
IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 1

Test Case Generation for Data Flow Testing of
Smart Contracts Based on Improved Genetic

Algorithm
Shunhui Ji, Shaoqing Zhu, Pengcheng Zhang, Hai Dong, and Jianan Yu

Abstract—Smart contracts are commonly deployed for safety-
critical applications, the quality assurance of which has been
a vital factor. Test cases are standard means to ensure the
correctness of data flows in smart contracts. To more efficiently
generate test cases with high coverage, we propose an improved
Genetic Algorithm-based test case generation approach for smart
contract data flow testing. Our approach introduces the theory of
Particle Swarm Optimization into the Genetic Algorithm, which
reduces the influence brought by the randomness of genetic
operations and enhances its capability to find global optima.
A set of 30 real smart contracts deployed on Ethereum and
GitHub is collected to perform the experimental study, on which
our approach is compared with three baseline approaches. The
experimental results show that, in most cases, the coverage of
the test cases generated by our approach is significantly higher
than the baseline approaches with relatively lower numbers of
iterations and lower execution time.

Index Terms—Smart Contract; Data Flow Testing; Test Case
Generation; Genetic Algorithm; Particle Swarm Optimization
Algorithm

I. INTRODUCTION

BLOCKCHAIN is widely used in various fields, such as
banking, supply chain, and smart city, because of its

decentralized, tamper-evident, and transparent traceability [1],
[2]. A smart contract deployed on the Blockchain platform
is a computer program that can automatically realize the
content of the agreement expressed in natural language [3].
Currently, the most popular Blockchain platform is Ethereum,
which is a cryptocurrency system that supports smart contracts
developed with Solidity [4]. The inherent characteristics of the
Blockchain make it impossible to modify the smart contract
once it is deployed. If a vulnerable smart contract is deployed,
it may lead to serious consequences. A representative case is
the Dao incident occurred in 2016, in which hackers stole
3.6 million Ethereum tokens (worth 50 million U.S. dollars)
by exploiting the reentrancy vulnerability [5]. Therefore, it is
necessary for the publisher of a contract to ensure that the
deployed contract is free of vulnerabilities and errors. This
makes thorough testing of smart contracts essential, especially
before the code is deployed [6].

S. Ji, S. Zhu, P. Zhang and J. Yu are with the Key Laboratory of Water
Big Data Technology of Ministry of Water Resources and the College of
Computer and Information, Hohai University, Nanjing 211100, China (e-
mail: shunhuiji@hhu.edu.cn; 1139104058@qq.com; pchzhang@hhu.edu.cn;
yu poppy@qq.com).

H. Dong is with the School of Computing Technologies, RMIT University,
Melbourne, Australia (e-mail: hai.dong@rmit.edu.au).

Corresponding author: Pengcheng Zhang.

Most research has been focused on the application of tech-
niques, such as symbolic execution, abstract interpretation, and
fuzz testing, for detecting vulnerabilities in smart contracts [7].
Some studies [5], [8], [9] also aim to detect the vulnerabilities
through machine learning. An effective means to check the
correctness of a program is to identify if the program can
generate the expected output based on an input. The output
generation is realized by a series of definitions and uses of
variables accompanied with control flows. However, even for
the strongest control flow testing criterion all-paths, it cannot
guarantee that all errors will be detected by traversing all
paths [10]. In addition, the all-paths criterion is not suitable
for complex programs which may have an infinite number of
paths. Compared with control flow testing, data flow testing is
usually more effective, which could lead to more efficient and
targeted test suites [11]. It examines not only the definition-
use relationship of variables, but also the control flow in a
program. In addition, the number of paths that fulfill the data
flow testing criterion is always finite. With the prosperity of
smart contract applications, it is a valuable and indispensable
research direction to verify whether unknown programming
errors exist in a smart contract with the data flow testing.

For the data flow testing, one of the major challenges is
that the automatic test case generation needs to fulfil the
data flow testing requirements. The random technique, which
generates test cases at random, does not take the testing
requirements into consideration [12]. The symbolic test case
generation technique, which establishes and solves predicate
equations to drive test case, may not be useful in practice
because of the non-deterministic nature of the loop number
and the explosion problem [13]. Evolutionary algorithms, such
as Genetic Algorithm, which search for test cases to fulfill
the testing criterion with the coverage analysis as guidance,
have been demonstrated to be effective for test case generation
in the data flow testing of traditional programs [14], [15].
A Genetic Algorithm-based test case generation approach,
called ADF-GA (All-uses Data Flow criterion based test case
generation using Genetic Algorithm), was proposed for data
flow testing of smart contracts in our previous work [16].
However, the following problems remain:

1) Difficulties in achieving the overall high coverage of
test cases. In the previous research, we used Genetic
Algorithm in ADF-GA to perform test case generation.
Although the test cases generated by ADF-GA can
achieve higher coverage compared with RT [12] and GA-

© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. S. Ji, S. Zhu, P. Zhang, H. Dong and J. Yu, "Test-Case Generation for Data Flow Testing of Smart Contracts Based on Improved
Genetic Algorithm," in IEEE Transactions on Reliability, vol. 72, no. 1, pp. 358-371, March 2023, doi: 10.1109/TR.2022.3173025

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 2

C# [17], the overall quality of the generated test cases
is still unsatisfactory with the average coverage rate of
77.3% [16].

