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Abstract—Mobile edge computing (MEC) relies on offloading
tasks to edge nodes to avoid delays and failures caused by local
computing. However, developing efficient offloading decisions is
challenging, as it involves addressing the intricacies of tasks and
the instability of edge node resources(e.g. available computer
resources, memory, and bandwidth). In this paper, we propose
a novel approach to tackle the problem of task offloading. Our
approach involves dividing tasks into smaller units and consid-
ering the correlations between these sub-tasks. To make optimal
offloading decisions, we employ a deep reinforcement learning
algorithm that takes into account user movement patterns and
the availability of resources at edge nodes. Through simulations,
we demonstrate that our proposed algorithm outperforms several
existing algorithms in terms of offloading decisions. It effectively
reduces task execution delays and energy costs. These findings
highlight the potential of our approach in improving the perfor-
mance of task offloading in MEC systems.

Index Terms—Mobile Edge Computing, Task Offloading, Tra-
jectory prediction, Resource Aware, Deep Reinforcement Learn-
ing

I. INTRODUCTION

As Internet of Things (IoT) applications continue to ad-
vance, users are generating increasingly computationally in-
tensive tasks when running applications such as online games,
virtual reality/augmented reality, and autonomous driving [1].
These tasks often require low delay. However, mobile devices
are limited by their local resources, which restricts their ability
to meet the computational resource and power consumption
requirements of such tasks. To address this issue, Mobile
Edge Computing (MEC) has emerged as a novel computing
paradigm [2]. MEC leverages the computing capabilities of
edge nodes (ENs) to enable edge users (EUs) to offload
their computational tasks to nearby ENs for processing. This
offloading reduces task processing delay and lowers local
task execution power consumption [3]. However, in the realm
of MEC, the complexity of tasks and the dynamic nature
of environmental conditions pose significant challenges in
determining optimal offloading decisions.

Considerable research has been conducted on the subject of
computation offloading. Previous studies primarily focused on
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offloading computational tasks to edge servers for processing
within fixed time intervals, statically allocating resources in
the servers to these offloaded tasks, neglecting the continuous
and dynamic nature of the task offloading problem across
multiple moments in time. Chen et al. [4] assumed that ENs
provide EUs with sufficient resources to meet task resource
requirements and conducted research on the computation
offloading problem to minimize task processing delay and
device energy consumption. However, in real-life scenarios,
different ENs possess distinct resource capacities, such as
CPU frequency, memory size, and bandwidth. The available
resources in edge servers dynamically adjust with changing
loads. Therefore, in the process of making task offloading
decisions, it is imperative to consider the dynamic and finite
nature of edge node resources.

Recent studies have been investigating dynamic task of-
floading in MEC systems. Existing research utilizes rein-
forcement learning to address the task-offloading problem in
dynamic environments [5]–[8]. Algorithms based on reinforce-
ment learning enable EUs to continuously update offloading
strategies by interacting with the environment without needing
to know other users’ strategies. These studies tend to treat tasks
generated by edge users as independent tasks for offloading
decisions. However, this approach cannot be applied to large,
complex, and high-computational-density task offloading sce-
narios. In vehicular edge computing (VEC), some studies
[9], [10] consider task dependencies among vehicles. They
predict vehicle movement trajectories to detect inter-vehicle
communication times, determine task priorities, and optimize
system-wide task completion delay. However, these methods
still face the following issues in the process of generating task-
offloading strategies:

• The dynamic fluctuation in resource availability expe-
rienced during the mobility of edge users often leads
to delayed offloading decisions. In real-world situations
involving multi-user task offloading, mobile users are
required to make decisions regarding task offloading
while in motion. As the EU moves, the EN resources
are changing dynamically, and the EU may move out
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of the node coverage, which leads to an increase in the
cost of task execution or even task execution failure.
Nevertheless, current offloading solutions tend to rely
solely on the present resource status for decision-making.
This approach overlooks the dynamic nature of available
resources at edge nodes, potentially resulting in delays
in decision-making processes. Hence, it is imperative to
incorporate the anticipation of future resource availability
into offloading decisions to ensure adaptability to users’
mobility scenarios.

• The complexity of offloading decisions is influenced by the
characteristics of sub-task data and their dependencies.
Although some existing studies [9]–[11] have considered
the dependency relationships between tasks, they only
focus on the data dependency characteristics of tasks
to optimize the data transmission delay between tasks,
without fully considering the impact of task dependency
relationships on offloading decisions. Due to the strict
sequential constraints on task execution, the offloading
decision of subsequent tasks depends on the offloading
decision of preceding tasks. Therefore, in handling com-
plex associated task-offloading processes, it is necessary
to consider the actual task-offloading situation to formu-
late globally optimal offloading decisions, thereby mini-
mizing the total cost of task execution and maintaining
system stability.

This paper proposes a multi-user task offloading strat-
egy algorithm called LSTM-MADDPG (Long Short Term
Memory Multi-Agent Deep Deterministic Policy Gradient) to
address the issues related to dynamic task offloading decision-
making for EUs during their movement. The algorithm has
two main components. Firstly, it uses LSTM models to
predict the movement trajectories of EUs and to perceive
the dynamically available resources when EUs access ENs.
Secondly, it employs the MADDPG algorithm to formulate
a fine-grained task offloading strategy for multiple users.
The algorithm considers the dependencies between tasks as a
directed acyclic graph, taking into account the interrelatedness
of tasks and incorporating these relationships when making of-
floading decisions. Additionally, the algorithm fully considers
the competition among multiple users for limited resources in
the edge environment. The ultimate objective of the algorithm
is to minimize the overall cost of global task execution. The
main contributions are as follows:

• We propose an algorithm named LSTM-MADDPG that
considers the movement trajectories of EUs to tackle
the task offloading challenge when these users are in
motion. By predicting the future locations of users and
evaluating the resources at edge nodes, our objective is
to enable real-time task offloading decisions for multiple
users during their mobility.

