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Abstract—The emergence of the metaverse signifies a paradigm
shift in Internet technology, offering a comprehensive virtual
social platform spanning various domains such as social in-
teraction, gaming, healthcare, and tourism. This new era of
the metaverse is facilitated by advancements in next-generation
digital technologies including edge computing, artificial intel-
ligence, virtual reality, augmented reality, and blockchain. In
the metaverse, the quantity and variety of services requested
by users may surpass those in other environments, and existing
work cannot be applied to metaverse QoS (Quality of Service)
optimization. To address this problem, this paper proposes Meta-
PPO, an optimization method for enhancing the QoS of metaverse
services using reinforcement learning. Firstly, metaverse services
are categorized into virtual scene services and meta-services,
providing a comprehensive framework for analysis. Secondly,
Meta-PPO, based on the proximal policy optimization algorithm,
is introduced to optimize the QoS of metaverse services. This
method effectively balances the objectives of minimizing average
delay and maximizing resource utilization of mobile devices by
making informed offloading decisions for the identified service
categories. Simulation results demonstrate the superiority of
the proposed method over existing techniques, showcasing its
suitability and effectiveness for enhancing the QoS of metaverse
service.

Index Terms—Metaverse, Computation offloading, Edge com-
puting, Reinforcement learning, Quality of Service

I. INTRODUCTION

The metaverse originated from the novel ”Snow Crash” by
American science fiction writer Neal Stephenson [1]. This
work is considered one of the earliest explorations of how the
virtual and real worlds interact, and to some extent reflects the
impact of virtual worlds on social structures and ideologies.
”World of Warcraft” and ”Second Life”, two online games,
are early examples of metaverse implementation [2]. These
video games offer a simulated world in which users can create
virtual avatars, communicate with other users, explore virtual
environments, undertake quests, and engage in social activities.
During a global live event, Facebook CEO and founder Mark
Zuckerberg announced that the company would transition
into a ”Metaverse company” and develop a metaverse on its
social media platform, integrating augmented reality (AR) and
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virtual reality (VR) [3]. The metaverse is poised to become
a significant force in the upcoming Internet era, influencing
various aspects of our lives.

Quality of Service (QoS) serves as one of the non-functional
attributes of a service, providing a benchmark for select-
ing services. To ensure the satisfaction of users within the
metaverse, numerous research endeavors have delved into
optimizing the QoS of metaverse services. As a real-time
virtual interactive platform, the delay and energy consumption
of metaverse services are widely recognized as key metrics
affecting users’ Quality of Experience (QoE). A series of
methods have been proposed to reduce delay and energy
consumption [4]–[8]. However, their attention has primarily
been directed towards the differences in QoS metrics between
metaverse services and other services, without delving into
the fundamental characteristics within metaverse services that
contribute to their heightened sensitivity to QoS. Addition-
ally, optimization efforts have commonly been concentrated
on specific categories of services within the metaverse. For
instance, Zhang et al. [9] and Huang et al. [10] have discussed
AR services within the metaverse, while Liu et al. [8] and
Meng et al. [11] have examined VR services. While these
studies have demonstrated enhancements in user QoE for
specific services, such optimization approaches may result in
incomplete optimization of metaverse services as a whole. As
an emerging service paradigm, metaverse services are required
to more comprehensively address the diverse requirements of
both users and providers.

Despite these advancements, there are still two major gaps
in current approaches:

• Concentrating exclusively on optimizing individual
services within metaverse environments can result in
incomplete optimization strategies. Such approaches
may fail to consider the unique characteristics of the
metaverse, where users are not bound by the temporal
and spatial constraints of the physical world. In the meta-
verse, the demand for various service types within virtual
scenes can far exceed what is typically observed in real-
world scenarios. A single metaverse service requested
by a user may encompass multiple services with diverse
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Fig. 1. The example of metaverse service

functionalities, mirroring the complexities of the virtual
environment. Focusing solely on optimizing a limited
number of service types may prove insufficient in meeting
the genuine needs of metaverse users.

• Previous methods overlooked the resource utilization
of mobile devices. Current development trends indicate
that mobile devices, including head-mounted displays
(HMD), will become essential elements of the metaverse.
Compared to other environments, the dependence of
metaverse users on mobile devices will increase sig-
nificantly. Facing the inevitable consumption of mobile
device resources, the challenge is how to better utilize
mobile devices to enhance the user experience in the
metaverse. Previous QoS optimization efforts primarily
focused on minimizing the energy consumption of ser-
vices. However, in the metaverse, energy savings alone
cannot directly improve the user experience. In addition
to energy consumption, the utilization of other mobile de-
vice resources has received scant attention. Overlooking
the utilization rate of mobile device resources will have
a significant impact on metaverse users.