2) Low performance of Genetic Algorithm-based test case
generation. In a Genetic Algorithm, test cases with low
quality may be generated due to the randomness of ge-
netic operations. With the evolutionary process performed
on top of these low-quality test cases, it would increase
the number of iterations required to find the optimal
solution and result in extra time costs.

To address the above two issues, we propose Iga-Sc
(Improved Genetic Algorithm-based test case generation for
Smart Contract) to generate test cases for data flow testing of
smart contracts, by effectively integrating Genetic Algorithm
and Particle Swarm Algorithm. The main workflow of Iga-
Sc is described as follows: firstly, based on the structural and
interactive features of a smart contract, a CFG (Control Flow
Graph) of the contract is built from its Solidity source code;
secondly, data flow analysis is performed based on the CFG
to obtain the information of variables and the definition-use
pairs to be tested; finally, we apply the improved Genetic
Algorithm to generate test cases for the smart contract. The
experimental results show that Iga-Sc generates test cases with
high coverage in addition to ensuring its execution efficiency.

Compared with our previous research, the main contribu-
tions of this paper are as follows.

1) We introduce the principle of Particle Swarm Optimiza-
tion to accelerate the Genetic Algorithm in finding the
optimal solution to improve the performance of the ap-
proach. In addition, recombination of parent populations
is adopted in the evolutionary process to improve the
quality of test cases in the new population. It can signifi-
cantly reduce the influence generated by the randomness
of genetic operations and make it more effective to find
the global optima.

2) We collect a dataset comprising 30 smart contracts with
different sizes (i.e. less than 100 lines, 100-200 lines,
and more than 200 lines) from GitHub and Ethereum to
perform the experiments.

3) We perform an empirical comparison of Iga-Sc with
ADF-GA, GA-C# (Genetic Algorithm based on the tra-
ditional fitness function [17]), and RT (random testing
approach [12]). Iga-Sc can generate test cases with overall
high coverage. Its average coverage rate is about 89.2%
on the dataset, which exceeds that of the aforementioned
methods by 13.81%, 19.26%, and 32.54% respectively. In
addition, it is also capable of reducing the number of it-
erations required for test case generation. Compared with
GA-C# and ADF-GA, the average number of iterations
is reduced by 25.74% and 17.97% respectively.

The rest of the paper is organized as follows. Section II
presents related research on smart contract testing and test
case generation for data flow testing. Section III introduces
the preliminary knowledge related to this research. Section IV
illustrates the proposed approach Iga-Sc in detail. Section V
performs the experimental study for evaluating Iga-Sc, while
Section VI discusses the threats to validity. Finally, Section

VII draws conclusions and identifies possible directions for
our future work.

II. RELATED WORK

This section provides an overview of smart contract testing
and test case generation for data flow testing.

A. Testing for Smart Contracts

Most of the existing approaches and tools developed to
detect common vulnerabilities in smart contracts are based on
symbolic execution, abstract interpretation, and fuzz testing.
Oyente [18], MAIAN [19], SmartCheck [20], and Slither [21]
perform vulnerability detection in smart contracts based on
symbolic execution. Chan et al. [22]–[24] designed a fuzz
testing architecture for smart contracts and implemented a
fuzzer called ContractFuzzer to inspect vulnerabilities and
coding errors, in which test oracles are defined for different
vulnerabilities. This tool is demonstrated to be effective to
detect security vulnerabilities with high precision in a variety
of real-world smart contracts. For smart contract vulnerability
assessment, Liao et al. [5] used Solidity opcode as a machine
learning feature to verify 13 kinds of vulnerabilities. A dy-
namic fuzz testing mechanism was created, which simulates
the blockchain environment of online transaction verification,
to analyze smart contracts and identify potential vulnera-
bilities. Unlike previous research work, it does not require
pre-defined features, and achieves a vulnerability detection
accuracy of 90%.

Wang et al. [25] proposed the notions of whole transaction
basis path set and bounded transaction interaction to capture
essential control flow behaviors of smart contracts. By means
of the notions, they tested the smart contracts with the k-
bounded transaction coverage criteria. This approach is com-
pared with random testing and statement coverage testing to
demonstrate its effectiveness. Wu et al. [26], [27] proposed a
framework for mutation testing of smart contracts with fifteen
novel mutation operators. The experimental results show that
this approach outperforms the coverage-based approaches on
defect detection. A mutation testing tool, called MuSC, is built
based on this framework. Wang et al. [28] defined the test gen-
eration problem of smart contracts as a Pareto minimization
problem. They proposed a multi-objective approach based on
random approach and NSGA-II to generate cost-effective test
suites while retaining the capability of branch covering.

Kim et al. [29] proposed an automated test suite generation
method to address the absence of reliability testing of smart
contract analyzers. It can diversify test cases by combining
vulnerabilities and changing code complexity. Defects and
false positives of existing smart contract analyzers can be
discovered with the test suites generated by this method. Smart
contracts on enterprise permission Blockchain are usually
more complicated. Liu et al. [30] proposed a model-based test-
ing platform, called MODCON, for enterprise smart contracts.
It relies on user-specified models to impose model testing and
efficiently generate test cases for smart contracts. Driessen
et al. [31] developed an automated generator AGSoLT to
generate test suites for Solidity-based smart contracts. They

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 3

implemented the random search algorithm and the genetic
algorithm DynaMOSA [32] to evaluate the efficiency of the
generator. Through the experiments with 36 real-world smart
contracts, both the approaches demonstrate their capability in
achieving high branch coverage and finding certain errors.