• We consider the dependencies between sub-tasks as a
Directed Acyclic Graph (DAG), with task data features
and dependencies treated as state information. We utilize
deep reinforcement learning algorithms to determine the

optimal execution nodes for sub-tasks, achieving fine-
grained optimal task offloading decisions.

• This paper assesses the performance of the algorithm
through simulation experiments. The results indicate the
effectiveness of the algorithm by comparing it with
various other task-offloading decision algorithms. The
results confirm that the proposed algorithm is capable of
reducing the overall cost of user task execution.

The rest of this paper is organized as follows: Section II
introduces the related work. Section III describes the details
of the task offloading problem model in MEC. Section IV
describes the proposed task offloading method. Section V
presents the experimental evaluation. Finally Section VI con-
cludes the paper.

II. RELATED WORK

Existing research on task offloading optimization methods
can be separated into mathematical model-based methods and
reinforcement learning-based methods. To better understand
the limitations of the existing studies, we investigated existing
relevant task offloading schemes. Table I displays the objec-
tives, user mobility, task dependency, and primary algorithms
of each method.

A. Mathematical models-based method

Zhang et al. [12] formulated the task offloading problem
as a Multi-Stage Stochastic Programming (MSSP), aiming
to minimize the overall delay of offloading. Bi et al. [13]
proposed a joint optimization method based on the Alternat-
ing Direction Method of Multipliers (ADMM) decomposition
technique. The method aims to maximize the overall task exe-
cution rate by optimizing the computation mode selection for
individual users. As more users join the network, the algorithm
complexity increases. T. X. Tran et al. [14] formulated the joint
problem of task offloading and resource allocation as Mixed-
Integer Nonlinear Programming (MINLP), utilizing convex
optimization theory to optimize task offloading decisions.
They proposed a heuristic algorithm to address this problem.
Tang et al. [15] introduced a caching strategy and fine-grained
task migration strategy on edge clouds based on a Genetic
Algorithm (GA). They aim to devise an optimal strategy
for mobile device task migration, thereby reducing energy
consumption in multi-access edge computing. However, in a
dynamic multi-access edge computing environment, obtaining
approximate solutions using heuristic methods can be a time-
intensive and memory-consuming process. Wu et al. [16]
proposed an adaptive offloading decision algorithm based on
Lyapunov optimization, aiming to minimize overall energy
consumption. In summary, traditional mathematical model
optimization algorithms require precise models and significant
computational time, which makes them unsuitable for dynamic
MEC environment configurations.

B. Reinforcement learning-based methods

With the development of artificial intelligence, reinforce-
ment learning has been applied to MEC task offloading.



TABLE I
A COMPARISON OF RELATED STUDIES.

Reference Objectives Mobility Dependency Resource aware Scheme
[4] Delay,Energy TADPG
[7] Delay,Energy ✓ DDQN
[9] Delay,Energy ✓ ✓ MESON
[12] Delay ✓ SAA-MSSP
[13] Energy ADMM
[14] Delay,Energy ✓ ✓ hJTORA
[15] Energy ✓ ✓ GA
[16] Energy ✓ ✓ LARAC
[17] Delay ✓ ✓ DRL
[18] Delay,Energy ✓ ✓ JCOTM
[19] Delay ✓ COMA

Chen et al. [4] investigated the joint problem of task offload-
ing and resource allocation and proposed a Time-Attention
Deterministic Policy Gradient algorithm (TADPG) to opti-
mize task completion’s delay and energy consumption. This
method assumes that EUs can obtain sufficient computing
and transmission resources from ENs. However, the resources
in ENs may be subject to capacity limitations. Wang et al.
[17] introduced a DRL-based offloading framework that can
automatically discover various scenarios, inferring optimal
offloading strategies for different scenarios. However, this
method requires more time and scenario data for training a
general framework, resulting in insufficient adaptability to new
scenarios. Wu et al. [18] proposed a DRL-based Joint Com-
puting Offloading and Task Migration Optimization (JCOTM)
algorithm, aiming to reduce system energy consumption and
task delay. These methods only consider the existence of a
single intelligent agent in the MEC environment. However,
in cases where multiple intelligent agents are present in the
same environment, each agent tends to rely solely on locally
observed state information to make its own decisions. This
leads to the potential for instability in the overall MEC, and
the algorithm may even fail to converge.

Recent research has attempted to apply multi-agent rein-
forcement learning algorithms to MEC task offloading prob-
lems. Liu et al. [19] proposed a distributed task migration
algorithm based on the Cooperative Multi-Agent (COMA)
reinforcement learning method, aiming to address the task
migration problem in distributed user scenarios. Tang et al. [7]
introduced a decentralized computation offloading algorithm
based on DQN suitable for mixed cooperative-competitive
heterogeneous MEC environments, aiming to improve user
task completion rates. Zhao et al. [9] developed a compu-
tation offloading model based on VEC, considering the data
dependency of tasks.

