically designed to address such data hetero-
geneity problem.

2) None of the existing data-driven approaches can achieve
enough training efficiency while meeting the requirement
of high accuracy. IoT service trust prediction requires
efficiently training a trust model with high performance in
an MEC environment to meet the requirement of quick
service selection decision-making and service delivery.
However, the existing data-driven IoT service trust pre-
diction models cannot meet the requirements of high
accuracy and low training overhead at the same time,
evident in our experiment.

This paper aims to deliver a federated learning-based ap-
proach to more effectively predict the trustworthiness of IoT
services in distributed MEC environments. The core idea of
federated learning is to allow the learning model on each
device to be trained locally based on the local data stored in the
devices, and to transmit the local model weights to a server to
train a global model [11]. Our specific contributions addressing
the challenges outlined above are summarized below.

1) To address the data heterogeneity problem, we model the
IoT service trust prediction problem in MEC environ-
ments as a federated optimization problem with a mixture
of different data distributions (i.e., mixture distribution of
IoT trust information). Our objective is to optimize the
global prediction model with diverse data distributions in
different MEC environments. Driven by this objective, we
employ a Federated Expectation-Maximization (FedEM)
framework to train a family of distributed IoT service
trust prediction models. The FedEM framework can
adaptively balance the data imbalance problem among
various MEC environments, thereby solving the data
heterogeneity problem.

2) Our FedEM-based framework can achieve high-accuracy
service trust prediction in MEC-based IoT systems with
relatively short training time. The FedEM framework is
able to find the relationship of shared implicit features
between the underlying data features in different MEC
environments. These learned relationships enable effec-
tive knowledge sharing among the distributed IoT service
trust prediction models, thereby improving the model
accuracy and convergence speed.

3) We compare the performance of the proposed methods
with the state of the art distributed data-driven IoT
trust prediction methods upon a real-world dataset. Our
methods show better balance between accuracy and con-
vergence speed than the existing methods.

This paper is organized as follows: In Section 2, we for-
mally define the problem setting and present a mathematical
framework enabling data-driven IoT service trust prediction
in distributed MEC environments. Section 3 introduces the
preliminary. The detail of the proposed solution is presented
in Section 4, where we describe the implementation of the
mathematical framework introduced in Section 3. Section 5
provides a comprehensive evaluation of our proposed solution
through a series of experiments. Finally, Section 6 concludes
our work and provide potential directions for future research.

II. PROBLEM FORMULATION

This section defines the problem of IoT service trust predic-
tion in distributed MEC environments through mathematical
formulas.

Assuming a set of arbitrary trust features, they can be
organized into vectorized form xi in Rd, where d represents
the dimension of xi. The impact of each trust feature on the
overall trust value is represented by the coefficient vector w in
Rd, and the mapping function tr defines how to combine each
trust feature with its respective weight coefficients to obtain
the overall trust value y. Any arbitrary trust model can be
represented as follows:

ŷi = tr (xi;w) where tr : Rd × R⇒ R (1)

where ŷi represents the predicted value for the i-th instance,
and tr represents that it takes a vector in Rd and a scalar in
R and produces a scalar in R as output.

Specifically, the trust prediction model is designed for an
MEC topology comprising multiple MEC environments. Let
T = {t1, t2, . . . , tm} be a set of MEC topology with m
MEC environments. Each MEC environment has its own local
dataset. Let D = {d1, d2, . . . , dm} be a set of local datasets
of m MEC environments. The local data distribution {Dt}t∈T
is usually not uniform, so each data distributions Dt train
separate model weights wDt ∈ W . Finding the best set of w
values can be generally defined as a loss minimization problem
in the following form:

min
w∈W

LDt
(w) =

1

T

T∑
t=1

nt

n
EDtLtDt

(w) (2)

where nt denotes the sampling of the local dataset of the t-
th MEC environment, EDt represents the expected value after
taking a sample for the data set Dt distributed on the MEC
environment t, n is a round of sampling of the total data set,
and wt

r+1 represents a new round of the t-th local model
weights. In addition, we need to find the potential weight
relationship between MEC environment through the local data
distribution differences. The data in t ∈ T generates a local
distribution Dt from the local dataset. LtDt

represents the local
loss function of the t-th MEC environment under its specific
data distribution. For each independent MEC environment, Lt

can be further expressed in the following form:

