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Abstract. Edge node placement optimization has been an emerging
research area that has drawn extraordinary attention from the disci-
plines of distributed and services computing. Existing studies, neverthe-
less, barely focus on overall deployment cost minimization with edge
node site selection and server amount optimization, while bearing users’
delay tolerance. In this paper, we focus on investigating feasible user
delay tolerance-aware edge node site selection and server placement op-
timization strategies adaptive for real-world large-scale use cases, with
the objective of deployment cost minimization. A Coverage First Search
method is proposed to address this problem in polynomial time. The
experiments conducted on a real-world dataset demonstrate the effec-
tiveness of our method.

1 Introduction

Mobile Edge Computing (MEC) is a network architecture accompanying 5G.
MEC deploys plenty of small-scale servers (known as edge servers or edge nodes)
to network edges in a distributed manner. Users stay closer to those edge nodes
in a MEC network, which not only can significantly reduce network latency but
also can provide substantial computing resources to mobile users [5].

Problem. In this paper, we study the problem of optimal edge node deploy-
ment, aiming to provide qualified and low-latency services to massive mobile
users city-wide with minimum cost. There are many factors that should be con-
sidered during the edge node deployment. First, the network QoS (Quality of
Service) guarantee is the baseline of the deployment. For example, delay, as one
of the most important QoS factors, should not exceed users’ tolerance [4]. Sec-
ond, minimizing the deployment cost is always welcome and should never be
neglected [1, 6]. Third, the resource is finite, but the design of MEC is expected
to provide users ample resources, with which goal the MEC should be optimized
for higher productivity. [3, 7, 8]. Thus, the selected edge nodes with “just enough”
computation resources allocated is always the ideal case.

Motivation. There is always a trade-off between the edge node deployment cost
and the delay experienced by mobile users [5]. That trade-off is highly related
to edge node site selection and the corresponding resource allocation. Deploying
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(a) Initial network (b) OPT with 3.0s delay (c) OPT with 1.5s delay

Fig. 1: Example of optimal EN deployment under different delay tolerance

more edge nodes can potentially reduce the transmission delay by decreasing the
average distance between base stations and edge nodes. Also, adding more servers
(i.e. computing resources) into edge nodes can cut down the computation delay
as edge nodes would have higher computation capacity. However, both cases will
inflate the overall deployment cost. Therefore, with users’ delay tolerance, it is
necessary to find the most cost-efficient edge node deployment strategy such that
the overall deployment cost is minimized, as shown in the following example.

Example 1. Fig. 1 demonstrates how users’ delay tolerance affects the optimal
edge node deployment when considering cost-efficiency. Fig. 1a shows the initial
connections between base stations. Edge nodes will be deployed that co-locate
with base stations. Developing an edge node within a base station will introduce
a setup cost, while adding servers to an edge node to increase its computing ca-
pacity will generate server purchase costs. Given users’ delay tolerance threshold
and the goal of cost minimization, placing just the right amount of edge nodes
accompanying workload-matched server numbers is the ideal case.

With the objective of minimizing the total cost, the optimal edge node de-
ployment strategy will vary under different users’ delay tolerance. Fig. 1b il-
lustrates the optimal edge node placement in case the users’ delay tolerance
threshold is 3.0s, where the most cost-efficient deployment is to develop two
edge nodes S1 and S2. Adding one more edge node is more expensive than
adding more servers to existing nodes. However, when we decrease the delay
tolerance threshold to 1.5s, the optimal placement becomes what is shown in
Fig. 1c. To satisfy this more rigorous delay tolerance requirement, there are two
intuitive options: continuously adding more servers to existing edge nodes to fur-
ther decline the computation delay, or developing a new edge node to decrease
the transmission delay. Fig. 1c shows that the optimal solution is to develop a
new edge node instead of adding more servers.