Consider the following example illustrated in Fig.1: User A
wears an HMD and enters the metaverse game X, starting
in a rainforest environment. Initially, A’s requested metaverse
service is to render and construct the rainforest scene. How-
ever, as A encounters challenges within the game, they opens
a web browsing interface within the metaverse to search for
game guides. At this moment, A’s requested metaverse service
shifts to search services. Meanwhile, A’s friend B sends a
voice request, inviting A to engage in a voice call while
remaining within the rainforest scene. Here, A’s requested
metaverse service transitions to voice services. Subsequently,
A accepts B’s invitation to explore a virtual Forbidden City
scene together resulting in a new request for virtual scene
services. Upon arrival at the entrance of the Forbidden City, A
requests navigation services, which manifest directly beneath
the user’s feet. Based on the aforementioned example, this
paper categorizes metaverse services and proposes a QoS
optimization method for metaverse services based on rein-
forcement learning. The contributions of this paper are as
follows:

• We analyzed metaverse services and proposed a novel
classification scheme. We suggested categorizing meta-
verse services into two main types: virtual scene services
and meta-services. Virtual scene services are utilized
to construct virtual scenes within the metaverse (e.g.,
rendering rainforest scenes, rendering Forbidden City
scenes), while meta-services cater to users’ diverse needs
(e.g., search services, voice services, navigation services)
within the metaverse. This categorization method is ap-
plicable to services within the metaverse.

• We designed a QoS optimization method using the prox-
imal policy optimization algorithm from reinforcement
learning. In selecting QoS metrics, we considered de-
lay as well as the energy consumption and memory
usage of mobile devices. Unlike previous studies that
aimed to minimize the energy consumption of services,
we reframed energy consumption and memory concerns
to enhance the utilization efficiency of mobile devices,
aligning with the reality of limited resources on head-
mounted displays. This approach achieves a balance
between minimizing average delay and maximizing uti-
lization of mobile resources by simultaneously making
offloading decisions for both types of services.

• QoS data for virtual scene services were obtained through
simulation and emulation. Additionally, QoS data for
meta-services were gathered from publicly available
datasets. Subsequently, we compiled datasets that adhere
to the specifications of the metaverse service settings
proposed in our study by combining virtual scene ser-
vices and meta-services in varying proportions. Using the
collected dataset, we conducted a series of experiments to
demonstrate the effectiveness of our proposed approach.
Simulation results demonstrate that our approach outper-
forms traditional methods.

The remainder of this paper is organized as follows: Section
II introduces related work. Section III describes the details of
the metaverse model. Section IV provides an introduction to
the optimization method. Section V presents the experimental
results. Finally, Section VI concludes the paper.

II. RELATED WORK

A. Optimization for QoS in Cloud and Edge environments

With the increasing development of cloud computing and
edge computing, QoS optimization has become a current
research hotspot. In the cloud computing environment, Zhao
et al. [12] proposed a strategy to improve users’ QoS through
the collaboration of local clouds and Internet clouds. Zhang
et al. [13] introduced a theoretically optimal mobile cloud
computing framework for energy consumption under stochas-
tic wireless channels, which adjusts CPU frequency savings
through different offloading modes. In addition to mobile
energy consumption, Ge et al. [14] presented a game theory
approach to optimize the energy consumption of the entire
cloud computing system. Chen et al. [15] designed a multi-
user distributed computing offloading algorithm that achieves



Nash equilibrium and demonstrated the effectiveness of their
algorithm through experiments. Considering that the operation
of most cloud services is primarily dependent on infrastructure
servers [16], there is a need for unique methods in the
metaverse environment to consider factors such as resource
constraints and execution delay of mobile devices. Conse-
quently, the QoS optimization methods applicable in cloud
environments are not suitable for the metaverse.

Unlike the cloud environment, mobile edge computing can
bring services closer to users to improve QoS. Xiao et al.
[17] aimed to minimize the maximum delay of the system.
They decomposed the problem into task offloading and trans-
mission power allocation and solved them separately using
matching theory and heuristic ideas. Shu et al. [18] proposed a
coordinated EFO algorithm that balances competition among
users for wireless communication and computing resources.
By considering the dependency relationships of sub-tasks in
DAGs, their method reduces overall system delay. You et al.
[19] addressed the multi-user resource allocation problem by
formulating it as a convex optimization problem. They pro-
posed a low-complexity algorithm to minimize mobile energy
consumption while meeting delay constraints. Song et al. [20]
proposed an approach to enhance task management in edge
computing networks, aiming to address resource limitations
and network challenges in IoT infrastructures while improving
task processing capabilities and meeting QoS requirements.
Apart from the well-known disparities in QoS and differences
in quantity, users are unable to concurrently request multiple
services with distinct functionalities in the physical world.
However, in the metaverse, where there are no limitations of
time and space, the integration of services with diverse func-
tionalities and categories is required to offer a unified service
to users. There is currently no edge-based QoS optimization
approach specifically designed for concurrently optimizing
services with distinct functionalities or categories. Conse-
quently, existing edge-based QoS optimization approaches are
incapable of effectively optimizing the multi-layered services
required within the metaverse.

In summary, QoS optimization methods in cloud and edge
environments are difficult to directly apply to the metaverse
environment.