The previous works have relied solely on the current state
to make offloading decisions. However, since edge node re-
sources are in a dynamically changing state due to the user
movement process, offloading decisions based solely on the
current resource status may have hysteresis. Moreover, in
complex MEC environments, tasks are often interdependent,
and the execution location of preceding tasks significantly
impacts the execution cost of subsequent tasks. Therefore, we
aim to design a new multi-user task offloading algorithm that
can meet the current requirements.

Fig. 1. MEC model of multi-user and multi-edge nodes.

III. SYSTEM MODEL

In this section, we first introduce the multi-user MEC
system model. Next, we define the task model. Following
that, we describe the delay and energy costs associated with
task execution. Finally, we present the task offloading decision
model.

A. MEC Model

As illustrated in Fig.1, the MEC system consists of D edge
users and N edge nodes. To provide services to EUs, edge
servers are deployed on edge nodes. EUs move about in the
MEC environment. For example, as EU1 moves between ENs,
restricted local resources prevent the completion of computa-
tionally expensive tasks. Therefore, EU1 can transfer locally
generated tasks to ENs, allowing collaborative task comple-
tion. Each node contains servers with finite computational and
storage capacities, indicated as ENs = {1, 2. . . , N}. ENi is
expressed as follows:

ENi = (fri,memi, corei, lati, lngi) (1)

fri,memi and corei represent the CPU computing frequency
(GHz), memory capacity, and the number of cores of ENi

respectively. (lati, lngi) denote the latitude and longitude
coordinates of ENi. The coverage range of a base station
is typically 2-5 kilometers [20], and the signal is usually
transmitted in rays. Based on this, we consider the coverage
area of the base station signal to be circular with a radius of
3 kilometers.

The system defines D EUs, represented as EUs =
{1, 2, ..., D}. EUj is represented as follows:

EUj = (frj ,memj , corej , ECj , ETj) (2)

ECj and ETj respectively represent the computation energy
consumption coefficient and transmission energy consump-
tion coefficient of EU per unit of time. Due to the mobil-
ity of the EU, the EU’s location coordinates may change.
(latj(t), lngj(t)) represents the coordinates of the user at time
slot t. If the EU is inside the EN’s coverage region, it can
exchange data with the EN.



Fig. 2. The DAG structures for different jobs.

B. Task Model

We consider the computing workloads created by the EU
as having a DAG network topology. As illustrated in Fig.2,
Job(2) may be broken into nine sub-tasks {T1, T2, ..., T9}.
We consider each episode consisting of T time slots with
equal intervals T = {1, 2, ..., n}, and each time slot lasts for
∆t seconds. We assume that, at the beginning of each time
slot, the EU can generate local tasks, and the task generation
probability follows a Poisson distribution [7]. This assumption
is consistent with previous research.

At the beginning of time slot t ∈ T, when EU d ∈ D has
a new task arrival, the job is represented as:

jobkd = {T1, T2, . . . , Tn, Rk} (3)

Rk = {ri|ri = (prei,p, succi,s, I(prei,p), O(succi,s))} (4)

Rk represents the relationship between sub-tasks, prei,p and
succi,s respectively represent the predecessor and successor
tasks of the i-th sub-task, simultaneously satisfy O(prei,p) =
I(succp,i). Ti = {Ii, Oi, Ei}, Ii, Oi, and Ei respectively
represent the input data size, output data size, and the number
of instructions for Ti.

When a job arrives for EU d ∈ D, task offloading strategies
must be determined by EU d based on the present observable
MEC state information. This includes deciding whether a
sub-task should be carried out locally or sent to an EN for
execution via the signal channel. The detailed information
observed by each EU will be discussed in the next section.
There are two components to any EU task offloading decision:
1) Whether offloading is needed; 2) If so, to which EN the task
should be offloaded. Therefore, we define ρd(Ti) to represent
whether the task is offloaded, where ρd(Ti) = 0 indicates
local execution of the task, ρd(Ti) = 1 indicates offloading the
task to an EN. Furthermore, θd,n(Ti) is defined to represent
whether the task is offloaded to EN n, where θd,n(Ti) = 1
indicates execution of the task on EN n, and conversely,
θd,n(Ti) = 0. Based on the above description, the decision
actions made by each EU for each sub-task are as follows:

ad(Ti) = {ρd(Ti), θd(Ti)} (5)

C. Cost Model

1) Cost of local computation: The local computation cost
comprises both the delay and the energy consumption costs.
For a task Ti executed locally, the delay primarily depends
on the local device’s CPU frequency frd, d ∈ D, representing
the local computing capability. we define Qued as the local

execution queue. At time slot t ∈ T, when the task is placed
for local execution, it is added to the queue. In this work, we
assume that tasks in the queue can be executed concurrently,
with computing resources evenly distributed among them.
Since tasks arrive at different times, the available resources for
each task dynamically change. The number of concurrent tasks
is represented by len(Qued). Based on these considerations,
the delay cost of local task execution is defined as follows:

D
Ti

d =
(ETi

∗ C)
F(frd, cored)

(6)

F(·) = frd·cored
len(Qued)

represents the available computing resources
for a single task, and C is a constant denoting the CPU cycles
required to process a unit bit. It is notable that, when tasks are
completed locally, the delay in input data transfer is not taken
into account as in [21]. There is no transmission delay between
tasks if the preceding task prei,p is done locally. When the
previous task prei,p proceeds at the edge node, the output data
often has a relatively small size, and the delay in returning data
from EN to the device is not considered [22].