B. Test Case Generation for Data Flow Testing
There has been a long history of research on test case

generation for data flow testing. Rapps et al. [10] extended
and defined the concept of data flow analysis and proposed
a series of data flow testing criteria. These criteria focus on
the definition-use association of variables, covering not only
the data flow but also the control flow in a program. Frankl et
al. [33] extended the previous data flow testing criteria by
defining a new family of adequacy criteria, called feasible
data flow testing criteria. It only generates test cases for
those executable definition-use associations to circumvent the
problem of inapplicability of data flow testing criteria.

Many studies have explored the use of optimization algo-
rithms to generate test cases for data flow testing. Ghiduk et
al. [11] proposed a test case generation method using Genetic
Algorithm to meet the data flow testing criteria. This method
bases on the concept of inter-node dominance relationships to
define a new fitness function. The empirical studies show that
this method can achieve coverage of the test requirements and
reduce the size of test suites. Rajkumari et al. [14] proposed
a new approach for automatic test case generation. They em-
ployed Genetic Algorithm guided by the program dependency
graph of the target software. The evaluation demonstrates that
the use of program dependency graph and Genetic Algorithm
to generate test cases outperforms random testing. Sheoran et
al. [34] used an Artificial Bee Colony algorithm to perform
local and global searches for the extraction of data flow testing
paths. This algorithm tracks all definition-use paths by a
global search, and identifies definition-use paths which are not
definition-clear paths by a local search. In addition, these paths
are prioritized, which benefit optimal test suite generation and
time reduction. Nayak et al. [15] generated test cases for data
flow testing using Particle Swarm Optimization algorithm that
generates a set of test cases and a set of definition-use paths
covered by each test case. The experiment demonstrates that
this approach outperforms Genetic Algorithm in generating
test cases for data flow testing in terms of coverage.

Some work combined Particle Swarm Optimization algo-
rithm and Genetic Algorithm to perform test case generation.
Singla et al. [35] proposed GPSCA to automatically generate
test data for data flow by integrating Genetic Algorithm and
Particle Swarm Optimization Algorithm, and a new multi-
objective fitness function. Experiments show that the proposed
GPSCA is effective in achieving coverage and reducing the
number of test cases compared with Particle Swarm Opti-
mization algorithm and Genetic Algorithm. Kumar et al. [36]
proposed a hybrid APSO-GA algorithm for test suite genera-
tion for data flow testing, in which a fitness function based on
branch weight and branch distance is designed. Compared with
Genetic Algorithm, Particle Swarm Optimization algorithm
and hybrid GA-PSO, APSO-GA performs better in terms of
coverage.

Despite the substantial progress made on test case genera-
tion for data flow testing, most of the research only focuses on
traditional programming languages, such as Java and C. Zhang
et al. [16] proposed ADF-GA, the first approach for generating
test cases based on data flow criteria for Solidity-based smart
contracts, which bases on Genetic Algorithm to perform test
case generation. ADF-GA was compared with two traditional
approaches. The results showed that ADF-GA can generate
usable test cases more efficiently. However, considering the
unsatisfactory coverage of the test cases generated by ADF-
GA, further study is still required in this area.

III. PRELIMINARIES

This section introduces the prerequisite knowledge of smart
contract, data flow testing, Genetic Algorithm and Particle
Swarm Optimization algorithm.

A. Smart Contract

Fig. 1. Code Segment of a Smart Contract

A smart contract is a set of promises defined in digital
form, including an agreement on which contract participants
can execute these promises. In other words, smart contracts are
digital versions of traditional contracts, deployed and executed
on the Blockchain platform [29]. With the Blockchain technol-
ogy, contract enforcement can not only take advantage of the
cost-efficiency of smart contracts, but also prevent malicious
behavior from the proper execution of the contract. Users trust
smart contracts, since they specify requirements of transactions
and guarantee users’ rights within disputes, instead of third-
party institutions and participants. In order to facilitate the
construction of smart contracts on the Ethereum platform,
a high-level programming language Solidity was specially
created [37]. Smart contracts on the Ethereum platform, which
are written in Solidity, are the objects of our study.

From the perspective of test case generation for data flow
testing, the features of Solidity-based smart contracts can be
summarized in the following three aspects.

Structural features. Generally, Solidity has three logical
structures like traditional programming languages: sequential

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 4

structure, selection structure, and loop structure [38]. Key-
words, such as if-else, while, do and for, also exist in Solidity,
which express the same semantics with that in traditional
programming languages. In addition, Solidity has its own
unique selection structure statement: require statement. It is
used to control the program execution. The program will
continue to execute only when the condition in a require
statement is satisfied.

Variable features. The most commonly used variables in
smart contracts are of numeric type, which can be used to
represent Blockchain-oriented information, such as address,
timestamp, etc. Numerical variables in Solidity are mainly
divided into two types: unsigned integer and signed integer,
of which the type identifiers are uint and int respectively. In
addition, the length of a variable, which determines the range
that the variable can represent, is directly defined with the
keyword. The minimum length of a variable is 8 bits and the
maximum length is 256 bits. For example, a variable declared
with keyword uint8 can represent a natural number between
0 and (28-1); a variable declared with int16 can represent
an integer between (-215) and (215-1). The direct use of the
keyword uint indicates the declaration of a variable with length
256 by default.