B. Optimization for QoS in Metaverse

Xu et al. [21] presented a broad definition of metaverse
services while also discussing the key technologies supporting
metaverse services, as well as the challenges and oppor-
tunities for metaverse services in the future. Currently, a
predominant approach adopted by many researchers is to treat
supporting devices for the metaverse, such as smart glasses,
as local devices within the MEC environment. Gao et al.
[22] proposed an algorithm named MO-SAC, which utilizes
a dual-level central controller to localize users within the
metaverse. This algorithm jointly optimizes transmit power,
RIS phase shift, and error decoding probability to achieve the
simultaneous minimization of service cost and transmission
delay in metaverse services. Huang et al. [23] investigated

the Mixed Augmented Reality (MAR) services within the
metaverse and proposed a resource allocation framework
tailored for metaverse MAR services. Sahraoui et al. [24]
proposed an edge hybrid computing architecture that leverages
the distributed computing paradigm supported by the edge
to address the substantial computational costs required by
metaverse applications. Through simulation-based verification,
they demonstrated that their architecture can reduce delay
by 50% compared to traditional cloud-based metaverse ap-
plications. Zhang et al. [9] incorporated the consideration of
location information for AR services in metaverse applica-
tions. Upon each user being localized, they communicate with
MEC servers. These servers adaptively adjust the resolution
of AR services while balancing the QoE for users. Chu et
al. [25] assert that metaverse applications demand unprece-
dented amounts of resources. They proposed an application
grouping solution called MetaInstance, which aims to address
the allocation of a significant number of diverse resources.
Through experimentation, they demonstrated the superiority
of their approach.

In general, most of the current studies regard metaverse
services as services with higher resource demand and more
sensitive QoS values. These studies often focus on optimizing
singular services like VR, AR, and MAR within metaverse
services. However, the metaverse typically encompasses a
variety of services, and optimizing only a single service is
insufficient to meet the diverse needs of metaverse users.
Moreover, existing works primarily focus on reducing energy
consumption from a service perspective, while overlooking the
significance of mobile devices in the metaverse. Therefore,
this paper discusses a novel approach for categorizing meta-
verse services and proposes a method utilizing deep learning
algorithms to optimize the QoS of metaverse services and the
resource utilization of mobile devices.

III. SYSTEM OVERVIEW

In this section, firstly, we introduce a novel classification
method for metaverse services. Secondly, we present the
metaverse model employed in our study and define the metrics
of task delay and mobile device resource utilization. Finally,
we formulate the optimization problem based on the proposed
approach.

A. Metaverse Service

In the metaverse, users are unbounded by temporal and
spatial constraints, rendering the selection of service types
unpredictable. Furthermore, services with lower interdepen-
dencies in the physical realm are highly likely to be simultane-
ously requested in the metaverse environment. If optimization
efforts are limited to a specific subset of services, it would be
challenging to adequately address the users’ demands. Thus, in
this paper, we propose a novel definition for metaverse services
by classifying them into two categories: virtual scene services
and meta-services, as represented by the following equation:

Metaverse Service = Virtual Scene Service + Meta-Service



1) Virtual Scene Service: When users enter the metaverse
by wearing devices such as head-mounted displays, they are
immersed in a completely new virtual world. This virtual
world is constructed by combining one or more virtual scenes,
which can resemble real-world settings such as movie theaters,
gyms, or conference rooms. It can also feature game-like envi-
ronments that do not exist in the physical world, such as Mars
bases, deserts, or rainforests. These scenes are predominantly
designed and provided by metaverse service providers, with
only a small portion being user-designed and cached within
metaverse applications.

2) Meta-Service: Meta-services, on the other hand, refer
to the ”functional services” that users actually utilize within
the metaverse. These services are similar to those found in
traditional environments and are provided by service providers
to users. They offer various functionalities and services, such
as data querying, business logic processing, and file transfer.
They can span across different platforms and technologies,
enabling interoperability between different applications. Com-
mon types of meta-services include video services, search
services, and more.

Compared to previous methodologies, our proposed novel
categorization approach offers a higher-dimensional frame-
work for defining metaverse services. By categorizing services
according to the unique characteristics of the metaverse virtual
world, our method encompasses various service categories
within the metaverse. By optimizing QoS of metaverse ser-
vices based on our categorized approach, we can achieve com-
prehensive optimization targeting multiple service categories,
rather than individually optimizing specific categories based on
traditional environments. The outcomes of our categorization
method effectively resolve the issue of incomplete optimiza-
tion in metaverse services.

B. Metaverse Model

In this paper, we focus on a metaverse system where there
is a single metaverse user with a mobile device (MD). The
system includes a mobile base station (BS) equipped with a
server, which can provide services to the MD. Our system
operates in a time slot manner, where each user request
for metaverse services generates a series of pending tasks
on the MD. Each time slot is dedicated to completing one
task. Due to the limited resources of the MD (e.g., memory,
energy), certain tasks that are executed locally may not fully
meet the user’s requirements, Therefore, a portion of the
tasks is offloaded to the BS to alleviate resource constraints.
we consider the computational and storage capabilities of
both the BS and MD, BS = (Fbs, Cbs, Bbs,Mbs),MD =
(Fmd, Cmd, Bmd,Mmd, Emd), F and C respectively denote
the frequency (GHz) and the number of cores of the CPU,
B denotes available bandwidth resources (Gbps), M denotes
available memory resources (bits), and E denotes energy
consumption (J). In our system, the energy consumption and
memory of MD are limited, and insufficient to support user
requests for all services. However, given that in practical
scenarios, the memory capacity of BS does not affect whether

tasks are offloaded when targeting a single user, we approxi-
mately regard the memory of BS as infinite.