Next, the energy cost of local processing is defined as
follows:

E
Ti

d = DTi

d ∗ ECd (7)

ECd (J/S) is the energy consumption of the EU per unit of
time for computation. Based on the above description, the cost
formula for task Ti executed locally is as follows:

CostTi

d = α ∗Dd + β ∗ETi

d (8)

We consider delay and energy consumption as two compo-
nents of the task execution cost, which are normalized and
aggregated to form the total execution cost, similar to [8]. The
delay and energy consumption weights are represented by α
and β, with α+β = 1. Only the local execution delay cost is
considered when α = 1 and β = 0. Conversely, just the local
execution energy consumption cost is taken into account.

2) Cost of edge node computation: We determine the cost
of offloading task Ti for execution on the EN. The cost of
running task Ti on the edge node consists of delay and energy
costs, similar to when tasks are executed locally. In contrast
to the delay cost of local execution, when a task is done on
EN, EU d first transmits the task to the edge node while also
taking into account the output data transfer between tasks.
The delay cost of sending output data of prei,p to the edge
node must be determined if prei,p is carried out locally. The
transmission delay of EU d involves two parts: 1)transmission
input data delay and 2) transmission task instruction delay.
The bandwidth and quality of the transmission link between
the ENs and the EUs affect the transmission delay from EU d
to EN n. We have considered a wireless communication model
where edge users transmit data over orthogonal channels [23].
In the edge computing environment, wireless transmission
experiences path loss and fading as the distance between EU
and EN increases [24]. To simulate a real data transmission
scenario, it is essential to consider the attenuation of data rates
in wireless transmission. Thus, we define the transmission rate



from EU d to EN n denoted as Rn
d (Mbps)that can be obtained

through Shannon’s theory [25], calculated as follows:

R
n
d = ω ∗ log2 (1 +

|Hd,n| ∗ P
σ2 ∗ (distnd )

2 ) (9)

where ω represents the wireless transmission channel band-
width from ED d ∈ D to EN n ∈ N , |Hd,n| represents the
wireless transmission channel wireless gain, P and σ represent
the transmit power at the device side and the received noise
power at the edge node, respectively. distnd is the distance
between EU and EN. Since the coordinates of EU and EN are
supplied in latitude and longitude, the distance between them
is calculated using the Haversine formula, as indicated in the
following equation:

distnd = 2arcsind ∗R (10)

d =

√
sin(

a

2
)2 + cos(latd(t)) ∗ cos(latn) ∗ sin(

b

2
)2 (11)

a = latd(t)− latn (12)

b = lngd(t)− lngn (13)

where R = 6378.137. We calculate the actual bandwidth
between EU d and EN based on the distance between EU
d and EN at time slot t.

According to the above wireless transmission model, we
define the cost of task transmission delay as follows:

D
Ti
n =

∑
I(prei,p) + Ei

Rn
d

,where ρd(prei,p) = 0 (14)

In addition, based on the transmission delay, we obtain
the device’s transmission energy consumption, calculated as
follows:

E
Ti
n = DTi

n ∗ ETd (15)

ETd (J/S) is the energy consumption of the EU per unit of
time for transmission.

The task’s instruction size and the amount of computing
capacity that is now available on the offloaded edge node
define the computational delay cost. Similar to the local
execution process, the EN n ∈ N also maintains a task queue
Quen, evenly distributing the available resources of the edge
node. Therefore, the EN n task computation delay is calculated
as follows:

D̂
Ti
n =

Ei ∗ C
F(availfrn(t), coren)

(16)

availfrn(t) represents the available computing resources of
EN n at time slot t. Since the standby power consumption of
EU is relatively low when the task is executed on EN, we do
not consider device power consumption here. Therefore, the
total cost of offloading task Ti to be executed on edge node n
is calculated as follows:

CostTi
n = α ∗ (DTi

n + D̂Ti
n ) + β ∗ETi

n (17)

D. Task Offloading Model

As previously indicated, in a multi-user mobile edge en-
vironment, coordinating the offloading decisions of multiple
users is crucial to minimize the overall task execution costs
globally. Therefore, we formulate the task offloading problem
in a multi-user mobile edge environment as a multi-agent
resource competition problem. The total system cost is ex-
pressed as the sum of the task execution delay cost and the
energy consumption cost for multiple users. The objective is
to minimize the overall system cost while satisfying resource
constraints in the MEC system. The specific formulation of
the optimization problem is as follows:

P1 : min

D∑
d

K∑
Ti

ρd(Ti) ∗ CostTi

d + (1− ρd(Ti)) ∗ CostTi

d

(18)

s.t. C1 : ρd(Ti) = 0, 1,∀d ∈ D (18a)
C2 : θnd (Ti) = 0, 1,∀d ∈ D (18b)

C3 :

N∑
n

θnd (Ti) ≤ 1 (18c)

C4 :

D∑
d

frn(Ti) ≤ frn (18d)

C5 :

D∑
d

memn(Ti) ≤ memn (18e)

C1, C2, and C3 specify that each EU has only two choices
for processing each sub-task: locally or offloading to an edge
node. That is, each EU can either offload a sub-task or keep
it locally. Additionally, each sub-task is offloaded to exactly
one edge node. Constraints C4 and C5 ensure that the tasks
offloaded by EU to EN do not exceed the total computing and
memory resource capacity of the EN.

