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Abstract—We propose a distributed machine-learning ar-
chitecture to predict trustworthiness of sensor services in
Mobile Edge Computing (MEC) based Internet of Things
(IoT) services, which aligns well with the goals of MEC and
requirements of modern IoT systems. The proposed machine-
learning architecture models training a distributed trust predic-
tion model over a topology of MEC-environments as a Network
Lasso problem, which allows simultaneous clustering and
optimization on large-scale networked-graphs. We then attempt
to solve it using Alternate Direction Method of Multipliers
(ADMM) in a way that makes it suitable for MEC-based IoT
systems. We present analytical and simulation results to show
the validity and efficiency of the proposed solution.
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I. INTRODUCTION

Trust in IoT systems is an indispensable element. Not only
does it influence user acceptance towards IoT, but also
is regarded as a measure of privacy and security of such
systems. IoT trust is often influenced by a multitude of dis-
tinct factors such as ubiquity, heterogeneity and dynamism.
Hence, ensuring the trustworthiness of services operating in
IoT systems innately presents numerous challenges [1].

Furthermore, the prevalence of sensors and smart-devices
in such environments also pose a number of challenges
in the context of trust information collection, processing,
and decision inference. Amongst them are the ever-growing
stress on current networking infrastructure [2] caused by
the sheer volume of trust information generated and sent
to existing centralized cloud-based infrastructure for per-
sistence, as well as the need for enormous amounts of
centrally-located storage and computing power to derive
trust decisions through analytics.

Mobile Edge Computing (MEC) is an emerging paradigm
aiming to provide compute and storage resources in close
proximity to mobile devices and sensors [2]. Characterized
by the pooled compute resources sitting in the base stations
of cellular networks, the concept of MEC was proposed in
light of the demanding need for higher network resource
utilization and low latencies. Therefore, it can be viewed
as a seemingly befitting concept capable of addressing the
challenges in conventional cloud-centric IoT systems [3].

However, a mere shift towards MEC infrastructures alone

Hai Dong
School of Science
RMIT University
Melbourne, Australia
Email: s3693452@student.rmit.edu.au Email: hai.dong @rmit.edu.au

A.K. Qin
School of Software and Electrical Engineering
Swinburne University of Technology
Melbourne, Australia
Email: kqin@swin.edu.au

cannot fully address the challenges of trust computing in
IoT. Instead, novel trust information processing techniques
that complement such infrastructures too are essential to
overcome the challenges posed by typical IoT systems.
For instance, in MEC-based IoT systems, trust information
is generally accumulated in large volumes and distributed
fashion within each MEC environment creating a distributed
topology of data silos. To effectively process and derive
meaningful insights from such distributed silos of data, ma-
chine learning algorithms based on distributed optimization
techniques naturally stand out as a good fit. In fact, such al-
gorithms inherently allow parallel processing of distributed
datasets and provide an elegant formula to take on trust
information processing challenges in such a setting.

Motivated by the setting described above, this paper aims
to propose a distributed machine learning architecture to
effectively predict trustworthiness of sensor service providers
in MEC-based IoT systems. The proposed architecture mod-
els a distributed trust prediction model over a topology of
MEC environments as a Network Lasso problem. It then
attempts to train the aforesaid distributed trust prediction
model collaboratively and in parallel using Alternating
Method of Multipliers (ADMM) by sharing knowledge with
each other for efficient model training.

II. PROBLEM FORMULATION

Trust between a sensor service provider and consumer in an
IoT system is composed of multiple distinct factors [4, 5],
which we identify as trust features. These trust features are
combined in multiple different ways to predict trust between
a service provider and consumer in such systems, as well.
We suppose a simple mathematical representation could be
derived out of them, which can represent every existing trust
prediction model generically, as below.

Given a set of arbitrary trust features x; € R”, the
impact of each trust feature towards the overall trust value
denoted as elements of a weight vector w € Rp, and a
mapping function f; defining how each trust feature and
their respective weight coefficients can be consolidated to
come up with an overall trust value y;, any arbitrary trust
model could be represented, as below.

y; = fi(zi;w) where f : RPxR=R 1)
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Then, by applying the basic machine learning theory,
and given a labelled trust dataset P = (z;,y;),t =1,...,n,
the problem of deriving a trust prediction model can be
introduced as inferring the best set of values for w from
P that minimizes the cumulative deficit between the ob-
served trust y; and output of f(x;w) against every training
example in P. For mathematical convenience, let us denote
the aforementioned deficit in the form of a loss function
I(x;,y;;w). Then, finding the best set of values for w can
generally be defined in the form of an optimization problem,
as below.