To the best of our knowledge, few researchers attempted to address the trade-
off between cost and delay while considering the computation resource alloca-
tion [2, 6]. Existing studies are subject to the following major limitations. First,
the scalability and practicability of existing solutions have not been fully ex-
plored for large-scale datasets. in reality, the number of deployed base stations is
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significant and keeps increasing (e.g., Shanghai in China is projected to have 50
5G base stations per square km1). Designing a highly scalable and efficient solu-
tion is therefore essential. Second, the issue of delay has not been well addressed.
The existing studies ignore the fact that the computation delay is supposed to
decrease with more servers placed in edge nodes.

Main Contributions. In this paper, we aim to address the trade-off between
the cost and delay by formulating our edge node deployment problem with the
objective of minimizing the deployment cost while considering users’ delay tol-
erance. Our deployment plan will not only explore optimal edge node sites but
also provide the optimal resource allocation according to the real workload in
edge nodes. Our major contributions include:

– We formulate a problem to address the trade-off between the deployment
cost, and the transmission and computation delay. We propose a peak-based
workload measurement for the robustness of our deployment. Moreover, we
define a delay measurement to make it fit in real-world cases. (Section 2)

– We propose a Coverage First Search (CFS) algorithm to solve the defined
problem in polynomial time. (Section 3)

– We conduct extensive experiments to demonstrate the effectiveness of our
method. (Section 4)

2 Problem Formulation

In this section, we firstly define the MEC network and its components. Then, we
define the workload and delay measurement. Finally, we formulate our problem
with the goal of minimizing the deployment cost with delay tolerance satisfied.

Preliminaries. Here, we introduce some key concepts to facilitate our illustra-
tion across the paper.

MEC network. The MEC network consists of a set B of base stations (BSs) and
a set S of edge nodes (ENs). Elements in both B and S are denoted by a tuple
(id, lat, lng, n) where lat, lng and n represent latitude, longitude and number of
servers added respectively. Following a widely adopted setting [3, 7, 8]: ENs are
co-located with BSs, we upgrade a BS to an EN by adding servers to it. Multiple
servers are allowed to an EN to provide enough computation capacity. Then, we
have: (1) ∀ b ∈ B, b.n = 0; (2) ∀ s ∈ S, s.n ≥ 1;

EN setup cost and server cost. We define two kinds of costs: EN setup cost and
server cost. Let pr denote the setup cost, which is the cost of upgrading a BS
to an EN, such as infrastructure renting fee and construction fee. Let ps denote
the server cost, which is the cost for purchasing new servers to ENs. To be more
specific, installing a server to a base station will cost pr + ps, while adding a
server to edge node will simply cost ps.

1 https://techblog.comsoc.org/2020/08/07/5g-base-station-deployments-open-ran-
competition-huge-5g-bs-power-problem/
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Connectivity and EN service range. We define two BSs b1 and b2 are connected
if they meet a certain delay threshold which is constrained by transmission delay
and computation delay together. We will elaborate these two delays later in this
section. Then, the service range of an EN s ∈ S denoted as R(s) is represented
by a set of BSs, that are directly connected with s.

BS assignment. Give that ENs may have their service range overlapped, we
assign base stations to edge nodes based on the following criteria: (1) a BS can
be assigned to one EN only; (2) the selected ENs cover all BSs in the network.
We assign EN with enough computation capacity to process all incoming tasks
from the assigned BSs and will not further offload the task to other ENs. We
represent the assignment with a set of key-value pairs A, where the key is the
EN, followed by a set of assigned BS as value, e.g. A[s1] = {b1, b2, b19, ...}.
Workload Measurement. Most of existing studies measures the workload of
a BS or an EN by task’s average requesting [7]. However, in real cases, the
workload usually fluctuates dramatically during a day [5], so the peak workload is
non-negligible in some cases considering the robustness of the network, especially
during the rush hour.