C. Task Model and Optimization Metrics
In this section, we will introduce two selected optimization

metrics in the metaverse system: delay and mobile device
resource utilization. It is important to note that tasks in the task
list can be executed concurrently. Therefore, the system will
allocate resources equally among tasks based on offloading
decisions.

1) Delay: Firstly, in our system, as users request metaverse
services, a series of tasks, denoted as Tasksn = (In, On, Pn).
Here, n represents the ID of the task, s represents the offload-
ing decision result of the task, In represents the input data
size of the task, On represents the instruction count size, and
Pn represents the task type. We define the offloading decision
for the computational tasks TJ generated in the first J time
slots on the MD as SJ = (s1, s2, s3. . . sj):

Sj =

{
0,Local computing
1,Offloading to the server

(1)

Considering the substantial disparity in resources between the
local device and the server, different offloading decisions have
a significant impact on the delay of tasks. Below, we delineate
the differences in task delay Ds

n under two distinct offloading
decision strategies:

• Local computing: When sj = 0, it indicates that the
task in the jth time slot is decided to be executed locally.
Therefore, in this case, the task delay only includes the
computation delay d0cal,n, where F(·) = Fmd∗Cmd

Num(Task0
n)

.
Here, Num(Task0n) represents the number of tasks exe-
cuted locally under the current decision. The formula is
as follows:

d0cal,n =
Task0n(On)

F (Fmd, Cmd)
(2)

• Offloading to the server: When sj = 1, it indicates that
the task in the jth time slot is decided to be offloaded to
the server for execution. Therefore, in this case, the task
delay includes both the transmission delay and the com-
putation delay on the server, i.e., d1n = d1cal,n + d1tran,n.
Here, G(·) = Fbs∗Cbs

Num(Task1
n)

, where Num(Task1n) repre-
sents the number of tasks offloaded to the edge server for
execution under the current decision. The specific formula
is as follows:

d1cal,n =
Task1n(On)

G(Fbs, Cbs)
(3)

Similar to [26], when tasks are offloaded to the edge
server for execution, we consider that the edge server has
sufficient resources and the output data returned from the
edge server to the mobile device is typically small and
can be ignored compared to the input data. Therefore,
our transmission delay is calculated only from the mobile
device to the server, as follows:

d1tran,n =
Task1n(In)

G(Bbs, 1)
(4)



2) Resource Utilization: Mobile devices with constrained
resources have a significant impact on the sustained QoS of
metaverse services. In offloading scenarios, it is a common
practice to evenly allocate CPU resources to tasks based on
decision results [27]. Therefore, with relatively stable CPU
resources, we have selected two attributes, energy consumption
and memory, which exhibit variations depending on different
offloading decisions. We define the utilization rate of these two
attributes, weighted together, as the resource utilization rate
of the mobile device. This serves as our second optimization
objective.

a) Energy: As time progresses, mobile devices consume
varying amounts of energy due to different offloading deci-
sions. Edevice

0 represents the initial energy consumption of the
mobile device. We calculate the remaining energy Edevice

j of
the mobile device for each time slot and the energy ETask

n

required for task Tasksn to be executed locally in the current
time slot. Additionally, our study aims to explore the impact of
different offloading methods on mobile devices. Therefore, we
neglect energy consumption during idle times of the mobile
device, i.e., when sj = 1.

Edevice
j = Edevice

0 −
j−1∑
n=0

ELocal
n (5)

ELocal
n =

{
0 , sj = 1

ETask
n , sj = 0

(6)

ETask
n = µ ∗ d0n (7)

Here, µ is a constant representing the energy consumption
coefficient per unit time for the mobile device hardware. It
is important to note that when Edevice

j < ETask
j , it means

that the mobile device cannot meet the energy consumption
required for executing the next task locally. In such cases, the
task in the next time slot can only be offloaded to the server.

b) Memory: Similar to energy consumption, once a task
is decided to be computed locally, the memory of the mobile
device gradually gets occupied by the input and instruction
data of the locally executed tasks. Mdevice

0 represents the
initial memory of the mobile device. When the remaining
memory of the mobile device, Mdevice

j , is not sufficient to
accommodate the memory requirement of the task in the
current time slot, MTask

j , the task will be offloaded to the
server. The specific formula is as follows:

Mdevice
j = Mdevice

0 −
j−1∑
n=0

MLocal
n (8)

MLocal
n =

{
0 , sj = 1

Tasksn(In) + Tasksn(On) , sj = 0
(9)

After all the tasks have been assigned offloading decisions,
the resource utilization rate R can be defined as follows:

R = α ∗
Edevice

0 − Edevice
j

Edevice
0

+ β ∗
Mdevice

0 −Mdevice
j

Mdevice
0

(10)

Where α and β represent the weights for energy and memory,
respectively, satisfying α+ β = 1.