Interactive features. Similar to the instantiation and func-
tion call of Java class, smart contracts can be instantiated
and function calls can be performed in the program. Fig. 1
shows an example of smart contract containing function calls,
where the function createRandomZombie() calls the functions

generateRandomDna() and createZombie().

B. Data Flow Testing

Data flow testing focuses on the associations between the
definition of each variable and its uses in a program [10].
Test cases are designed to trace the data flow from the input
variables to the produced output values. It can be concluded
that the computations are correctly performed only if the result
of each computation has been used. Rapps and Weyuker [10]
defined a family of data flow testing criteria, in which the
all-uses criterion has been demonstrated to be practical and
effective for the testing of C++ programs [11], composite ser-
vices [39], and so on. Therefore, the all-uses criterion, which
requires test cases to exercise at least one path connecting
from each definition to each use reached by that definition, is
selected for guiding the test case generation of smart contracts
in our project.

Data flow analysis is a prerequisite task in the data flow
testing, which is used to extract the associations between
a variable’s definition and its uses. It is usually performed
based on the CFG of a program, in which a node represents
a statement in the program and an edge represents the exe-
cution sequence of two statements. Suppose def(n) and use(n)
respectively denote the set of variables defined and used in
the statement corresponding to node n. For variable x, if x ∈
def(n) and x ∈ use(n’), and if there is a path (n, n1, n2. . . nm,
n’) from n to n’ containing no definition of x in nodes n1, n2,
. . . , nm, there is a definition-use relationship of x between n
and n’, which can be constructed as a definition-use (def-use)

pair (x, n, n’). All the def-use pairs of the program need to
be extracted as as the prerequisite in the all-uses data flow
testing.

C. Genetic Algorithm

Genetic Algorithm [11] (GA) is a search algorithm which
simulates the genetic and evolution process of organisms in
the natural environment. It was first proposed by Professor
Hollan and originated from a study of natural and artificial
adaptive systems [40]. Similar to the biological evolution
process, GA sets a target during the searching process in
which the population evolves to find the optimal solution to
satisfy this target. In different application scenarios, different
encoding approaches are used to encode the individuals of
the population so that they can be manipulated by computer
programs. GA iteratively updates the population to obtain
the final result. In each iteration of updating population, the
individuals are evaluated with the defined fitness function to
determine which individual performs better for guiding the
evolutionary process [17]. Better individuals are then selected
for future generations. Crossover and mutation are performed
on the individuals to generate a new population. The evolution
process stops only if the optimal solution is found or the
maximum number of iterations is achieved.

D. Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) algorithm is motivated
by simulating the social behavior of animals and the methods
by which they find roosting places or food sources [15]. Based
on this principle of biological group behavior, PSO algorithm
searches the optimal position of each particle of the swarm
using its own experience and the experience of other particles
[41].

Firstly a population is created by randomly generating n
particles in the d-dimensional problem space with each particle
represented as a d-dimensional vector. Every particle moves to
search the optimal position by updating the velocity and posi-
tion. During this process, each particle preserves its achieved
best position, which is called personal best pbest. Meanwhile,
the best position among all the particles’ pbests is called
global best gbest. For the current population, it calculates the
fitness of each particle based on the value of the d-dimensional
parameter and the fitness function, and compares the current
fitness of each particle with its corresponding pbest. If the
current fitness of the i-th particle pi is better than that of pbesti,
it updates the position of pbesti with the current value of pi.
Then pbests of all the n particles are compared with gbest to
determine whether gbest needs to be updated [42].

Specific termination conditions are defined for the algorithm
according to the actual problem to be solved [43]. When the
predefined conditions are met, gbest is returned, which is the
optimal solution of the optimization problem.

IV. THE IGA-SC APPROACH

This section specifically describes the improved test case
generation approach Iga-Sc for smart contract data flow

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 5

testing. Fig. 2 shows the overview of Iga-Sc, in which
OFVCurPop and OFVPrevPop respectively represent the op-
timal fitness value of the current population and the previous
population. This process consists of three main phases: CFG
construction, data flow analysis, and test case generation. In
the CFG construction phase, it is implemented at the source
code level based on the structural and interactive features of
smart contracts. In the data flow analysis phase, the definition-
use relationships of variables are extracted by traversing the
generated CFG and the require statements are identified.
In the test case generation phase, the contract program is
instrumented according to the test target, and the improved
GA is applied to iteratively search the optimal test cases.

Fig. 2. Overview of Our Approach

A. Control Flow Graph Construction

To automatically implement test case generation for data
flow testing, it is necessary to construct CFG [3] for a smart
contract to extract the valid information. The control flow
graph is more intuitive in describing the execution process
of a smart contract. Therefore, it can be more comprehensible
in contrast to the program. Although a data flow graph can
directly reflect the data flow information, its construction
requires control flow analysis. In addition, the data flow testing
criterion used in our approach is defined upon the control
flow graph. Therefore, we use the control flow graph other
than the data flow graph. CFG construction is implemented at
the source code level based on the structural and interactive
features of a smart contract to retain the necessary semantic

information and handle the inter-functional calls in the smart
contract. The constructed CFG contains the following features.