We propose a peak metric to measure the workload. We assume that the
tasks transmitted in the network are all data-intensive computing tasks, e.g.
HD videos, to guarantee that the MEC network is capable of dealing with over-
whelming workload. We define the task size of a single task as ξ in bits. Then
the peak workload will appear at the time period that has the largest number
of coming tasks. We assume the task can be processed as soon as it arrives. We
define tasks that have their processing time overlap as concurrent tasks. Let CT
denote the number of concurrent tasks and CTmax denote the largest number of
concurrent tasks that have occurred.

Thus, with the peak metric, we define the workload of a BS b as:

W (b) = ξ · CTmax (1)

Delay Measurement. Since we assume task offloading between ENs is not
allowed, there are two major delays: transmission delay for a task to transmit
between a BS and an EN and the computation delay for a task to be computed
in an EN [5], which are related to the channel’s transmission capacity and EN’s
computation capacity respectively.

Transmission capacity. We adopt Shannon’s channel capacity formula2 to com-
pute a channel’s transmission capacity (denoted as Ctrams):

Ctrans = B log2 (1 +
SP

N
) (2)

In this equation, B represents the channel’s bandwidth, SP represents the
average received signal power over the channel and N represents the average
noise power over the channel. We assume that the signal power is identical to
all channels. Considering channel noise can be affected by many factors, such as

2 Shannon theorem: http://www.inf.fu-berlin.de/lehre/WS01/19548-U/shannon.html
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distance, environments and quality of cable3, we use a very common way in the
literature by assuming that the channel noise is only affected by the distance [7,
3]. We define the noise as N = α · d(s, b), where d(s, b) denotes the distance
between s and b, and α is a coefficient between N and the distance.

Computation capacity. Adding servers to EN gives it computation capacity. We
assume that servers placed to EN have the same computation capacity µ bit/s.
Then, for an EN s with s.n servers placed, the computation capacity is:

Ccomp = s.n · µ (3)

Delay. The delay calculation depends on the data size and processing capacity4.
Since the delay incurred between a BS b and an EN s includes transmission delay
and computation delay, we define our delay model as

D(b, s) =
W (b)

Ctrans
+
W (s)

Ccomp
(4)

Definition 1. Qualified EN Placement Plan. Given a set of BSs B and a
delay threshold θ, select a subset S ⊆ B as ENs such that the following con-
straints hold: (1) ∀s ∈ S b ∈ A[s], D(s, b) ≤ θ; (2)

⋃
s∈S A[s] = B\S; (3)

∀si, sj ∈ S, si 6= sj ,A[si] ∩ A[sj ] = ∅.

Intuitively, these constraints indicate that the total delay experienced by the
user does not exceed θ, S should serve all b ∈ B\S, and each BS will be assigned
to one and only one EN for task offloading, respectively.

Definition 2. Cost Minimization in MEC Edge Node Placement (CM-
MENP). The CMMENP problem is to find a solution S∗ which can minimise
the total cost

F (S∗) = arg min
S⊆B

∑
s∈S

(pr + s.n · ps) (5)

where F (S∗) denotes the total cost incurred by selecting S∗ as ENs, S is a
qualified EN placement plan, pr is the setup cost, and ps is the server cost.

3 Methodologies

In this section, we will introduce a greedy-based solution: Coverage First Search
(CFS), which is an efficient algorithm that aims to provide a solution in poly-
nomial time.

3 Noise: https://documentation.meraki.com/MR/WiFi Basics and Best Practices
4 https://manuals.gfi.com/en/exinda/help/content/exos/how-stuff-works/network-

performance-metrics.htm
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Algorithm 1: CFS Algorithm

Input : Base Station set B, Delay threshold θ
Output: Edge Node set S

1 S= ∅, A ← ∅; // A: a set of 〈s : {b1, b2, ...}〉 for BS assignment

2 while B 6= ∅ do
3 B ← getConnection(B, θ)
4 bs ← arg max{|R(b)| | b ∈ B}; A[bs] ← R(bs)
5 S ← S ∩ bs;
6 B ← B \ bs
7 foreach b ∈ A[bs] do
8 B ← B\ b
9 return S