D. Optimization Problem

According to the aforementioned system model, we have
set both task delay and mobile device resource utilization rate
as optimization objectives. It is anticipated that increasing
the device resource utilization rate implies executing more
services locally. However, MDs have limited resources, and
allocating more tasks locally is likely to result in increased
delay. Therefore, our two optimization objectives are likely to
be conflicting. Specifically, our optimization problem can be
formulated as follows:

MOP: Min q1 =

j∑
n=1

Ds
cal,n +

j∑
n=1

Ds
tran,n (11)

Max:q2 = R = α∗
Edevice

0 − Edevice
j

Edevice
0

+β∗
Mdevice

0 −Mdevice
j

Mdevice
0

(12)

s.t. C1 : α+ β = 1 (13)

C2 :

j∑
n=0

ELocal
n ≤ Edevice

0 (14)

C3 : Edevice
j ≥ ETask

j (15)

C4 :

j∑
n=0

MLocal
n ≤ Mdevice

0 (16)

C5 : Mdevice
j ≥ MTask

j (17)

C1 represents the adjustability of energy consumption and
memory within resource utilization through weighting. Fur-
thermore, C2 and C4 stipulate that the energy consumption
ELocal

n and memory MLocal
n utilized by locally executed tasks

should not surpass their initial levels. Concurrently, C3 and C5

dictate that the current remaining energy consumption Edevice
j

and memory Mdevice
j on the mobile device must satisfy the

requirements for executing the Jth time slot task locally.

IV. THE META-PPO APPROACH

Considering that reinforcement learning can make sequen-
tial decisions tailored to the problem while considering the
long-term benefits brought by the decisions [28], we propose
an optimization method for the QoS of metaverse services
called Meta-PPO. The overall framework of the Meta-PPO is
outlined below.

A. Method Overview

The overall framework of the proposed optimization method
is illustrated in Fig. 2. The method comprises the following
three steps:

• Data collection and processing. The data collected in
this paper consists of QoS data for metaverse services.
QoS data comprises values of multiple QoS attributes
corresponding to virtual scene services and meta-services
delineated by the metaverse service. After cleaning out
anomalies and invalid data, the collected data is aggre-
gated and combined in diverse proportions and quantities
to accurately reflect the service demands of metaverse



Fig. 2. Overall workflow diagram of Meta-PPO

Algorithm 1 Meta-PPO Task Offloading Algorithm
1: Initialize Mobile Device and Base Station
2: Initialize Buffer memory
3: Initialize the policy π and optimal solution φ = {}
4: Initialize learning rate of actor and critic
5: for episode=1,2,...,E do
6: Set π → π˜ and the solution φ = {}
7: for time slot t = T do
8: Initialize the state s
9: Select the action a with the policy π˜

10: Confirm a with the state s
11: Observe the reward r(s, a)with action a
12: Get the next state s̃
13: Store (s, a, r(s, a), s̃) into the buffer
14: Add the strategy to φ
15: end for
16: end for
17: Clean the replay buffer
Output: The optimal solution

users across different virtual environments, ultimately re-
sulting in the generation of the metaverse service dataset.

• Initial offloading strategy generation. Following the prin-
ciples of reinforcement learning algorithms, this paper
defines a policy network to generate actions for the rein-
forcement learning problem, namely the task offloading
strategy under the context of this paper’s problem.

• The offloading strategy iterative update. After obtaining
the task offloading strategy, the corresponding QoS values
(such as delay, and energy consumption) and local device

resource utilization rate can be calculated based on the
offloading strategies generated for each service. By ad-
justing the weights of the two optimization objectives, a
multi-objective optimal solution can be formed.

B. Method Details

1) Data Collection and Processing: Considering the pre-
viously defined metaverse services consisting of virtual scene
services and meta-services, the dataset collected in this study
is composed of two sub-datasets. The first sub-dataset is the
virtual scene service dataset, which contains QoS data infor-
mation for constructing virtual backgrounds in the metaverse.
Each QoS sample includes multiple QoS attribute values for
the respective service. To capture authentic data for metaverse
services, we utilized the 3D modeling software to build virtual
scenes and collect the required QoS attributes for virtual scene
services. The second sub-dataset is the meta-service dataset.
Meta-services in the metaverse are similar to services in tra-
ditional environments, provided by service providers to fulfill
various user requirements. For constructing the meta-service
dataset, we collected a large amount of QoS information for
different types of services from publicly available datasets.
The QoS attributes included in this dataset are consistent
with those collected in the virtual scene service dataset. After
removing invalid QoS sample information from both sub-
datasets, multiple metaverse service datasets are constructed
by combining them in different proportions.

2) Initial offloading strategy generation: This paper utilizes
a policy network to generate the initial offloading strategy.
Based on the data collected in the first step of dataset col-
lection, we initialize the state information and then input the
state information and action dimension into the policy network



to obtain the initial unloading policy. Details regarding states,
actions, and others will be introduced in step three. Our policy
network consists of three fully connected layers. The first
layer maps the input state data s to a hidden layer H . The
second layer maps the output of the hidden layer back to the
hidden layer itself, thus facilitating information transmission
and transformation, i.e., H

′
= f(H). The final layer maps

the output of the hidden layer H
′

to the dimension of the
action space, thereby obtaining the actions A that the agent
may take given a certain state, i.e., A = g(H

′
). We choose

the hyperbolic tangent function tanh as the activation function
of the policy network. To prevent common problems such as
gradient explosion in reinforcement learning, we initialize the
weight parameters of the neural network through orthogonal
initialization.

