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Abstract. This article presents a novel probabilistic QoS (Quality of
Service) monitoring approach called LSTM-BSPM (DonLSTM-Den based
BayeSian Runtime Proactive Monitoring), which is based on the DouLSTM-
Den model and Gaussian Hidden Bayesian Classifier for mobile edge envi-
ronments. A DouLSTM-Den model is designed to predict a user’s trajec-
tory in mobile edge environments. The predicted trajectory is leveraged
to obtain the mobility-aware QoS and capture its spatio-temporal de-
pendency. Next, a parent attribute is constructed for each QoS attribute
to reduce the influence of dependence between QoS attributes on mon-
itoring accuracy. A Gaussian hidden Bayes classifier is trained for each
edge server to proactively monitor the user’s mobility-aware QoS. We
conduct a set of experiments respectively upon a public data set and a
real-world data set demonstrate the feasibility and effectiveness of the
proposed approach.

Keywords: Mobile/Multi-Access edge computing, Quality of Service,
Monitoring, Bayesian classifier, LSTM model.

1 Introduction

Mobile (or Multi-Access) edge computing is a new distributed computing paradigm
that transfers the computing power from cloud data centers to the edge of a net-
work [1]. Mobile edge services refer to the services provisioned in mobile edge
environments [2]. Users’ requirements on mobile edge services have gradually
shifted from functional requirements to non-functional requirements, i.e. QoS
(Quality of Service) [3,4]. There has been a stronger focus recently on selecting
a service that meets a user’s QoS requirements among many services with similar
functions [5]. Monitoring the runtime QoS is a key means to ensure the accurate
service selection.

A variety of monitoring methods have been devised for probabilistic quality
attributes. These include QoS monitoring methods based on traditional prob-
ability statistics [3], hypothesis testing [4,6] and Bayes’ theorem [7,8]. Those
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methods aim to perform continuous QoS monitoring based on user-defined stan-
dards in addition to computation overhead reduction. However, these methods
encounter the following problems in the mobile edge environment:

Traditional QoS monitoring approaches lack a proactive mechanism. Service
providers usually deploy a large number of services in the network environment.
It is impractical for sensors to monitor and record in real-time the QoS generated
by different users due to time, financial and resource constraints. In addition,
monitoring the current status of a service cannot fully prevent the service from
failure. In this regard, the monitoring results received by a user at present can
only reflect the service status in the past due to the network latency. Therefore,
it is essential to develop proactive service monitoring solutions to detect service
failure in advance.

The current QoS monitoring approaches ignore the temporal and spatial char-
acteristics of QoS. Our literature survey reveals that existing QoS monitoring
approaches overlook the spatio-temporal dependency of QoS. This defect may
lead to deviation of monitoring results from the real situation. The QoS of a ser-
vice (observed from the client side) relies on the state of the service (on the server
side) and the network environment. The service state is impacted by the server
capacity and workload, the allocated computing resources, etc. The network en-
vironment is influenced by users and servers’ locations, network bandwidth and
traffic, the number of clients, etc. Both of them are highly dynamic over time
and space.

Fig. 1: Motivation scenario Fig. 2: Architecture of model

2 Related Work

Many probabilistic QoS monitoring techniques based on Bayesian classifiers
were proposed to address the limitation of the aforementioned methods on vari-
able user requirements. A new mobility and dependency-based QoS monitoring
method named ghBSRM-MEC was presented in [9]. This method assumes that
the QoS attribute value of an edge server obeys Gaussian distribution. A par-
ent attribute is constructed for each attribute, thereby reducing the dependence
between attributes. A Gaussian implicit Bayes classifier is constructed for each
edge server to realize QoS monitoring in the mobile edge environment.