Lt(w) =
1

nt

nt∑
i=1

ℓi(w) (3)

where ℓi is denoted as the loss function for individual data
sampling in the local MEC environment. Each MEC environ-
ment updates the local model as follows:

wt
r+1 = wt

r − η∇Lt(w) (4)

where η is the learning rate, and ∇ denotes the gradient oper-
ation. Then the MEC environments upload their trained model
weights to the central cloud. The central cloud aggregates the
model parameters of different MEC environments, expressed
as follows:

wr+1 =

T∑
t=1

nt

n
wt

r+1 (5)

III. PRELIMINARY

A. Federated Expectation-Maximization

FedEM is a type of federated multi-task learning (MTL)
algorithm, which is designed to replace the personalized learn-
ing model. It adopts MTL to model the relationship between
different clients, thereby increasing the sample size of nodes
and improving performance. In FedEM, there are two broad
assumptions about local data. FedEM considers each local data
distribution Dt to be a mixture of M underlying distributions
D̃m, 1 ≤ m ≤ M . FedEM makes two broad assumptions
about their local data [12]:

Assumption 1: There are M underlying (independent)
distributions D̃m, 1 ≤ m ≤ M , such that for t ∈ T , Dt is

mixture of the distributions
{
D̃m

}M

m=1
with weights π∗

t =

[π∗
t1, . . . , π

∗
tM] ∈ ∆M , which denotes the M-dimensional

simplex.

zt ∼M (π∗
t) , ((xt, yt) | zt = m) ∼ D̃m, ∀t ∈ T (6)

where M (π) represents a categorical distribution parameter-
ized by π.

Here we use pm (x, y), pm (x) and pm (y) to represent the
probability density functions corresponding to D̃m. Addition-
ally, we assume that the marginals over X are equivalent.

Assumption 2: For all m ∈ [M], we have pm (x, y) =
pm (x).

FedEM can hold without strictly requiring Assumption 2,
but in most cases, it can be expressed as the following
problem:

∀t ∈ T , minimize
ht∈H

LDt
(ht) (7)

However, under Assumption 2, FedEM can be used with
discriminative models such as neural networks.

FedEM aims to estimate the optimal parameters of the
components Θ∗ = (θ∗m)1≤m≤M and mixture weights
Π∗ = (π∗

t)1≤t≤T by minimizing the negative log-likelihood
f (Θ,Π). However, this is a non-convex problem that re-
quires a sophisticated approach to solve. One such approach
is the Expectation-Maximization (EM) algorithm, which is
commonly used in mixture modeling. The algorithm alternates
between two steps: the Expectation step (E-step) and the
Maximization step (M-step).

E-step:

qk+1
t

(
z
(i)
t = m

)
∝ πk

tm · exp
(
−l

(
hθk

m

(
x
(i)
t

)
, y

(i)
t

))
,

t ∈ [T],m ∈ [M], i ∈ [nt]
(8)

M-step:

πk+1
tm =

∑nt

i=1 q
k+1
t

(
z
(i)
t = m

)
nt

, t ∈ [T], m ∈ [M]
(9)

θk+1
m ∈ argmin

θ∈Rd

T∑
t=1

nt∑
i=1

qk+1
t

(
z
(i)
t = m

)
l
(
hθ

(
x
(i)
t

)
, y

(i)
t

)
,

m ∈ [M]
(10)

During the Expectation step of FedEM, the algorithm
calculates the probabilities of each data point belonging to
each component by updating the distribution qt over the
latent variables z

(i)
t for every data point, given the current

estimates of the parameters {Θ,Π}. In this way, the algorithm
determines the probabilities of each component to each data
point.

During the Maximization step, the algorithm updates the
parameters {Θ,Π} by maximizing the expected log-likelihood
(Equation 10), where the expectation is taken with respect to
the current latent variables’ distributions. Specifically, this step
involves finding the optimal parameters of the components
and the mixture weights, which can be done using standard
optimization techniques. The resulting estimates are then used
to update the distributions over the latent variables in the
subsequent Expectation step.