3) The offloading strategy iterative update: After generat-
ing the initial offloading strategy, we iteratively update the
offloading strategy by updating the policy network and the
evaluation network through the proximal policy optimization
algorithm, ultimately obtaining the optimal solution. Below,
we will provide a detailed introduction to our algorithm:

The Proximal Policy Optimization (PPO) algorithm is a
policy gradient-based reinforcement learning algorithm. The
process of solving problems in reinforcement learning is typi-
cally modeled as a Markov Decision Process (MDP). An MDP
is commonly represented by a quadruple < S,A, P,R >,
where:

• state: The set of all possible states in the environment
• action: The set of all feasible actions available to the

agent
• transition probability: P a

ss′ = P (St+1 = s′|St = s,At =
a)

• reward: The reward obtained by the agent when it takes
the corresponding action in the t-th time slot.

The expected value of the reward after N episodes can be
estimated as follows:

R̄θ =
∑
τ

R(τ)P (τ | θ) ≈ 1

N
ΣN

n=1R(τn) (18)

The traditional policy gradient algorithm is a method that
computes the gradient of the current policy through interaction
between the agent and the environment, aiming to update
the current policy and ultimately find the optimal policy. The
optimal policy can be represented as follows:

θ∗ = argmaxθR̄θ (19)

Next, we will introduce the Meta-PPO method, which is
based on reinforcement learning, for optimizing QoS in the
metaverse.

a) State Space: In this paper, each state within the
reinforcement learning framework is characterized by the
observed actions undertaken by the agent. Considering the
optimization objectives set in this paper, we regard the mobile
device as the agent, making unloading decisions for only one
task during each time slot interval. Specifically, the state Sjat
time slot j is denoted as Sj = [ej ,mj ], where ej represents

the remaining energy of the mobile device during time slot j,
and mj signifies the remaining memory of the mobile device
at the same time slot.

b) Action Space: The action space set A encompasses
the entirety of feasible actions. We endeavor to optimize
the specified objectives by making unloading decisions for
metaverse services. Additionally, as the environmental con-
ditions fluctuate, the feasible action set Aj ∈ A may undergo
alterations. Specifically, aj = 0 corresponds to the decision
to locally execute the task during the current time slot, while
aj = 1 indicates the decision to offload the task to the edge
server for computation.

aj =

{
0,Local computing
1,Offloading to the server

(20)

It is imperative to emphasize that if the state Sj fails to meet
the resource and energy demands of the task scheduled for the
subsequent time slot j, the action At is set to 1, denoting the
necessity to offload the task to the edge server for computation.

c) Reward: For each time slot, making an appropriate
unloading decision for the corresponding task is regarded as
selecting an action within the current environmental state.
Each action generates a specific reward. In line with the multi-
objective optimization problem previously outlined, the reward
at this stage is represented as an instantaneous vector. In
this study, we define the reward as an array r(sj , aj) where
r(sj , aj) = [r1(sj , aj), r2(sj , aj), r3(sj , aj)] Here, the reward
r1 represents the total delay for all services after executing the
unloading decision during the current time slot j:

r1(sj , aj) = −
j∑

n=1

Ds
n

num
Num (21)

To balance the latency of two columns of services and mitigate
instances within 21 where sacrificing one service type for the
sake of reducing overall delay occurs, we have introduced an
additional reward term, denoted as r2, specifically aimed at
incentivizing delay reduction. The r2 denotes the cumulative
delay for virtual scene services and metaservices following the
execution of the unloading decision during time slot j, given
by:

r2(sj , aj) = −(

j∑
n=1

Ds
n,vir

numj
vir

Numvir+

j∑
n=1

Ds
n,meta

numj
meta

Nummeta)

(22)
Where Ds

n,vir and Ds
n,meta denote the delay for virtual ser-

vices and meta-services, respectively. numj
vir and numj

meta

represent the quantities of virtual services and meta-services
that have been decided upon at the current time slot j, while
Numvir and Nummeta denote the total numbers of virtual
services and meta-services, respectively.



According to 10, we set the reward r3 as the utilization
of the mobile device’s memory and energy resources in the
current time slot:

r3(sj , aj) = α ∗
Edevice

0 − Edevice
j

Edevice
0

+ β ∗
Mdevice

0 −Mdevice
j

Mdevice
0

(23)
In conclusion, we can tailor various requirements by assign-

ing distinct weights to r(sj , aj).

V. EXPERIMENTAL EVALUATION

In this section, a series of experiments were meticulously
devised to validate our proposed method for optimizing QoS in
the metaverse. The experiments were meticulously conducted
on a computer equipped with an Intel(R) Core(TM) i9-12900H
processor operating at 2.50 GHz, 16.0GB of RAM, running
the Windows 11 operating system, and featuring an NVIDIA
GeForce RTX 3060 GPU. Our method was meticulously
developed and implemented using the Python programming
language and the PyTorch framework. The primary objective
of our experiments is to address the following inquiries:

• RQ1: Does Meta-PPO satisfy the minimum delay re-
quirements in the metaverse environment?