Proactive monitoring techniques have also been applied into other fields. A
QoS monitoring algorithm that can quickly detect broken or congested links was
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depicted in [10]. This algorithm takes advantage of a multithreaded design based
on lock-free data structures. It improve the performance by avoiding synchro-
nization among threads. Their work specifically focuses on real-time streaming.
It does not realize proactive QoS monitoring. A proactive solution was intro-
duced in [11]. It migrates the virtual machines before violating the actual delay
threshold. The authors proposed a delay-aware resource allocation method that
considers an adaptive delay warning threshold for various users. Their work
focuses on dynamic resource allocation for hosting delay-sensitive vehicular ser-
vices in a federated cloud. It cannot realize proactive QoS monitoring.

All the above monitoring methods do not take into account the proactive se-
lection of servers by capturing the mobility of users in mobile edge environments.
They also ignore the temporal and spatial dependency of QoS monitoring. These
defects would lead to their failure to address the problems of lagging monitor-
ing and long monitoring delay. This inspires us to devise a context-dependent
proactive QoS monitoring method to fully cater to mobile edge environments.

3 The LSTM-BSPM Approach

As shown in Fig. 1, we use a mobile edge service scenario to illustrate our moti-
vation. And its main framework is shown in Fig.3. It mainly includes three steps.

Fig. 3: Structure of proactive QoS monitoring

3.1 Data preprocessing.

First, we partition the spatial QoS data according to the locations of their be-
longed edge servers. The monitoring process in a mobile edge environment needs
to consider user’s historical trajectory data and information of service calls. The
existing data sets do not meet such requirements. Hence, we need to construct a
data set for mobile edge servers and users. The second major mission of the data
preprocessing is to filter invalid data, such as the sample data with response time
of -1 and 0. It makes the experimental data more in line with the real situation.
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3.2 Mobility-aware QoS acquisition based on DouLSTM-Den

The primary purposes of this step is to construct and train the DouLSTM-
Den model to obtain the user’s mobility-aware QoS. Here we propose a model
named DouLSTM-Den to predict a user’s future location. As shown in Fig. 2,
DouLSTM-Den comprises an LSTM layer with 3 units, a hidden LSTM layer
with 2 units, and a normal dense layer with 2 hidden outputs for 2 columns. The
details how this structure is determined is explained in the evaluation part.

The original trajectory data of the moving user is converted into a sequence of
h positions Hi = {Y1, Y2, ..., Yh}, where Hi represents the movement trajectory
of useri, Yi = {lngm, latm} represents the mth longitude and latitude of useri
based on time series. The current location is Y ′ = {latt, lngt}. In practice, we
continuously update the trajectory by combining the current location of the user
for trajectory prediction.

We predict the t+1th location Yt+1 of the useri through the DouLSTM-Den
model. A high-level definition of the DouLSTM-Den model can be expressed as:

Yt+1 = f({Y1, Y2, ..., Yh, Yt}) (1)

Its technical details can be referenced from Section 3.2.
The network conditions in different coverage areas of an edge server are odd.

In this regard, the network loads in different locations are diverse. This would
cause distinct QoS values among different coverage areas of an edge server. The
coverage area of a sever is usually circular. We accordingly divide the coverage
area of a server into several circular rings and monitor QoS in each circular ring.

We set the coverage of each edge sever to 2 kilometers by analyzing the
users’ locations under each server’s coverage. The coverage of each edge server
is divided into 5 circular areas through the analysis of user distributions. The
circular areas are [1, 400), [400, 800), [800, 1200), [1200, 1600), and [1600, 2000]
based on their distance to an edge server.

We choose the server closest to a user as the edge server that the user is
most likely to access. We then determine the exact circular area of the server.
The historical QoS data of the service to be invoked by the user is extracted
from all the users in the same circular area of the predicted edge server. It is
denoted by Tareat+1 = {Tu1 , Tu2 , ..., Tun}, where Tui represents the QoS of the
service invoked by the user i. The average value of the historical QoS data is
calculated to obtain the mobility-aware QoS of the service. It is denoted by
QoSt+1 =

∑1
n Tareat+1

/n, where n is the number of the users in this area.