minimize

weRP weRP

n
Z l(z;,y;; w) = minimize F(w) 2)
i=1
Most existing machine learning based trust prediction
models attempt to solve problem (2) on top of datasets accu-
mulated centrally in cloud-based data centres. However, the
aforementioned assumption is inherently obsolete and too
restrictive in the context of MEC-based IoT environments.
In such environments, trust information generated from
transactions between service producers and consumers is
generally persisted and processed in an entirely decentralized
manner within MEC-local data-centres. This demands us to
re-formulate problem (2) to fit into a distributed setting.

iili(xj7yj;wi) = minimize iFl(u}Z)
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where MEC environments within a given MEC topology
are indexed with ¢ € (1,..,m), I; and F; denote the loss
and cost functions used to train a trust model in i** MEC
environment within a given MEC topology, w; denotes the
weight vector associated with F; and [;, (x;;,v;;) denotes
the dataset used to train the trust model used by the i
MEC environment defined as P; = (255, v45); j=1,,n.

The minimization problem (3) implies that the total pre-
diction loss over the entire MEC topology is computed and
minimized as a finite sum of the prediction losses incurred
by each individual MEC environment. Solving a problem
of this form can inherently be componentized into multiple
sub problems, each of which can be solved in parallel
and isolation within individual MEC environments. In other
words, each sub problem of the form (2), represented by
it" index in problem (3) can conveniently be solved at
the i*» MEC environment in a given MEC topology on
top of dataset accumulated within itself. In addition to the
inherent parallelism enforced by the aforesaid approach,
it also minimizes the movement of data across multiple
MECs as well as between MEC and Cloud layers resulting
in significantly less network overhead on the underlying
network infrastructures.

However, it is important to allow collaboration among
multiple MEC environments so that similarly-poised MEC
environments can derive more accurate trust prediction mod-

minimize
weRP

els by borrowing strength from each other. In such a setting,
we assume that MEC environments accumulating trust infor-
mation that exhibit similar trust features would want to train
trust prediction models collaboratively while avoiding those
that use different trust features. Consequently, problem (3)
can be further modified as a regularization problem in which
trust models carrying significantly different trust features are
penalized while incentivizing those that carry similar trust

features, as below.
Y F(wi) + XY Rwiw) (4
i=1 JEN(4)
where R denotes a penalty function that incentivizes
similarly-poised models and penalizes dissimilar models and
(w;, w;) are weight vectors corresponding to trust predic-
tion models trained by two adjacent MEC environments.
The penalty term introduced in problem (4), in its default
form, pollutes the parallelism enforced by problem (3) as
it involves computing a global sum of differences between
weight vectors learnt by adjacent MEC environments across
the MEC topology, even though the objective and regular-
ization terms can individually be solved in parallel. These
differences are computed in a pair-wise manner between two
adjacent MEC environments over the entire MEC network.
As a result, we can no longer isolate solving an independent
sub-problem at i" MEC environment. We, therefore, deem
problem (4) is of the exact form of a typical Network Lasso
problem, and therefore, attempt to solve it using Alternating
Method of Multipliers (ADMM) to be able to transform it
to a form that can be solved in parallel.

III. SOLUTION

minimize
w; €ER D

In a typical MEC topology, individual MEC environments
tend to operate independently from others within their own
network boundaries hindering knowledge sharing with each
other. This is when we can fully utilize the centralized
cloud, which all MEC environments possibly connect to,
in order to establish a logical MEC network allowing them
to communicate indirectly with each other (see Figure 1). In
such a setting, each MEC environment can be logically con-
nected to multiple neighbouring MEC environments via the
centralized cloud for collaborative training of trust prediction
models. There are multiple ways we can model a network
of MEC environments exploiting various characteristics and
properties of different application contexts [4]. However,
for simplicity, we used a simple model where each MEC
environment connects to a set of other MEC environments
determined based on proximity. We map the Network Lasso
problem to the graph resulting from this topology (see Figure
2), and ADMM is applied to derive a parallel solution to
train a distributed trust prediction model.

Given a MEC topology modelled as an un-
directed networked graph, ie. G = (V,E) in which
individual MEC environments are are denoted by i.e.



V={1,...,N}, and their logical connectivity with
neighbouring MEC environments is denoted by the edges
ie. E={(vi,v2):v1,v2 € V,u; #v9}, the Network
Lasso problem over a MEC topology can be mathematically
expressed, as below.

minimize Zfl(wl) +A Z ajil|w; — well2. )
i€V (j,k)EE

In this optimization problem, w; € R™ represents model
parameters of a loss function f; = {(w;, f(w;)) : w; € R™}
corresponding to the trust model trained at i*” MEC en-
vironment denoted by wv; € V. Each loss function f; is
defined over the input-output space f; : R — RU {oco} is
local to a node v; € V' in the graph G. Meanwhile, X is a
regularization parameter that scales the edge objectives rel-
ative to the node objectives, a;, represents an impact factor
of a particular edge i.e. (v;,vy) on the finite-sum problem
computed over the loss functions of all nodes participating in
the optimization problem. It is also noteworthy that w; and
wy, correspond to the parameters of the models associated
with two adjacent nodes v;, vy, in the graph, respectively.