• RQ2: Does Meta-PPO outperform other reinforcement
learning methods?

• RQ3: How does Meta-PPO achieve the optimal trade-off
between delay and resource utilization?

For the metaverse system under consideration for applicable
metaverse services, we focus on a scenario involving only
one server and one mobile device. The CPU frequency of the
mobile device is set to 3 GHz with 2 cores, and the bandwidth
is set to 6 Gbps. To simulate the limited resources of the
mobile device, we dynamically adjust the resources of the
mobile device to be correlated with the number of services in
the selected dataset. As the number of services in the dataset
increases, the energy and memory of the mobile device also
increase accordingly. Regarding the server, we set the CPU
frequency to 30 GHz with 8 cores, and the bandwidth is set to
10 Gbps. Our algorithm parameters are shown in the following
table:

TABLE I
ALGORITHM PARAMETERS

parameters value
Learning rate of actor 1*10ˆ(-3)
Learning rate of critic 1*10ˆ(-3)

Clipping parameter 0.2
Number of traing round 500

Discount factor 0.9

A. Dataset Description

The dataset in this paper comprises two parts: the virtual
scene service dataset and the meta-service dataset.

Given the current developmental stage of metaverse appli-
cations, the provision of virtual scenes to support users is
temporarily limited. Therefore, virtual scenes exhibit a high

degree of predictability. In the process of constructing the
virtual scene dataset, we utilized Fusion 360 software for
rendering to create 50 distinct virtual scenes to simulate scenes
within the metaverse. Monitoring software was employed to
record various QoS metrics such as start time, end time, data
size, and required CPU resources for each virtual scene. Tasks
associated with these virtual scene services were designated
as type 1, and all data information was subsequently stored to
compile the virtual scene service dataset.

Meta-services, similar to conventional services, are charac-
terized by smaller data volumes and lower resource require-
ments such as CPU and bandwidth compared to the virtual
scene services defined in this study. For the construction of
the meta-service dataset, a random selection of 500, 800,
1000, 2000, and 3000 data entries was made from the Alibaba
Cluster Data V2017 dataset, which was publicly released
by Alibaba Group in 2017. For each task, the start and
end timestamps, required CPU resources, and data size were
meticulously recorded. All such data types were categorized
as type 0. Subsequently, we stored all the data information
to construct the meta-service dataset. Upon completing the
construction of both the virtual scene service dataset and the
meta-service dataset, the two datasets were amalgamated into
the metaverse service dataset, with variations in proportions
and quantities.

TABLE II
VIRTUAL SCENE SERVICE DATASET

id start time end time data size(MB) demand cycle task type
1 2023/7/27 18:31 2023/7/27 18:32 626.1 401 1
2 2023/7/21 23:32 2023/7/21 23:32 763.3 427 1
3 2023/7/26 21:17 2023/7/26 21:18 810.4 515 1
... ... ... ... ... 1
50 2023/7/24 14:14 2023/7/24 14:14 792.6 573 1

TABLE III
META-SERVICE DATASET

id start time(s) end time(s) data size(MB) demand cycle task type
1 9121 9139 0.0081 50 0
2 11162 11192 0.0041 50 0
3 12120 12143 0.0054 50 0
... ... ... ... ... 0

5050 17537 17547 0.0107 100 0

B. Experimental Results

To address RQ1, we consider that in the metaverse, users
often engage in multiple activities within a virtual scene. For
instance, a user in a metaverse virtual fitness room may simul-
taneously request services such as running, listening to music,
and online shopping. To capture this scenario, we selected a
range of 505, 808, 1010, 2020, and 3030 metaverse services,
with a proportion of 1:100 between virtual scene services
and meta-services. This ratio reflects the realistic scenario in
which each metaverse user can perform multiple activities
in a virtual scene [21]. Fig. 3 presents the optimal average
delay (s) for all services, virtual scene services, and meta-
services. From the results, we can conclude that our approach
satisfies the minimum delay requirements of mobile devices,



Fig. 3. The delay of various quantities of services

Fig. 4. The delay of different proportions of services

such as head-mounted displays, across varying quantities of
metaverse services [29]. Additionally, we observe that the
delay of individual virtual scene services has a more significant
impact on overall delay than meta-services, reinforcing the
significance of our research findings.

Furthermore, considering the realistic scenario where some
users may prefer frequent switching between metaverse virtual
scenes, we modified the ratio between virtual scene services
and meta-services. Consequently, we selected sets of 1010,
1020, 1030, 1040, and 1050 services, with varying propor-
tions of virtual scene services to metaverse services: 1:100,
1:50, 3:100, 1:25, and 1:20, respectively. Experimental results
demonstrate the effectiveness of Meta-PPO across different
ratios of virtual scene services to meta-services. Refer to Fig.
4 for specific details.