IV. MULTI-AGENT TASK OFFLOADING ALGORITHM

Task offloading has been indicated to be an NP-hard issue
in the literature [26]. To address this problem, we propose a
Reinforcement Learning-based resource-aware task offloading
method. The method is detailed in Algorithm IV. Its main
framework is shown in Fig. 3. There are three primary
components to this method:

Data collection and preprocessing. To evaluate task of-
floading decisions when edge users are moving, we use current
datasets to create a dataset that meets the requirements of a
mobile scenario. Firstly, the EU trajectory dataset must be
filtered to exclude data points with a state value of 0 (the
EU is stationary) and duplicate location points. Secondly,
to guarantee that the experimental data closely mimics true
resource utilization circumstances, it is critical to filter away
incorrect data, e.g. samples with CPU usage equal to zero.

Perceiving available resources. Firstly, when a new task
arrives at the EU, we extract the DAG information of the
task(see line [15] in Algorithm 1). In addition, we constructed
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Fig. 3. Resource-aware multi-user task offloading method framework.

a resource-aware model to predict the available resources
of alternative edge nodes. The trajectory prediction model
is built using movement trajectory data from the EU. The
next position of the EU may be predicted using the learned
trajectory prediction model. The distance between the expected
position and the ENs is used to calculate the alternative edge
nodes for task offloading(see lines [16-17] in Algorithm 1).
Following that, based on the previous resource consumption
patterns in the alternative edge nodes, a resource prediction
model is employed in estimating the edge nodes’ future
available resource information(e.g. CPU availability and ac-
cessible memory capacity) (see line [18] in Algorithm 1). The
association between the moveable trajectory of the EU and the
resources that are accessible to the EN may be determined by
the use of the resource prediction model.

Generating task offloading strategy. Based on resource
restrictions, create a local computing cost model and an edge
node computing cost model, then initialize the Multi-Agent
Task Offloading (MATO) network (see lines [1-4] in Algo-
rithm 1). Each EU is treated as an agent, generating offloading
actions based on the observed environmental state (see lines
[6-13] in Algorithm 1). The EU interacts with the environment
based on its actions and receives action rewards(see line [14]
in Algorithm 1). The EU strategies and rewards are stored in
an experienced pool for replay to update network parameters
(see line [20] in Algorithm 1). This approach allows the EU
to generate offloading decisions (Action) in a decentralized
fashion based on observable MEC status. Actions are reviewed
using a centralized assessment technique to improve policy
network stability and raise the incentive value for offloading
decisions(see lines [21-26] in Algorithm 1).

A. Data collection and preprocessing

Firstly, user movements during the day are documented in
the EU’s mobile trajectory collection. We concentrate on the
mobility process of the user, eliminating duplicate samples
from the dataset and filtering out cases when the user’s status
is 0 (signaling a stationary state). To reflect realistic edge node
usage, we then remove nodes with resource consumption equal

Algorithm 1 Multi-Agents Task Offloading Algorithm
Input: Trajectory of EU, Resource utilization of EN, Task

information
Output: Offload decision

1: Initialize N Edge Nodes and D Edge Users Parameters
2: Initialize Buffer memory and Assessment Threshold

Evaluate
3: Setting the Random seed
4: Set the initial exploration rate ϵ = 1
5: for each episode = 1, 2, . . . , E do
6: Agent gets observation state:

S = {s1(0), s2(0), . . . , sd(0)}, d ∈ D
7: for each t ∈ T do
8: Select a arbitrary probability value e ∈ [0, 1]
9: if e ≤ ϵ then

10: Choose action: ad=ActionNet(sd(t))+OUNoise
11: else
12: Choose action: ad=ActionNet(sd(t))
13: end if
14: Receive the Reward r from the environment
15: New job arrival d: Jobd(t+ 1)
16: Predicting H(t+ 1) based on historical locations
17: Get candidate servers: Pd(t+1) = {EN1, . . . , ENq}

18: Alternative EN Resource Awareness: Hd(t+ 1)
19: Observe the next state:sd(t+ 1)
20: Store the experience{s1(t), . . . ., sd(t), a1, . . . , ad, r1,

. . . , rd, s1(t+ 1), . . . ., sd(t+ 1)}into memory
21: for d=1,2,. . . ,D do
22: if Number of samples ≥ Evaluate then
23: Sample a mini-batch of experiences from

memory
24: Update critic-network and actor-network
25: Soft update the target network parameters
26: end if
27: end for
28: end for
29: end for



Fig. 4. Awareness of available resources model network structure.

to 0 (which indicates that the EU has not reached the node)
from the dataset about edge node resource utilization. We use
actual task composition data from Dataset 31, as seen in Fig.2,
and use this structure to represent the task’s DAG produced
by the EU to replicate real-world task decomposition.

B. Perceiving available resources

To achieve awareness of the available resources on edge
nodes, we have employed the LSTM model. The LSTM
is a popular technique for learning temporal relationships
in continuous observations and predicting future changes in
time series [27]. LSTM can efficiently capture long-term
dependencies and temporal patterns in such data, as changes
in edge node resources and user trajectories show temporal
relationships. This capability makes it an ideal choice for
handling data with temporal characteristics.