1) Similar to the CFG structure of traditional programs,
CFG of a smart contract contains sequential structure, selection
structure, and loop structure [21].

2) Each node in the graph represents one valid statement or
the beginning and end of a function in the smart contract.

3) The execution order of contract statements is represented
by a directed edge connecting between two nodes. An arbitrary
directed edge in the CFG is represented by 〈x, y〉, which means
the statement corresponding to node y must be executed after
completion of the statement corresponding to node x.

4) Each function is converted to a sub-CFG, and then
a global CFG is constructed according to the function call
relationship in the smart contract.

Sub-CFG Construction. For each function in the contract,
which is declared by the keyword function, or a function modi-
fier which is declared by the keyword modifier, a separate CFG
is firstly constructed as a sub-CFG. During the construction,
the require statement in the contract is regarded as a selection
structure. Two edges are created for it, one of which points to
the node of the next statement for indicating the situation that
the condition specified in the require statement is true, and the
other points to the end node of the function for indicating it
exits execution when the condition is false.

Global CFG Construction. The inter-function call relation-
ship in the contract is handled by generating two edges rep-
resenting the call and return relations between two functions.
Firstly, the edge of function call is created, which starts at the
corresponding call node in the sub-CFG of the function and
points to the start node of the sub-CFG of the function being
called. Then, the edge of function return is created, which
starts at the terminal node of the sub-CFG of the function
being called and points to the corresponding call node.

The CFG corresponding to the sample smart contract in
Fig. 1 is shown in Fig. 3.

Fig. 3. The CFG corresponding to the sample smart contract

B. Data Flow Analysis
Data flow testing aims at covering all the def-use pairs of

a program during the testing. Before performing data flow

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 6

TABLE I
The Parametric Variables of the Sample Smart Contract

Variable Name Variable Type Variable Length
id 0 16

dna 0 16

TABLE II
The General Variables of the Sample Smart Contract

Variable Name Variable Type Variable Length
dnaDigits 0 16

dnaModulus 0 16
rand 0 16

randDna 0 16

testing, data flow analysis is required to extract the def-use
pairs of a smart contract, which will be located as the coverage
target for test case generation. Based on the CFG of the smart
contract constructed in Section IV-A, the process of data flow
analysis is executed in the following three steps.

1) Extraction of Variable Information: The main purpose
is to obtain the information of variables in a smart contract,
which includes variable name, variable type, and variable
length. The variables are distinguished into two types: para-
metric variables and general variables. A parametric variable
is the one used to execute the smart contract, which mainly
appears as the input parameter of the function in the contract.
A general variable is declared in the contract through a variable
declaration statement.

Extraction of parametric and general variable information
is separately performed as follows.

Extraction of Parametric Variable Information. We tra-
verse the CFG of a smart contract and analyze the information
of each node in the CFG to determine whether it corresponds
the function declaration statement. The variable information,
including variable name, variable type, and variable length,
of the input parameters of the functions are extracted and
stored in the set Vp. For a variable declared with uint and
int, the variable type is denoted with 0 and 1 separately. The
variable-length is specified with the variable type identifier.
The parametric variable information extracted from the smart
contract code segment in Fig. 1 is shown in TABLE I.

Extraction of General Variable Information. We traverse
the CFG of a smart contract and analyze each node in the CFG
to determine whether it corresponds to the variable declara-
tion statement. Information of general variables is extracted
and stored in the set Vg . The general variable information
extracted from the contract code segment in Fig. 1 is shown
in TABLE II.

With Vp and Vg , the information of all the variables can be
obtained and stored in Lv .

2) Identification of Require Statements: A Solidity-based
smart contract has structural statements to indicate the transfer
of control flow, including for, switch, while, and if-else, which
are similar to traditional languages, such as Java. In addition,
it contains a unique type of statement declared by the require
keyword, which is used to determine whether the execution
conditions are met. When the contract program reaches a
require statement, it continues the execution only if the condi-

TABLE III
The Require Statement of the Sample Smart Contract

Require Statement Node Number
require(randDna >= 10 && randDna <= 10000) 14

tion in the require statement is true. The require statement is
commonly used to restrict the status of critical variables, such
as account status and quantity relationships. Therefore, the def-
use pairs associated with the require statement are computed
separately to emphasize them under the testing coverage.
To compute the def-use pairs associated with the require
statement, the require statement requires to be identified firstly.
By traversing the CFG of the smart contract, each CFG node is
analyzed with the recorded information to determine whether
it corresponds to a require statement. The require statement
in the smart contract code segment in Fig. 1 is shown in
TABLE III.

3) Extraction of Def-Use Pairs: The def-use pairs contained
in a smart contract are collected in two ways [16]. N dup is
used to store all the def-use pairs in the contract program.
R dup is used to store the def-use pairs related to the require
statement. A def-use pair is defined as (v, def, use), where v
denotes a variable, def denotes a definition of variable v, and
use denotes the use of the value of v defined in def. To obtain
the test target N dup and R dup, two lists Lv−d and Lv−u are
respectively used to store the definition nodes and use nodes
of each variable in Lv . The extraction of N dup and R dup is
performed as follows.