Finally, the model weight update is performed in the MEC
environment (see Equation 10). This equation represents an
update step in the context of a machine learning algorithm,
where θk+1

m is the updated value of a model weight θ for
a independent distributions m in iteration k + 1. The goal
of the update is to minimize the empirical risk over a set
of training examples, where the risk is measured using the
loss function l and the predicted values are obtained using the
hypothesis function hθ. The sum over t and i indicates that the
empirical risk is computed over all training examples in all T

datasets of clients, with nt representing the number of training
examples in the t-th dataset. The term qk+1

t (z
(i)
t = m) is a

weight assigned to the i-th training example in the t-th dataset,
based on its assigned cluster z

(i)
t in the previous iteration k.

This weight is used to give more importance to examples
that belong to the current cluster m, and less importance
to examples that belong to other clusters. The optimization
problem is solved using the argmin operator, which finds the
value of θ that minimizes the empirical risk over all training
examples in the current cluster m.

IV. FEDEM-BASED IOT SERVICE TRUST PREDICTION

We employ the FedEM algorithm [12] to better solve the
heterogeneity problem caused by the mixture distribution and
non-IID of the MEC topology and converge as much as possi-
ble in the shortest number of communications. This algorithm
allows the model training and EM steps to be performed MEC
environment-side, thus accomplishing federated optimization.
Compared with other federated learning methods, the FedEM
algorithm is more effective in dealing with non-IID and
mixture distribution and has a higher convergence speed. For
MEC-based IoT systems, FedEM can be trained locally in each
MEC environment, and then perform global model aggregation
on the server side, thereby realizing trust prediction tasks
across MEC environments.

In addition, the federated optimization based on FedEM can
ensure the fast convergence of the model, which is a critical
feature. Federated optimization algorithms encounter many
problems when training across multiple devices, including
network communication delays between devices, data hetero-
geneity, and data inhomogeneity [11]. These issues can lead to
situations where training is unstable or may fail to converge.
In contrast, the FedEM algorithm can be trained based on
the local data of the MEC environment, avoiding the problem
of data inhomogeneity and heterogeneity, thereby improving
the convergence speed and accuracy of the model. Therefore,
using the FedEM algorithm for federated optimization can
better guarantee the convergence and accuracy of the model.

We adopted a multi-layer perceptron (MLP) as our training
model, which consists of an input layer, a hidden layer
with multiple ReLU activation function perceptrons and an
output layer with a single perceptron with sigmoid activation
function. During training, each local MEC environment trains
its own MLP to implement a binary classifier. These local
binary classifiers will be combined to generate a global trust
prediction model through a federated optimization algorithm.
Due to the different data distribution and characteristics of
each local environment, the performance of local classifiers
will also vary. Therefore, we need to use federated optimiza-
tion to balance the contributions of different local classifiers
to generate a more accurate and robust global trust prediction
model.

We provide the Algorithm 1 to illustrate our proposed
federated optimization algorithm. Lines 1 to 4 initialize the
model parameters in the central cloud and the mixing weights
for each MEC environment, respectively. The algorithm has

Algorithm 1 FedEM-based IoT Trust Prediction in MEC
Input : Set of MEC environments T ; Set of local MEC envi-

ronment data D1:T ; Number of mixture distributions
M ; Number of communication rounds K

Output: θKm ; m ∈ [M]
1: Central cloud initialize θ0 for 1 ≤ m ≤M to the T MEC

environments
2: for all t = 1 to T in parallel over T MEC environments

do
3: initialize π0

t

4: end for
5: for all k = 1 to K do
6: Central cloud broadcasts θk−1 for 1 ≤ m ≤ M to the

T MEC environments
7: for all t = 1 to T in parallel over T MEC environments

do
8: for all m = 1 to M do
9: // E-step:

10: for all i = 1 to nt do
11: qkt

(
z
(i)
t = m

)
←

πk
tm·exp

(
−l

(
h
θkm

(
x
(i)
t

)
,y

(i)
t

))
∑M

m′=1
πk
tm′ ·exp

(
−l

(
h
θk
m′

(
x
(i)
t

)
,y

(i)
t

))
12: end for
13: // M-step:

14: πk
tm ←

∑nt
i=1 qkt

(
z
(i)
t =m

)
nt

15: The indices I are sampled uniformly from 1 to |D|

16: θktm ← θk−1
tm − ηk−1

∑
i∈I q

k
t

(
z
(i)
t = m

)
·

∇θl
(
hθk

m

(
x
(i)
t

)
, y

(i)
t

)
17: end for
18: MEC environment t sends θktm and 1 ≤ m ≤ M to

the central cloud
19: end for
20: for all m = 1 to M do
21: θktm ←

∑T
t=1

nt

n · θ
k
m,t

22: end for
23: end for

a quadruple loop nest. The outermost loop, from lines 5 to
23, iterates on the number of communication rounds K. The
second loop, from lines 7 to 19, is executed in parallel on
each MEC environment t. The third loop, from lines 8 to 17,
updates each mixture distribution m. The fourth loop, from
lines 10 to 12, updates the local mixing weights for each
MEC environment, which refers to the E-step. Specifically,
the probability of mixture distribution qkt (z

(i)
t = m) is com-

puted. The coefficient πk
tm of the m-th mixture distribution

is then computed in the M-step. The model parameters θktm
are updated by computing stochastic gradients. The MEC
environment sends the updated parameter θktm to the central
cloud represented by line 18. The central cloud aggregates
the updates of all the MEC environments represented from
line 20 to line 22. Then, the algorithm goes back to line 4

and starts a new round. The central cloud broadcasts the new
model weights θk−1 for each mixture distribution. The above
steps are repeated until the specified number of communication
rounds K is reached.

V. EVALUATION

We design the following experiments to evaluate our con-
tributions:

1) To evaluate whether our method can solve the problem
of heterogeneous trust information in IoT services caused
by the mixture distribution, we use a public IoT dataset
to compare the accuracy between our method and the
baseline methods to verify the generalization performance
of our method. We then split the dataset in a way that
mimics the mixture data distribution in MEC-based IoT
systems and evaluate if our method can address the
heterogeneity problem caused by the mixture distribution.

2) To verify whether our method can achieve higher effi-
ciency while meeting the requirement of high accuracy,
we compare the convergence time and the required num-
ber of training iterations between our FedEM model and
the baseline methods.

Our experimental evaluation is performed on a computer
equipped with an Intel Xeon E5-2686 2.30GHz CPU, 60 GB
RAM, and an NVIDIA RTX A4000. All comparison models
are implemented using the Python programming language.
To implement federated learning, we use the PyTorch (1.12)
library1. Additionally, we use the CVXPY (1.2.2) library2

to implement another data-driven IoT service trust prediction
model (i.e., S-ADMM [5]). The hyperparamter values of all
the models are tuned to achieve their optimal performance.
The source code of our implementation can be found from3.

By implementing all the models in Python and utilizing the
aforementioned libraries, we are able to conduct experiments
in a standardized and reproducible manner, ensuring that our
results are accurate and reliable.

A. Dataset

UNSW-NB154: This dataset contains a collection of net-
work traffic data. The data consists of both normal network
activities and synthetic attack behavior network activities that
were generated in a laboratory setting. This dataset contains
around 2 million records, with each record consisting of 49
features. Each record corresponds to a result, which could be
either a benign transaction or one of nine different types of
attacks. For the purpose of our experiments, we marked the
nine different types of attacks as harmful and all the benign
transactions as benign.