To begin, we train a trajectory prediction model using the
acquired historical trajectory information of EUs, to predict the
future coordinates of the EU. The input layer of the trajectory
prediction model is responsible for taking the EU’s historical
trajectory as input and passing it on to the subsequent layers.
The representation of the EU’s historical trajectory is denoted
as H(t) = (latt, lngt). By inputting historical trajectory data
into the model, the prediction for the EU’s location at the next
moment, H(t + 1) is determined. The trajectory prediction
model is represented as:

H(t+ 1) = F(H(t), H(t− 1), . . .H(1)) (19)

Specifically, the trajectory prediction model takes the matrix
H as input to learn the EU’s historical trajectory characteris-
tics. The trajectory prediction model has two hidden layers
and one activation layer with 2 hidden outputs for 2 columns.
As shown on the left side of Fig.4, this model contains 2t
LSTM units. Each LSTM unit takes a time trajectory H(t)
as input, these LSTM units are fully connected in sequence
to track the sequence changes from H(1) to H(t) and cap-
ture user trajectory characteristics. The LSTM network will
output information indicating that all historical trajectories are
included in the last LSTM unit. This output will be passed to
the activation layer for further learning. Finally, the predicted
two-dimensional trajectory coordinates H(t+1) will be output.

Next, we calculate the distance between users’ expected
future coordinates and ENs to determine if they are inside
the coverage range of edge nodes. This procedure aids in
selecting the set of candidate offloading nodes. Similarly, we

1https://github.com/alibaba/clusterdata/tree/v2018/cluster-trace-v2018

use nodes’ past utilization of resource data to train a resource-
aware model. The resource-aware model has 2 hidden layers
and 1 output layer with an output dimension of 2. As shown on
the right side of Fig.4, the trained model utilizes the historical
records of edge node resource usage to predict the future
resource utilization levels of edge nodes soon.

We utilize the Haversine formula to determine the distance
distnd (t + 1) between the EU and the EN based on their
position at time slot t + 1. The pre-allocated candidate edge
node set is then created using this distance and the edge
node’s coverage range, where Pd

t+1 = {EN1, . . . , ENq}.
Based on the candidate edge nodes for edge users, we apply
the resource-awareness model to forecast the resource use of
alternative edge nodes. The historical use of edge nodes is
denoted by H(t) = (CPUt,Memt). H(t+ 1) represents the
resource usage status of the edge node at the next moment.
It should be noted that the resource-awareness model is used
to determine the alternative edge nodes’ resource utilization
status. Edge nodes that are not included in the candidate set are
deemed unreachable by the edge user, therefore their available
resources are presumed to be 0.

C. Multi-agent task offloading algorithm

We apply the Multi-Agent Deep Deterministic Policy Gra-
dients (MADDPG) algorithm [26] to make multi-user task
offloading decisions. Each EU is regarded as an agent in
the environment, with competition for resources among them.
Every agent sees its current state data at the start of every slot,
which includes the DAG of the task, position data, alternative
node-set, and available resource information. The agent makes
decisions about offloading local tasks based on this state of
knowledge. The method uses a distributed execution strategy
with centralized training. Based on partially visible state
information, the action network of each agent develops its own
decisions, continuously updating these decisions. The central-
ized evaluation network draws samples from the experience
pool for evaluation and updates its parameters accordingly.
The ultimate goal of this algorithm is to minimize the overall
execution cost of user tasks by optimizing the mapping from
state to policy.

State. Every EU d ∈ D observes the state information
sd(t) during the time slot t ∈ T. This state information
consists of the task information, predicted position, current
position, and predicted resource availability. Here, sd(t) ∈ S,
where S represents the global agent state space. The observed
state information sd(t) for EU d is given by the following
expression:

sd(t) = (Poscur(t), Pospre(t+ 1), taskd(t), Res(t+ 1))
(20)

Poscur(t) and Pospre(t+1) respectively represent the current
and next time slot geographical positions of the EU, while
taskd(t) represents task information, including task size, ex-
ecution positions of preceding tasks and DAG information.
At the same time, according to the DAG structure, its pre-
task offloading results are obtained and used as part of the



observable state information. The alternative edge nodes set
P, where each EN’s resource availability is represented as
Resn(t+ 1) = {CPUn,Memn}(n ∈ N).

Action. Due to the decomposition of tasks generated by
edge users into several sub-tasks, a mapping between states
and actions is established based on the description of the
observed state for each sub-task. In other words, an offloading
decision is made for each sub-task. EU d enters its locally
observed state into Action-Net, and selects an action based on
the output of Action-Net as follows:

ad =

{
ActionNet(sd(t)) +OUNoise if e ≤ ϵ

ActionNet(sd(t)) otherwise
(21)

We discretized the decision about offloading into a two-
dimensional action, represented as ActionNet(sd(t)) =
{ρd, θd}. Here, ϵ represents the exploration rate, aiming to
assist Actor-Net in exploring the optimal offloading strategy.
When a random number e ≤ ϵ, OUNoise is added to the
generated action to explore new actions. To ensure the stability
of the algorithm, we continuously decay ϵ emphasizing more
exploration in the early stages and reducing it later.

Reward. Edge users take actions and interact with the
environment, generating rewards Rewardd = r{sd(t), ad(t)}.
The global reward is represented as R, calculated as follows:

R =

D∑
d

r{sd(t), ad(t)} (22)

r{sd(t), ad(t)} = δ ∗ (CostTi

d − CostTi
n ), where δ = −1

or 1 indicating the value of cost savings if the task is
executed locally or at the ENs, respectively. At the beginning
of the next time slot (i.e., time slot t + 1), EU d observes
the next state sd(t + 1). Each EU stores its experience
(sd(t), ad(t), rd(t), sd(t+ 1)) to the memory for training.