In order to improve the computation efficiency, considering the objective of
cost minimization, we devise an approximate algorithm, Coverage First Search
(CFS). The core idea of CFS is to minimize the number of ENs being deployed,
as the construction cost of edge nodes (e.g., EN setup cost) is usually much
greater than the cost of a standard server (e.g., server cost) [6]. As shown in
Algorithm 1, we will first model the connections between BSs according to the
delay threshold θ (line 3). Then, we iteratively pick the BS which has the highest
number of connections as the site to construct an EN, and assign it with all its
connected BSs in its service range R (line 4). Finally, we remove the EN and its
assigned BSs from the input BS set (lines 6-8). We repeat this process until all
the BSs in the input set being assigned.

4 Evaluation

We conduct extensive experiments on CFS and random method to evaluate their
effectiveness with a real-world large-scale dataset.

4.1 Experiment Settings

Dataset. Our experiments are conducted on the Shanghai Telecom Dataset 5.

Experiment Environment. All experiments are conducted on MacOS (2.5
GHz Daul-Core Intel i7 processor and 16GB memory). Our methods are imple-
mented in Java.

Parameter Settings. Following [6], we also set the ratio of edge node construc-
tion cost and a standard server cost as 4:1 and we set the computing capacity
of a standard server as µ = 100 bps. The bandwidth B is set to 200 Mbps6. The
Channel signal power SP is set to -35 dBm7. The single task size ξ is configured

5 Shanghai Telecom Dataset: http://sguangwang.com/TelecomDataset.html
6 https://go.frontier.com/business/internet/200-mbps
7 https://www.metageek.com/training/resources/wifi-signal-strength-basics.html
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Fig. 2: Effectiveness with different BS input scale

to 15 bits8. Furthermore, all our experiments are conducted with a default delay
threshold θ = 14s based on the empirical studies depicted in Section 4.2.

Evaluation Metrics. The effectiveness metrics include the deployment cost and
the number of selected ENs. We measure the effectiveness of CFS and Ramdom
on different numbers of BSs.

Methods for comparison. We compare the performance of the following two
methods: a Random method that randomly picks BSs and our proposed CFS
method.

4.2 Experimental Results

The deployment cost and the number of selected ENs of the aforementioned
candidate solutions on different BS input scales are shown in Fig. 2a and Fig. 2b.

As shown in Fig. 2a, compared with Random, CFS shows outstanding cost-
saving performance especially when the number of participated BSs is high.
The cost growth of CFS is relatively smoother than Random method with the
increasing number of BSs, which indicates its higher reliability.

We can observe from Fig. 2b that the numbers of ENs selected by CFS is
clearly smaller than that is selected by Random. It shows a steady increasing
trend for both random and CFS in terms of the number of EN selected, while
we can see obvious fluctuations in terms of the deployment cost in Fig. 2a. Such
phenomenon reflects the major limitation of CFS that it is incapable of finding
all potentially suitable EN locations and optimizing the assignment between BSs
and ENs, which causes the following problem: (1) its selected ENs may not be in
the optimal locations. (2) the ENs would require high computation capacity to
serve distant BSs. It explains the abnormal cost fluctuations experienced by CFS
(e.g. when the number of BSs is 800 in Fig. 2a). Similarly, the Random selection
also experiences such issue, as we can see obvious fluctuations for random either.

8 https://www.amaysim.com.au/blog/stuff-made-simple/internet-data-usage-guide
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5 Conclusion

In this paper, we defined an MEC Edge Node Placement Problem to address
the trade-off between deployment cost and users’ delay tolerance. Within this
problem, we defined a practical and delicate delay measurement and propose a
peak workload metric. We proposed an approximate solution CFS whose effec-
tiveness is demonstrated via our extensive experiments on a real-world dataset.
For future works, we will focus on optimizing the proposed solutions to further
improve their effectiveness and exploring their performance with respect to the
average workload metric.
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