To simulate a topology of distributed MEC environments
with mixture distribution, we divide dataset into 100 sets of
MEC environment with varying local datasets lengths and

1https://pytorch.org
2https://www.cvxpy.org
3https://github.com/SHVleV9CYWkK/MEC-IoT-Trust-FedEM
4https://research.unsw.edu.au/projects/unsw-nb15-dataset

different data distributions. The training and test datasets were
split in an 80:20 ratio to ensure that the models were evaluated
using a fair and consistent approach. The length of the training
data set is within the range of [34, 27338], and the length of
the test data set is within the range of [9, 6835]. It is worth
noting that the trust value 0 of an IoT service represents
a benign sample, while 1 represents a harmful sample in
the federated learning dataset. We have taken the step of
splitting the dataset and generating a mixed distribution before
running the models, to ensure that all models are tested on
the same MEC topology and to eliminate any potential result
differences due to the use of different data. This ensures
that our experimental dataset conforms to the assumption of
mixed data distribution. All the data are first divided into
two clusters. For each cluster, its samples are divided into
100 MEC environments using Dirichlet Distribution. For each
MEC environment, samples are selected from each cluster
such that the number of samples for each MEC environment
conforms to the Dirichlet distribution of the belonged cluster.
Specifically, when the Dirichlet distribution is used as the
prior distribution of the multinomial distribution, if there are
samples available, we can use Bayesian inference to update the
posterior distribution to obtain a new probability distribution.
This new probability distribution can be viewed as a mixture
distribution.

B. Other Approaches Evaluated

1) Federated Averaging: Federated Averaging (FedAvg) is
one of commonly used federated learning algorithms. Its basic
idea is to distribute the model to each device, and perform local
training on each device. The trained local model parameters
are then sent back to the server. A main model in the server
takes the average of these parameters and sets them as its
new weight parameters and passes them back to the devices
for the next iteration. This process is iterated until the model
converges [11]. Although FedAvg is a federated learning
algorithm, it has no ability to capture the relationship between
MEC environments and its related data distribution [12].

2) Stochastic Alternating Method of Multipliers: The
Stochastic Alternating Method of Multipliers (S-ADMM) is
a distributed optimization algorithm designed to solve large-
scale convex optimization problems. S-ADMM transforms the
original problem into a network lasso problem [5]. The work
of [5] realizes MEC-based IoT service trust prediction through
S-ADMM. S-ADMM is able to randomly sample the local
data, so as to offset the non-IID problem caused by different
data distributions.

C. Key Performance Indicators

We use several key performance indicators (KPIs) to com-
prehensively evaluate and compare the performance of the
above methods, including accuracy, number of communication
rounds, elapsed time and variance of accuracy.

Accuracy measures the number of correctly predicted sam-
ples in a given set divided by the total number of samples in
the MEC environments. We employ this metric to compare the

TABLE I
PERFORMANCE COMPARISON AMONG ALL THE MODELS

Dataset Model Maximum Accuracy Elapsed Time Number of Communication Rounds
UNSW-NB15 FedAvg 98% 152.44s 10

S-ADMM 88% 156.38s 22
FedEM 98% 105.75s 5

overall accuracy of different models and to determine which
model is most effective at predicting IoT service trust.

Elapsed time is adopted to compare the convergence speed
of all the candidate algorithms. By measuring the time required
to reach convergence, we can determine which model is most
effective in a given MEC environment.

Number of communication rounds is adopted to evaluate the
data transmission overhead of each model during the training
process. We evaluated the convergence rate of each model
and determined which model required the lowest number of
communication rounds to achieve the best results.

D. Results and Discussion

1) Accuracy: The experimental results show that our
method outperforms the other candidate methods in terms of
accuracy. Specifically, on the UNSW-NB15 test set, FedEM
achieved a 98.5% accuracy at round 25, while FedAvg and
S-ADMM achieved 97.51% and 85.9%, respectively. Figure
1 clearly shows that FedEM consistently outperforms S-
ADMM in terms of accuracy. Further details regarding the
hyperparameters can be found in the respective section. In
addition, the convergence stability of FedAvg from the eighth
round to the twelfth round on the UNSW-NB15 test set is not
stable. It is worth noting that S-ADMM cannot converge stably
in the twenty-fifth round on the UNSW-NB15 test set, and it
may need more rounds. We can also find that the accuracy
of S-ADMM cannot always be higher than that of FedEM.
Overall, our proposed method has been proven to be effective
in achieving higher accuracy when compared to FedAvg and
S-ADMM.