When the experience pool contains a sufficient number of
samples, randomly sample a set of experiences from the mem-
ory. S represents the sample set, and |S| denotes the number
of samples. Qd and Qtarget

d denote the Qvalue obtained by
critic network and target critic network, respectively. Update
the critic network by minimizing the TD-Loss:

L(θd) =
1

|S|
∑

(Qd(sd(t), ad(t), θd)−Qtarget
(d,t) )2 (23)

The minimization of the loss function is accomplished by
performing backpropagation.

V. EXPERIMENTAL EVALUATION

We design different sets of experiments to validate the
effectiveness of the proposed method. The experiments aim
to investigate the following four issues:

• RQ1: Is the user location prediction and available re-
source perception accurate?

• RQ2: Is the LSTM-MADDPG algorithm more effective
in task-offloading decision-making compared to other
reinforcement learning algorithms?

• RQ3: How does LSTM-MADDPG perform with different
numbers of users?

• RQ4: How does the performance of the LSTM-
MADDPG algorithm vary with different amounts of task
data?

A. Experimental Setup

The PyTorch 1.9.1 framework is used to implement the
proposed method. The model is trained with a computer
with NVIDIA GTX1650Ti GPU, AMD Ryzen 7 CPU@2.90
GHz.The algorithm parameters are configured as shown in
Table II. All experiments were performed with the same
parameters, which are considered optimal settings based on
our experimental observations.

TABLE II
ALGORITHM PARAMETERS

LSTM Parameters Value MADDPG Parameters Value
Batch-size 64 Learning rate of actor 0.001
Number of layer 2 Learning rate of critic 0.001
Hidden-size 128 Experience replay buffer size 1 ∗ 105

Learning rate 0.001 Mini-batch size 32
optimizer Adam Discount factor 0.9
Dropout 0.3 Update factor 0.01

B. Experiment Data

This experiment involves three data sets in the experiment.
• Data Set 1 is the Shanghai Telecom data set2. This dataset

includes geographical location information for 3,233 base
stations and user requests to the base stations.

• Data Set 2 is Shanghai Taxi Dataset3. This dataset con-
tains the daily trajectory data for 4,316 taxis in Shanghai
on February 20, 2007.

• Data Set 3 is Cluster-trace-v2018 Alibaba Cluster
Dataset. This dataset covers the resource usage of 4,000
machines within eight days, describing the resource uti-
lization of each machine and the DAG information for
each job. This data set contains 4,201,007 jobs, in which
the numbers of sub-tasks in each job are respectively 5,
6, 7, 9, 11, etc.

• Simulated Task data: Similar to existing studies [7], [8],
we use simulation to generate task input/output as well
as instruction sizes.

We selected 60 edge server locations from Dataset 1, as
depicted in Fig.5. To represent the resource use of edge nodes,
we mapped the machine resource usage information from
Dataset 3. We consider each machine as an edge node, and
the containers deployed on the machine as servers, with an
average of 17 servers per edge node. The historical resource
usage records of machines represent the resource utilization
history of edge nodes. Each job is divided into several sub-
tasks, and each sub-task is mapped to a machine based on
its task ID. The taxi movement trajectories from Dataset 2
were used to model the mobility trajectories of edge users.
The simulation parameters for the environment and tasks are
provided below in Table III.

2http://sguangwang.com/TelecomDataset.html
3https://cse.hkust.edu.hk/scrg/



Fig. 5. Edge node distribution.
TABLE III

SIMULATION EXPERIMENT PARAMETER

Parameters Value Parameters Value
frn [31.8,51.8] GHz frd [31.8,51.8] GHz
memn [32,128]GB memd [2,16]GB
coren [2,16] cored 1
W [25,35]Mbps ECd [4,6] J/s
Hd,n [8.5,14]dbi ETd [3,5] J/s
σ -20dBm P [13,33]dBm
C 700 cycles/bit I [1,10]MB
Number of EN 60 O [1,10]MB

E [50,100]MB

C. Experimental results

Predictive model accuracy. To address RQ1, we design an
experiment to validate the accuracy of edge user trajectories
and available resource perception. Firstly, we verified the
accuracy of the EU’s trajectory predictions by contrasting
predicted positions with their actual locations. There were
1290 users in the test set. Table IV displays the user path
prediction results. With an absolute error for all EU below
0.1, within an acceptable range, it indicates that LSTM can
effectively predict user trajectories, ensuring the accuracy of
trajectory predictions. To validate the usability of the trajectory
prediction model, we assume that the vehicle’s travel speed is
70 km/h. As shown in Fig.6, both the training and prediction
time of the trajectory prediction model are less than the time it
takes for the vehicle to move to the target position. Therefore,
this trajectory prediction model can effectively support task
offloading decisions.

We then confirmed that the resource availability prediction
for edge nodes was accurate. We extracted data from 1000
machines from Dataset 3 for training and testing. Table V
displays the forecasts of resource use for edge nodes. Predic-
tion errors are within an acceptable range since the absolute
error for every edge node is less than 0.1. The accuracy of
resource forecasts has been guaranteed by using the resource-
aware model to anticipate edge node resources.