Extraction of N dup. The CFG of the smart contract is
traversed from the initial node to process each path in the
graph in a depth-first order. During the process of traversing
each path in the CFG, def-use pairs in the path are extracted.
N dup can be obtained after all paths have been processed.

For the currently traversed path, each visited node is ana-
lyzed whether it defines or uses some variables. If the currently
visited node defines variable var1, the node is added to the
list Lv−d of var1. If the currently visited node u uses variable
var1, node u is added to the list Lv−u of var1, and the list
Lv−d of var1 is traversed to find the definition node d closest
to node u in the current path. Then, a def-use pair (var1, d,
u) is constructed and added to the test set N dups.

Extraction of R dup. Based on the identification results
of the require statement, further extraction of R dup is com-
pleted by filtering def-use pairs in N dup. R dup includes the
following two types of def-use pairs:

• For a def-use pair (x, d, u), if the use node u corresponds
to a require statement, the def-use pair belongs to R dup.

• For a def-use pair (x, d, u), if the definition node d or the
use node u control depends on the require statement, the
def-use pair belongs to R dup.

With N dup and R dup, the test target of the smart contract
that satisfies the data flow testing criterion can be obtained.
The def-use pairs extracted in the smart contract code segment
in Fig. 1 are shown in TABLE IV.

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 7

TABLE IV
The Def-Use Pairs of the Sample Smart Contract

Variable
Name Def node Use node N dup R dup

dnaDigits 1 2 (dnaDigits,1,2) —
dnaModulus 2 10 (dnaModulus,2,10) —

dna 5 6 (dna,5,6) —
id 5,8,12 6,9,13,15 (id,5,6) (id,12,15)

(id,8,9)
(id,12,13)
(id,12,15)

rand 9 10 (rand,9,10) —
randDna 13 14,15 (randDna,13,14) (randDna,13,14)

(randDna,13,15) (randDna,13,15)

C. Test Case Generation

For covering the untested def-use pairs of the smart contract,
an improved GA is employed to generate the test cases. The
fitness function defined in our previous work [16] is shown in
Equation (1), which is applied to evaluate the closeness of the
generated test case tc to the test target and guide the optimal
test case search.

fit(tc) =
(n−m) + (1 + ε)m

s
(1)

where s denotes the number of N dup that need to be tested,
n denotes the number of N dup covered by the current test
case tc, m denotes the number of R dup covered by tc, and
ε is the weighting parameter of R dup, whose exact value is
determined by experiments. The require statement is unique
to the Solidity-based smart contract, which is widely used
to restrict the execution of the main functionality and avoid
vulnerabilities. If the execution condition of require statement
is not met, the coverage of the definition-use pairs is very
limited. Therefore, extra weighting is added on R dup to favor
the require statement related pairs, which will lead to a high
coverage of the definition-use pairs of the smart contract. With
this fitness function, low coverage of def-use pairs related
to the require statements can be addressed in contrast to the
traditional fitness function [17].

In our previous work [16], a GA is applied to generate
test cases iteratively. It selects the better individuals of the
current population to form the parent population and performs
genetic operations to generate the new population. Due to
the randomness of the genetic operations of crossover and
mutation, individuals with low coverage may be generated in
the new population. The further optimization based on such
a population would end with a set of test cases with low
coverage or take excessive time to find the optimal test cases.
In addition, ADF-GA only guarantees high coverage of an
individual other than that of the whole population, since it
uses the maximum fitness of the individual as the termination
condition of the GA.

To solve the above problems, Iga-Sc incorporates the prin-
ciple of the PSO algorithm into the GA to improve the test
case generation.

During an algorithm iteration, pbest of each individual is
stored in the set PB. In the PSO algorithm, pbest holds the
optimal position for each particle in the population. Iga-Sc
treats each individual in the GA as a particle in the PSO and
considers genetic operators-based evolution of each individual

as position updating of a particle. During the iterative process
of searching the optimal test cases, PB preserves the optimal
fitness of each individual by comparing the fitness of PBi and
the i-th individual. And gb is set to record gbest which is the
optimal test case during an algorithm iteration.

Suppose Pj represents the population of the j-th generation
and Pji represents the i-th individual in Pj . As shown in
Fig. 4, PBi records the optimal fitness of the i-th individual.
When updating Pij to Pij+1, the fitness of Pij+1 and PBi is
compared to decide whether PBi needs to be updated.

Fig. 4. Population’s individuals and PB

Algorithm 1 TcGeneration()

Input: Instrumented smart contract;
Def-use pairs to be covered;
Parametric variable information;
Parameters of the genetic algorithm.

Output: Test cases Pbest.
1: Initialize population PrevPop;
2: Calculate the fitness of each individual in PrevPop;
3: Initialize Pbest and gbest;
4: Perform genetic operators on PrevPop to generate the

second generation population CurPop;
5: Calculate the fitness of each individual in CurPop;
6: Update Pbest and gbest;
7: while the termination condition is not met do
8: if OFVPrevPop > OFVCurPop then
9: Compare and determine CurPopi that has the

minimum fitness in CurPop;
10: CurPopi ← gbest;
11: end if
12: Perform selection, crossover and mutation on CurPop

to generate new population NewPop;
13: PrevPop← CurPop;
14: CurPop← NewPop;
15: Calculate the fitness of each individual in CurPop;
16: if fit(CurPopi) > fit(Pbesti) then
17: Pbesti ← CurPopi;
18: end if
19: Compare and determine Pbestk that has the maximum

fitness in Pbest;
20: if fit(Pbestk) > fit(gbest) then
21: gbest← Pbestk;
22: end if
23: end while
24: return Pbest;