Fig. 1. Accuracy of all the models on the UNSW-NB15 dataset

2) Convergence: Our experimental results show that our
proposed FedEM method achieves high accuracy with fewer
communication times than the conventional FedAvg and S-
ADMM methods. As shown in Table 1, our method requires
significantly fewer rounds of communications to converge.
This indicates that our method needs less communication
overheads for model training.

Next, we compare these methods in terms of the conver-
gence time. First, we recorded the maximum accuracy of Fe-
dAvg and S-ADMM over 25 rounds and the time for reaching
their highest accuracy. We then use the highest accuracy of
these two models as a threshold and record the time that
FedEM reaches this accuracy. It can be seen from Table 1
that FedEM requires significantly less time than the other two
models to reach the maximum accuracy of these two models.
These results demonstrate that our proposed FedEM method
achieves high accuracy in significantly reduced running time,
namely, a better balance between convergence speed and
accuracy, compared to the conventional methods.

In conclusion, the experimental results preliminarily prove
that the our proposed trust prediction methods based on
FedEM can address the IoT service trust information het-
erogeneity problem resulted from a mixture of various data
distributions in different MEC environments. These methods
can achieve high prediction accuracy with fast convergence
speed and less communication overheads.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a federated learning-based method
for data-driven IoT service trust prediction considering the
presence of mixture distributions in distributed mobile edge
computing (MEC) environments. We argue that training a trust
prediction model in the MEC setting can be interpreted as
a federated optimization problem. We propose a Federated
Expectation-Maximization (FedEM)-based method to address
the problem of mixture distributions. Finally, we conduct a
series of simulation experiments to verify the feasibility and
effectiveness of the method in distributed MEC environments.
The experimental results show that the proposed methods can
achieve high training efficiency while ensuring high prediction
accuracy than the state-of-the-art data-driven MEC-based IoT
service trust prediction method and a Federated Averaging
(FedAvg)-based method.

ACKNOWLEDGMENT

This research was supported by the Australian Government
through the Australian Research Council’s Discovery Projects
funding scheme (project DP220101823).

REFERENCES

[1] Y. L. Sun, Z. Han, W. Yu, and K. R. Liu, “A trust evaluation framework
in distributed networks: Vulnerability analysis and defense against at-
tacks,” in IEEE International Conference on Computer Communications
(INFOCOM), 2006, pp. 1–13.

[2] Z. Yan, P. Zhang, and A. V. Vasilakos, “A survey on trust management
for internet of things,” J. Netw. Comput. Appl., vol. 42, pp. 120–134,
2014.

[3] Y. Wang, “Trust quantification for networked cyber-physical systems,”
IEEE Internet of Things Journal, vol. 5, no. 3, pp. 2055–2070, 2018.

[4] U. Jayasinghe, A. Otebolaku, T.-W. Um, and G. M. Lee, “Data centric
trust evaluation and prediction framework for iot,” in ITU Kaleidoscope:
Challenges for a Data-Driven Society (ITU K), 2017, pp. 1–7.

[5] P. Abeysekara, H. Dong, and A. K. Qin, “Data-driven trust prediction
in mobile edge computing-based iot systems,” IEEE Transactions on
Services Computing, vol. 16, no. 1, pp. 246–260, 2023.

[6] M. T. Beck, M. Werner, S. Feld, and T. Schimper, “Mobile edge
computing: A taxonomy,” 2014.

[7] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[8] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[9] P. Abeysekara, H. Dong, and A. K. Qin, “Edge intelligence for real-time
iot service trust prediction,” IEEE Transactions on Services Computing,
pp. 1–14, 2023.

[10] P. Abeysekara, H. Dong, and A. Qin, “Machine learning-driven trust
prediction for mec-based iot services,” in IEEE International Conference
on Web Services (ICWS), 2019, pp. 188–192.

[11] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in International Conference on Artificial Intelligence and Statis-
tics, vol. 54, 2017, pp. 1273–1282.

[12] O. Marfoq, G. Neglia, A. Bellet, L. Kameni, and R. Vidal, “Federated
multi-task learning under a mixture of distributions,” Advances in Neural
Information Processing Systems, vol. 34, pp. 15 434–15 447, 2021.