Algorithm effectiveness. To address RQ2 and validate the
effectiveness of the algorithm, we performed 1000 iteration
episodes and evaluated the average reward values for sev-
eral algorithms, including LSTM-MADDPG, MADDPG [28],

TABLE IV
COMPARISON OF REAL AND PROJECTED VALUES FOR EU COORDINATES

Edge User Real Coordinate Predicate Coordinate Absolute Error
U1 (121.4751, 31.2281) (121.4764, 31.2272) (0.013, 0.009)
U2 (121.4968, 31.3856) (121.4949, 31.3841) (0.019, 0.015)
U3 (121.6851, 31.2200) (121.7211, 31.1930) (0.036, 0.027)

All User - - (0.037, 0.028)

Fig. 6. Time consumption comparison between trajectory prediction model
and EU movement.

TABLE V
COMPARISON OF ACTUAL AND PREDICTED VALUE OF EN RESOURCE

USAGE

Edge Node Real Resource(%) Predicate Resource(%) Absolute Error
N1 (29.00, 89.00) (28.9651, 89.0892) (0.0349, 0.0892)
N2 (30.00, 81.00) (30.0854, 80.9159) (0.0854, 0.0841)
N3 (24,00, 87.00) (24.0181, 87.1069) (0.0181, 0.1069)

All Nodes - - (0.0693, 0.0846)

DDQN [29], and DDPG [30]. Due to the need to construct
precise mathematical analytical models in traditional meth-
ods, they are not suitable for dynamic scenarios where task
offloading occurs during the mobility of edge users. Therefore,
we compared various reinforcement learning algorithms. There
were 10 EUs in the MEC environment. As shown in Fig.7,
with each episode iteration, the average episode incentives
for the LSTM-MADDPG, MADDPG, and DDQN offloading
algorithms grew until they ultimately reached convergence
reward values. Following a period of fluctuating reward
amounts, we saw a notable rise, indicating that the networks
continuously explored more optimal offloading strategies. In
contrast, the DDQN algorithm stabilized its reward values
after around 150 iterations. It is noteworthy that the dynamic
instability of the multi-agent environment caused the DDPG
algorithm, which is meant for single-agent situations, to be-
come unsuccessful when applied to it. The reward values
exhibited a declining trend before stabilizing. Overall, the
method we proposed consistently achieved higher average
rewards than the other algorithms, validating the effectiveness
of our proposed algorithm.

Fig. 7. Comparison of reward values for different algorithms.



Fig. 8. Reward values under different user quantities.

Fig. 9. Algorithm performance under different task data volumes.

Algorithm adaptability. To address RQ3 and examine the
influence of the number of users on the algorithm’s scalability,
we designed a series of experiments to assess the algorithm’s
performance under various user quantities. We calculated the
average episode payouts for 10, 20, 30, and 40 EUs, choosing
100 episodes after the algorithm’s reward had converged. As
illustrated in Fig.8, the global reward values increased as the
number of users increased. This increase is attributed to the
positive reward values generated by each user’s action in re-
sponse to the algorithm’s decisions. Therefore, the worldwide
reward values rose together with the number of users. It is
noteworthy to note that as the number of users grew, the
algorithm suggested in this research continually outperformed
the baseline methods.

Algorithm performance. To address RQ4, we designed
experiments to evaluate the algorithm’s performance under
different task data volumes. Fig.9, 10, and 11 illustrate the
trends in average rewards, average task delay, and unit system
energy consumption with increasing task data volumes. In
this experiment, we controlled the number of users at 10,
and task instruction sizes were set as [50,60] Mbit, [60,70]
Mbit, [70,80] Mbit, [80,90] Mbit, and [90,100] Mbit. Fig.9
illustrates that the average rewards exhibit a diminishing trend
with increasing task data volume. It is evident that when
task data volume increases, task completion delay and energy
usage increase as well, resulting in lower average rewards.
LSTM-MADDPG regularly performs better than the other
two baseline approaches. In Fig.10 and 11, LSTM-MADDPG,

compared to MADDPG and DDQN, achieves savings of up
to 14.03% and 39.50% in delay and 20.42% and 31.78% in
energy consumption, respectively. Fig.10 indicates that as the
task data volume increases, task completion delay continues
to rise. This is attributed to the increased demand for com-
putational resources for larger task volumes, coupled with the
finite resources in the edge environment, leading to resource
competition among users and an increase in task execution
dealy. Similarly, as shown in Fig.11, the larger task volumes
result in increased local computation energy consumption, and
at the same time, more tasks are offloaded to edge nodes,
leading to additional computational energy consumption.

Fig. 10. Task execution delay. Fig. 11. Energy consumption per
unit of task execution in the sys-
tem.

VI. CONCLUSION

In a dynamic MEC environment, we have investigated
the task offloading strategy with multi-user resource aware-
ness and suggested the LSTM-MADDPG algorithm. This
approach handles the task offloading difficulty in a multi-
user competitive MEC environment with dynamically available
resources(e.g. CPU and memory) by anticipating the paths of
edge users and detecting the available resources of edge nodes.
The approach is noteworthy because it addresses the intricacy
of large tasks by breaking them down into smaller ones and
mapping the connections between them into a DAG, which en-
ables more precise task offloading. Numerous tests show that
LSTM-MADDPG performs better than baseline techniques in
terms of algorithmic rewards and system expenses. For future
work, we will further explore these issues:1) We will conduct
a more in-depth examination of task offloading in a hybrid
MEC environment with competitive cooperation relationships.
2) We will further discuss methods to reduce the complexity
of the proposed algorithm by incorporating deep compression
[31] to decrease the number of multiplicative operations in the
network structure.
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