3.3 QoS monitoring based on Gaussian Hidden Bayesian classifier

The main purpose of this step is to train a Gaussian Hidden Bayes classifier
based on historical data. The classifier will proactively monitor the mobility-
aware QoS acquired from the last step. A Naive Bayes classifier assumes that
the attribute values are independent of each other. However, tt ignores the fact
that there might be dependence between QoS attribute values, leading to inac-
curate classification results. Here we define a parent attribute π(xi) to reduce
the dependence between QoS attributes. Each parent attribute represents the
influence of the other attributes to each independent attribute. The value of the
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parent attribute π(xi) is the mean value of x1 ∼ xk−1. The improved Bayesian
classifier formula can be expressed as:

C(X) = argmax
cj∈C

{P (cj)

n∏
i=1

P (xi|π(xi), cj)} (2)

The Gaussian distribution is generally used to represent the class conditional
probability distribution of continuous attributes. We apply Gaussian distribution
to the probability distribution of continuous variables in Bayesian classifier. The
assumption of the Gaussian distribution is expressed as follows:

P (xi|π(xi), cj) = Ncj

(
uxi

+ ρ
σxi

σπ(xi)
(π(xi)− uπ(xi)),

σ2
xi
(1− ρ2)

)
(3)

where Ncj represents the Gaussian distribution of the corresponding category
cj , uxi and σ2

xi
are the mean and variance of the sample attributes, and uπ(xi)

and σπ(xi) are the mean and variance of the parent attributes corresponding
to the sample. The correlation coefficient between xi and π(xi) is denoted by

ρ = conv(xi,π(xi))
σxi

σπ(xi)
.

In the training phase, a Gaussian hidden Bayesian classifier is constructed
upon its parent attributes for each sample, i.e., the mobility-aware QoS value
of the user. The classifier is trained based on the historical data of each edge
server. The spatio-temporal QoS data (i.e., the QoS data in the same circular
area of a sever within the same time period) is used as the input in the classifier.
Every time a new QoS value is obtained, whether or not the QoS value satisfies
with the pre-defined probabilistic requirements can be determined. We assume
that the QoS attribute value follows the Gaussian distribution. Therefore, the
determination can be implemented by the probability density integral formula:

P (X < Qos V alue) =

∫ Qos V alue

−∞

1√
2πσ

e−
(x−u)2

2σ2 (4)

where µ and σ represent the mean and standard deviation of the QoS value. For
example, if a QoS requirement is that the probability that the service response
time is less than 2s is greater than 85%, the value of QoS V alue is 2.

In the QoS monitoring process, users pre-define a set of QoS requirement
vectors as TQoS = [X1, X2, · · · , Xn], where Xn = [x1, x2, · · · , xn]

T
refers to the

set of required QoS values of all the services called by the user n when accessing
a server. The category set is C = {c0, c1}, where c0 refers to a satisfactory grade
and c1 refers to a unsatisfactory grade. The posterior probabilities of c0 and
c1 are calculated via the aforementioned process. The category with a higher
posterior probability is regarded as the final monitoring result.

4 Experiment

4.1 Experimental Environment Configuration

Experiment setup. The TensorFlow 2.4.0 deep learning framework4 is used
to implement the proposed DouLSTM-Den model. The model is trained with a

4 https : //github.com/tensorflow/tensorflow/tree/v2.4.0
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computer with Nvidia GTX1080Ti GPU. The model is trained 30 epochs with
a batch size of 128. The initial learning rate is set to 0.001. All these parameters
are optimal settings according to our experimental observation.

Data sets. This experiment involves three data sets in the experiment.

– Data Set 1 bases on the Shanghai Telecom data set5. This data set includes
the geographic location information of 3,233 base stations and 611,507 ser-
vice calling records.

– Data Set 2 bases on a real-world Web service quality data set released by
Chinese University of Hong Kong6. This data set includes the response time
of 4,500 Web services called by 142 users in 64 different time slices.