The process of test case generation is shown in Algorithm
1. Line 1: Firstly, an initial population PrevPop is generated
randomly, in which each individual represents a test case.
Supposing the population size is m, it is achieved by iterating
m times and initializing one individual each time. For each

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 8

individual PrevPopi, the initialization is based on the extracted
parametric variable information, including variable type and
variable length. Since the types of variables in Solidity-based
smart contracts are mainly numeric, specifically uint and
int, binary encoding is sufficient to satisfy the requirements
for variable precision. By randomly generating a valid value
within the range for each parametric variable, the value of each
parametric variable is encoded into a binary string as a sub-
chromosome [16]. For a test case, which is a collection of vari-
able values, it is represented as a series of sub-chromosomes
in the test case generation algorithm. The test cases are then
decoded into actual values to execute the smart contract.

For each sub-chromosome, the length of the binary string is
the length of the variable plus 1, where the first bit of the string
indicates the type of the variable (0 for uint and 1 for int). The
remaining bits indicate the binary form of the variable value.
Using the encoding method, a variable of type uint8 with a
value of 108 can be encoded as shown in Fig. 5.

Fig. 5. Example of Sub-Chromosome Encoding

Line 2-3: Meanwhile, Pbest and gbest are initialized based
on the initial population PrevPop. Each element Pbesti is
initialized with the individual PrevPopi. The gbest is initialized
with the individual that achieves the maximum fitness in
PrevPop. With the fitness function defined in Equation (1),
the fitness of a test case is calculated by executing the instru-
mented smart contract with decoded individuals as the input.
The fitness values of individuals in PrevPop are compared to
decide gbest. Line 4: Then the second generation population
CurPop is generated by performing selection, crossover, and
mutation on PrevPop. Line 5-6: By calculating the fitness of
each individual in CurPop, the fitness values of the individuals
between CurPop and Pbest are compared to update Pbest and
gbest.

Line 8-11: The iteration starts with determining whether
parent population requires recombination before genetic op-
erations being performed. It compares the optimal fitness of
the current population OFVCurPop with that of the previ-
ous population OFVPrevPop. If OFVPrevPop is greater than
OFVCurPop, the parent population CurPop is recombined by
replacing the individual with the lowest fitness in CurPop with
gbest. Line 12: Then selection, crossover and mutation oper-
ations are performed on CurPop to generate a new population
NewPop, followed by PrevPop and CurPop being updated.

For the genetic operators, a selection is performed based on
the fitness of each individual to form a parent population. The
higher the fitness of an individual, the higher the probability
of being selected. It not only makes the better individuals
have greater probability of being retained, but also ensures
the diversity of the population.

Crossover is performed with the sub-chromosome as the
basic unit to enable the renewal of individuals. Each gene on
paired sub-chromosomes is exchanged with an equal probabil-
ity. Supposing that two paired sub-chromosomes are denoted

as “X = x1, x2. . . xm” and “Y = y1, y2. . . ym”, a binary string
S of length m is randomly generated, denoted as “S = s1,
s2. . . sm”. As introduced in the encoding rules, the first bit
of the binary string indicates the variable type. Therefore, the
crossover is performed between X and Y starting from the
second bit to the m-th bit. Whether to exchange information
between xi and yi depends on the value of Si. If the value of
Si is 1, the values of xi and yi are exchanged. Otherwise, the
original values of xi and yi are retained.

Mutation is performed on bits of sub-chromosomes to
further enable the renewal of individuals. With the preset
mutation probability Pm, each bit of the sub-chromosome is
mutated from 0 to 1 or 1 to 0. A random r between 0 and 1
is generated to determine whether the bit is mutated or not. If
r < Pm, the mutation is performed.

Line 13-14: Then, PrevPop is updated to the current
population CurPop. The new population NewPop generated
with the genetic operators is taken as the current population
CurPop. Line 15-22: The fitness for each individual of
CurPop is calculated and Pbest and gbest are updated. If the
fitness of CurPopi is greater than that of Pbesti, Pbesti is
updated with CurPopi. After Pbest being updated, gbest is
compared with the individual Pbestk that has the maximum
fitness in Pbest. If the fitness of Pbestk is greater than that of
gbest, gbest is updated with Pbestk. The iteration continues
until the termination condition is satisfied, which is based
on the status of Pbest and gbest. If gbest reaches a pre-
defined threshold and gbest is not updated compared to the
previous iteration, each individual of Pbest has the same fitness
as gbest; otherwise if the maximum number of iterations is
reached, Pbest is produced as the test cases and the algorithm
terminates.

In general, compared to ADF-GA, the improvement of Iga-
Sc specifically includes the following aspects.

1) We apply Pbest to preserve the set of optimal test cases
generated during the GA execution, which ensures that each
test case in the output set has high coverage of the def-use
pairs to be tested.

2) We apply gbest to assist the recombination of a parent
population prior to the selection operation, which ensures high
fitness of the parent population.

3) Pbest and gbest are updated constantly during the
iteration, statuses of which are used to determine whether
the algorithm can be terminated. It helps to reduce useless
iterations and additional time consumption.