ADMM algorithm allows a suitable convex optimization
problem to be decomposed into multiple sub-problems and
solve them iteratively in a coordinated manner in parallel [5].
It has been priorly used to decompose the Network Lasso
problem into multiple sub-problems that can be solved in
parallel [6]. Therefore, to convert problem (5) into a form,
which allows us to apply ADMM, copies of both w; and
w; (i.e. z;; and zj;, respectively) are introduced at every
edge v; and vy in the graph as per [6]. The transformed
problem can now be viewed as,

Zfl w;) + A Z ajil|zjk — 2kjll2-

icv (j,k)EE (6)

minimize

subject to  w; = z;i,
By applying ADMM against (6), we then decompose the
aforementioned optimization problem into 3 sub-problems,
as below.

wit = argmin (fi(wi) + Z gle — z + uUH )
wi JEN(3)
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where, u is a scaled dual variable used for mathematical
convenience and p (> 0) is the penalty parameter, while &
denotes the iteration number. We refer the reader to [5], [6]
for further reading on the mathematical proof of the above.
In such a topology, the sub-problems denoted by (7)
can be solved at different layers between local MEC and
centralized cloud infrastructures (see Figure 2) with different

semantics, as elaborated below.

Algorithm 1 Network-Lasso for MEC-based IoT systems

1: parameters: M -MEC environments, F,, F;-Expected

primal & dual residuals, p-Penalty parameter, K -

Maximum allowed iterations

for all m € M do © Loop over MECs in Cloud layer
Send initial Zij»> Zji and u;; to m

Initialize k, k |2 and ||res§||2

while Hres’;HZ > By Hres’j“z > Fy k< K do

for all m € M do > Distributed loop over MECs

N R N

e argmin () + 30 Gl =+l
JEN(3)

8: Send w" ™ to cloud layer
9: for all m € M do > Loop over MECs in Cloud
10:
zfjﬂ, ]"f1<— argmin ( ij 25 — 2jilly
z”,zﬂ
||wk+1 — zij + u”H2
+ me — i+ [)
11 witt e ul + (w25
12: Compute ||res’§”2 and |[resk||,

13: k+k+1

w; -update: As the first of the aforementioned three sub-
problems, w;-update is separable across each local MEC
environment in the MEC topology and solved in parallel.
A global iteration coordinator system will provide each and
every local MEC-based models the z;;- and wu;;-updates
cached from the previous iterations so that each local MEC
layer will then be able to independently train their own local
model with sufficient accuracy at each iteration (see Figure
2(a)). At the end of each local update, the resulting vector
of model parameters w; is synchronized with the global
model coordinator (see Figure 2(b)). This will assist the
global model coordinator to maintain a pseudo graph of the
MEC topology (together with the model parameters of each
local MEC layer), and carry out all subsequent steps against
the aforementioned graph.

2ij-, #ji- and wu;;-updates: In contrast to w;-update,
Zij-, %ji- and wu;;-updates are separable across edges that
exist over all nodes in the pseudo MEC topological graph
maintained by the global model coordinator. These updates
will be computed solely at the centralized cloud infrastruc-
ture to minimize extensive back-and-forth communication
between the local MEC networks and centralized cloud
infrastructures (see Figure 2(c)).

The complete algorithm that consolidates all the afore-
mentioned steps is depicted in Algorithm 1. We used a soft-
margin Support Vector Machine (SVM) [7] to train trust



Figure 1: A hypothetical deployment of MEC environment, which shows how the neighbouring MEC environments are

linked based on proximity forming a partial mesh network.
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Figure 2: A visualization of Network Lasso for MEC-based IoT systems.

prediction models in each individual MEC environment.
SVM had already been widely used and shown to work
well in prior trust research for developing classification-
and regression-based trust prediction models across multiple
context including IoT systems [8], [9]. This background
provided us with a rational basis to adapt SVM as the
MEC-local trust prediction problem to be solved as part of
each sub-task running in MEC environments of the reference
implementation. In that, each local MEC environment trains
its own SVM-based binary classifier to predict untrustworthy
IoT services.

IV. EVALUATION

Experiments: We conducted a series of experiments to
evaluate the suitability of the proposed approach for MEC-
based IoT environments. The primary objective of these
experiments was to observe the prediction accuracy of the
proposed approach by comparing the results it produces
against two baseline models. These baseline models included

¢ 100 local binary SVMs trained atop the same splits of
dataset upon which the Network Lasso model is trained,
representing a distributed yet a non-communicative and
isolated set of prediction models,

e a global binary SVM classifier trained atop the same
dataset to represent a centralized prediction model.