– Data Set 3 is a simulated verification data set. The verification data set
is generated according to users’ QoS requirements in the experiment. The
verification data is used to verify the effectiveness of the proposed method.
For example, if the QoS requirement is that the probability that the response
time of the service is less than 3.6s is greater than 80%, we inject more than
20% exceptional response time (i.e. greater than 3.6s) samples in a certain
range of the original samples as the verification data.

Comparison method. We compare LSTM-BSPM with the following state-
of-the-art service quality monitoring methods to verify the superiority of LSTM-
BSPM. These include ghBSRM [9], wBSRMM [8] and IgS-wBSRM [12].

4.2 Feasibility verification of proactive monitoring

(a) When driving cars (b) When taking high-speed trains

Fig. 4: Time consumption comparison between proactive service monitoring
(tLSTM−BSPM ) and server switching (ttra)

We set up an experiment to assess the feasibility of the proposed method.
We verify whether our approach can detect abnormal service states before users
access new edge servers. The experiment assumes that a group of 160 users call
services when driving a car and taking a high-speed train respectively. We assume
that the speed of the vehicle is 72km/h and the speed of the train is 300km/h.
The monitoring time tLSTM−BSPM mainly contains two parts: the time tLSTM

to obtain the mobility-aware QoS attribute value based on the DouLSTM-Den

5 http : //sguangwang.com/TelecomDataset.html
6 http : //wsdream.github.io/dataset/wsdreamdataset2.html
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model, and the time tmon to monitor the QoS using the Bayesian classifier. The
estimated time ttra required for a user to access a new edge server is obtained
by calculating the distance between two edge servers divided by the speed.

Fig. 4a and Fig. 4b respectively show the time needed for proactive monitor-
ing and connecting to a new edge server for 5 randomly selected users and all
the users when driving and taking high-speed trains respectively. We can draw
a conclusion that our approach can efficiently complete the proactive service
monitoring before users access new edge servers. This would provide more time
for servers to make decisions if service anomalies occur.

4.3 Effectiveness verification of positive monitoring

We establish an experiment to verify whether the proposed proactive monitoring
method can more quickly and accurately detect service exceptions before users
calling the services. The proposed method is compared with the three aforemen-
tioned baseline methods. Data Set 3 is used for the experiment. First, we extract
the QoS values of 2000 services to train a Gaussian hidden Bayes classifier. We
then inject 200 exceptional samples with response time of 3s in the ranges of
[200,400] and [400,600] of 1000 test samples (i.e. services).

(a) Exceptional samples injected in
[200,400]

(b) Exceptional samples injected in
[400,600]

Fig. 5: Result of response time monitoring

Fig. 5a and Fig. 5b respectively show the monitoring results of the exceptional
samples injected in different intervals. The abscissa represents the number of
samples that a monitoring method can obtain based on the test set The ordinate
represents the monitoring result, where 1 represents normal, and -1 represents
abnormal. The number of samples required for each method to monitor the
abnormality of the service status is marked on the top of the diagram. It can be
seen that the proposed proactive monitoring method (i.e. LSTM-BSPM) needs
the lowest numbers of samples to detect the service exceptions. In general, it
can be seen that the prediction results of LSTM-BSPM are more consistent
with the injected exceptions. The experimental results verify the effectiveness of
the proposed proactive monitoring method in the mobile edge environment.

5 Conclusion
This paper presents a proactive QoS monitoring method in the mobile edge envi-
ronment based on DouLSTM-Den model and a Gaussian hidden Bayes classifier.



8 Ting Wei, Pengcheng Zhang et al.

Experiments are conducted on both simulated and real data sets. The experi-
mental results show the effectiveness and feasibility of the proposed method.

For the future work, the following tasks will be considered: i) we will design
solutions to accurately predict users’ multi-lag moving paths; ii) we will improve
this method to adapt to multivariate QoS monitoring; iii) we will consider user
privacy protection when designing future proactive QoS monitoring methods.
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