For RQ2, considering the significant dependence of heuris-
tic algorithms on expert knowledge or accurate mathematical
models, the process of updating models to tackle the proposed
offloading problem can be time-consuming [30]. In contrast,
reinforcement learning methods excel in capturing latent dy-
namics of an environment without any a priori knowledge,
enabling the acquisition of optimal long-term goal strategies
through iterative exploration within specific contextual settings
[31]. Consequently, reinforcement learning is regarded as
a well-suited approach for efficiently searching for optimal
solutions in dynamic and evolving environments [32]. Hence,
we selected three classic reinforcement learning algorithms,

Fig. 5. Comparative analysis of reward values across different algorithms

namely DQN, DDPG, and A2C, to compare their performance
with our proposed method, PPO. DQN was chosen as a rep-
resentative of classic reinforcement learning algorithms, while
DDPG was selected due to its suitability for handling multi-
dimensional action problems [33]. A2C, although similar to
PPO in some aspects [34], differs in terms of not performing
replay of sampled data and gradient clipping. Therefore, we in-
cluded DQN, DDPG, and A2C as the comparative algorithms.
We conducted the comparison using a dataset consisting of a
total of 1010 services, with a ratio of 1:10 between virtual
scene services and meta-services. After 500 episodes of itera-
tions, we evaluated the average sum of rewards and compared
it with our proposed method. As depicted in Fig. 5, after 500
iterations, we observed the convergence of rewards for PPO,
A2C, and DDPG, stabilizing at a range of approximately [0,
30]. A2C showed a similar convergence range to DDPG but
with DDPG converging slightly earlier. In contrast, DQN did
not exhibit a clear convergence trend even after 500 iterations.
Based on these results, we can conclude that our proposed
method outperforms the comparative algorithms. Fig. 6 and
Fig.7 depict the average values of our optimization objectives
under different algorithms. Fig. 6 illustrates the delay(s) for
all services, virtual scene services, and meta-services in a
dataset comprising 1010 instances and 500 episodes, with
a ratio of 1:10 between virtual scene services and meta-
services. Considering delay as a singular objective, our method
outperforms DDPG and DQN significantly in terms of overall
delay, virtual scene service delay, and meta-service delay. The
optimization effect of A2C in terms of meta-service delay
is similar to our proposed method. However, A2C exhibits
noticeably higher virtual scene service delay compared to
other methods. Such an optimization approach that sacrifices
virtual scene service delay excessively is not suitable for
users who frequently switch virtual scenes. The comparative
effects of our optimization objective, energy consumption, are
presented in Fig.7. Under the balanced strategy of energy
consumption and memory, i.e., α = β = 0.5, our method
achieves a resource utilization rate of 59.5%. This represents



Fig. 6. The delay of different algorithms

Fig. 7. The resource utilization rates of different algorithms

a 1% improvement over DDPG, a 9.5% improvement over
DQN, and a 2% decrease to A2C. We attribute this to the
fact that A2C excessively sacrifices delay, resulting in opti-
mization strategies that prioritize resource utilization. Taking
into account a comprehensive evaluation, our method exhibits
superiority over alternative approaches.

To address RQ3, Considering the offloading of services to
servers can effectively reduce computational delay but may
lead to a decrease in resource utilization on mobile devices.
we employed the concept of Pareto optimality to tackle this
problem. Pareto optimality is a common solution in multi-
objective optimization problems [35]. It is defined as a solution
where no improvement in one objective can be made without
degrading at least one other objective. Graphically, Pareto
optimality is often depicted as a curve or boundary known
as the Pareto Frontier. This frontier illustrates the trade-off
relationships between various objectives, where each solution
excels in some objectives over others but is relatively inferior
in others.

In this paper, we sought the Pareto Frontier by employing
different optimization algorithms such as DDPG, PPO, DQN,
and A2C. Fig. 8 illustrates the Pareto Frontiers we discovered
under these algorithms. From the graph, it can be observed
that the Pareto points of the DDPG algorithm resemble the
Pareto Frontier of the PPO algorithm. However, the Pareto
points of the DDPG algorithm are excessively concentrated,

Fig. 8. Pareto frontier of different algorithms

indicating a limitation in balancing various objectives with this
algorithm. On the other hand, the DQN and A2C algorithms
each conducted relatively good exploration in the objectives
of energy consumption and resource utilization, respectively.
However, they were unable to explore these objectives more
deeply simultaneously. In summary, our approach outperforms
other optimization algorithms in approximating the Pareto
Frontier. Our method excels in balancing various optimization
objectives and achieves a better equilibrium between energy
consumption and resource utilization, thereby obtaining supe-
rior solutions.

VI. CONCLUSION

In this paper, we investigate the metaverse and metaverse
services, proposing a QoS optimization method applicable to
the metaverse environment. We categorize metaverse services
into virtual scene services and meta-services and make of-
floading decisions for these two types of services, aiming
to minimize delay and maximize mobile device resource uti-
lization under constraints of computation, bandwidth, energy
consumption, and memory. Simulation results demonstrate
the superiority of our proposed method over other traditional
reinforcement learning methods.

For future work, we will further explore these issues: 1) We
will investigate the computational offloading problem when
multiple users compete for resources; 2) We will design
solutions for fair resource allocation among multiple users and
tasks; 3) We will delve deeper into the prioritization of services
when combining a large number of virtual scene services and
meta-services within metaverse services.
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