Network Lasso-based proposed model was trained over
multiple progressively incremented values of A € {0, 0.001,
0.01, 0.1, 1, 10, 100} and p=1.0 to determine the point
where it achieves maximum accuracy. A confusion matrix
representing Accuracy, Precision, Recall, F1-Score was used
to compare the performance of each binary SVM classifier

trained during the experiments.

Experiment Set-up: The simulation took into account a hy-
pothetical scenario where MEC can be used in a smart-city
set-up surrounding 100 suburbs in the Melbourne City Coun-
cil area. We marked every MEC environment pertaining to a
particular suburb as a node in a graph laid on top of a map of
Melbourne City Council (see Figure 2). The MEC topology
depicted in the form a complex graph resembles a partial
mesh network in which every node is connected to five other
nodes based on proximity. In addition, all simulations and
algorithms used were implemented in Python.

Dataset: All experiments were conducted on a population
of training examples extracted from UNSW-NBI15 [10], a
public dataset available for simulations of intrusion detection
systems. The dataset consisted of examples (each contain-
ing 49 numerical and categorical features) collected from
benign transactions and nine types of attacks scenarios,
labelled under two classes accordingly. This dataset was
first normalized, and then divided into 100 splits carrying
independent and randomly-sized (ne€[200, 2000]) datasets
forming an aggregate of 110892 examples. Random noise
was also added to each data split via flipping the labels of
randomly-picked samples to mimic a real-world dataset that
carries noise. The resulting splits and an aggregate of them
(with a training-to-test split ratio of 70:30) were used to train
local SVMs for each simulated MEC-environment and the
global SVM, respectively.

A. Results and Discussion

Results of our experiments (see Figure 3) showed that the
binary SVM classifiers trained by the Network Lasso based



model recorded a promising maximum average accuracy
of 97.79% (when A=10) whereas non-collaborative local
SVMs and the global SVM we used as baseline models
recorded an maximum average accuracy of 81.36% and
98.81%, respectively. In addition, the average precision,
recall and F1-score recorded by all three approaches against
the 100 simulated MEC environments via multiple trials too
showed similar results as depicted in Figure 3.
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Figure 3: Comparison of average accuracy, precision, recall
and F1-score of local, global and collaborative SVMs.

Based on the results, it is apparent that the proposed Net-
work Lasso based machine learning architecture significantly
outperforms the non-collaborative local SVM models trained
within each simulated MEC environment. The significant in-
crease in accuracy recorded by Network Lasso based SVMs
against non-collaborative local SVMs can be attributed to
the ability of the former to incentivize knowledge sharing
among prediction models trained by the nodes simulating
MEC environments. This affirms the effectiveness of the
proposed architecture as it encourages training prediction
models with higher accuracies even amidst distributed, noisy
and unbalanced datasets via collaboration. Therefore, the
proposed collaborative approach can be deduced signifi-
cantly better compared to each different MEC environments
attempting to train trust prediction models on top of their
locally accumulated datasets in isolation.

Meanwhile, the difference between the maximum average
accuracies shown by collaborative and global SVM models
was observed to be very insignificant. The superior accuracy
shown by the global SVM model can be attributed to it
being trained on a much larger dataset compared to the
smaller splits used by the MEC-local SVMs, as the former
sees a better view of the dataset during model training.
However, the above accuracy was achieved at the expense of
a total of 110892 communication iterations (i.e. the cost of
transmitting all training data to the centralized cloud) via
the simulated core network layer of the mobile network
providers. In comparison, the proposed approach showed
comparably superior accuracy with significantly reduced
number of communication iterations (n=29000), also offer-

ing controllability to achieve a trade-off between accuracy
and communication cost via tuning the hyperparameters.
These communication iterations were resulted in from car-
rying out the w; updates (see Section III) against the 100
nodes used in the simulated MEC topology. Consequently,
we can deduce that the proposed approach promises a
magnitude smaller network-stress on the core networks of
mobile network providers. This affirms the adaptability of
the proposed model to MEC-based IoT systems, and its close
alignment with the goals of the MEC paradigm [11].
V. CONCLUSION AND FUTURE WORK

This paper proposes a distributed machine learning architec-
ture based on the Network Lasso problem and Alternating
Direction Method of Multipliers algorithm for trust predic-
tion in MEC-based IoT services. The proposed architecture
allows training a distributed trust prediction model collabo-
ratively across a given topology of MEC environments by
sharing knowledge with each other. The proclaimed benefits
of our approach were validated via a suitable simulation
environment on top of a public dataset. Our future work
includes evaluating how the proposed model fares against
the scalability requirements and heterogeneity of trust infor-
mation available in typical MEC-based IoT systems.
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