V. EXPERIMENTAL EVALUATION

This section describes the experimental study we conducted
to show the effectiveness and efficiency of our approach Iga-
Sc by comparing it with the other three test case generation
approaches, including ADF-GA, RT, and GA-C#.

A. Experimental Setup

The experimental setup includes the following three aspects:
experimental environment, experimental dataset, and evalua-
tion indicators.

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 9

TABLE V
Experimental Hardware and Software Environment

Name Standard
Operating system Windows10

CPU Intel (R) Core (TM) i5-8300H
Memory 8GB

Development tool Eclipse
Programming Language Matlab, Java

Smart Contract Execution Environment Remix

TABLE VI
Information about the Dataset of Smart Contracts

SC Name LOC Number
of Function

Number
of N dup

Number
of R dup

safeadd 22 1 10 4
basictoken 24 3 6 4

fund 39 3 16 14
getcenter 47 1 28 0
election 50 3 7 1
getsum 55 1 23 0

zuniswap 56 4 13 2
aztcharairdr 59 3 5 2
smdigicion 59 5 14 1
eip20token 59 5 14 12
lotterywin 62 6 8 4
monmail 65 5 5 1
greeter 65 4 8 0
mathop 84 7 102 0
safebuy 88 5 29 12

lottery10 110 4 42 4
idemana 114 15 50 16
fundraise 123 4 33 14

mathopreq 126 7 108 22
erc20 126 8 18 0

safemath 150 8 36 25
multiwallet 151 13 23 22
operofarr 155 11 62 25

rubixi 155 19 62 0
infomanasys 163 5 74 30

therun 177 17 58 0
erctoken 185 10 38 28

trade 202 10 64 30
geometry 246 9 93 50

timelibrary 336 39 694 143

1) Experimental Environment: The hardware and software
environment of the experimental study is shown in TABLE V.
The extraction of variable information and def-use pairs in a
given smart contract is implemented with Java programming
language on the platform of Eclipse. The improved GA based
test case generation is implemented based on MATLAB.
Smart contracts are deployed and run on the online integrated
development environment of Remix1.

2) Experimental Dataset: The following three main factors
are considered when constructing the experimental dataset:

(i) The diversity and universality of smart contracts,
(ii) The independence of smart contracts so that each can

be executed without calling other contracts, and
(iii) Whether the selected dataset covers the common state-

ments and structures of Solidity.
Based on these factors, we choose 30 typical smart contract

programs as the experimental dataset. These contract programs
contain commonly used statements and structures of Solidity,
and cover business logic in different scenarios. The number

1http://remix.hubwiz.com/

TABLE VII
Experimental Parameters

Parameter Name Parameter Value
N 4
Pm 0.1

Max iteration 100

of code lines, functions and def-use pairs of the chosen smart
contracts are shown in TABLE VI. The first column refers to
the names of the smart contracts. The second column refers to
the number of valid code lines of the smart contracts. Since the
smart contracts developed and run on the Ethereum platform
are mostly small-scale, the number of smart contracts with a
high volume of code lines is small. Smart contracts of different
scales, including less than 100 lines of code, 100-200 lines of
code, and more than 200 lines of code, are selected as the
experimental objects. Iga-Sc is applicable to smart contracts
that contain only a single function or multiple functions and
function calls. The smart contracts used in the experimental
study cover both the cases. The third column refers to the
number of functions contained in the smart contracts, where 1
indicates that there is no function call in a contract. The fourth
and fifth columns respectively refer to the numbers of N dup
and R dup in the smart contracts. If require statement is not
used in a smart contract, the number of R dup is 0.

The above dataset is collected from the typical smart
contract test datasets publicly available on GitHub and real
smart contracts deployed on the Ethereum platform. To ensure
the executability of the smart contracts, they are edited and
improved, followed by being deployed, compiled and run on
Remix before the experimental evaluation.

3) Experimental parameters: The parameters of the GA in
the experimental study, including the number of population
N (i.e. the number of test cases), the mutation probability
Pm, and the maximum number of iterations Max iteration,
are shown in TABLE VII. In addition, the parameter ε in the
fitness function is set as 0.45, which is determined by the
experimental study in [16].

4) Evaluation Indicators: To evaluate the effectiveness of
an approach, the generated test cases will be measured in
terms of coverage and fitness. To evaluate the efficiency of
an approach, the number of iterations of the algorithm and the
execution time are used as indicators. The evaluation indicators
are described in detail as follows.

Coverage. Coverage is used to evaluate the extent to which
the generated test cases cover the test targets. It can be
calculated as follows:

Coverage =
ncov

nsum
(2)

where ncov indicates the number of def-use pairs actually
covered by the test cases and nsum indicates the total number
of test targets. The higher the coverage rate, the more effective
an approach is. Since the test targets are divided into N dup
and R dup, the indicator coverage is divided into N Coverage
and R Coverage, whose corresponding nsum is the numbers
of N dup and R dup contained in a smart contract.

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 10

(a) Statistical Results of N Coverage (b) Statistical Results of R Coverage

Fig. 6. N Coverage and R Coverage of Different Approaches

Fitness. Fitness is used to measure how well the generated
test cases fit a test case generation algorithm, which is based
on the specific fitness function used in an approach. When
performing comparison with other approaches, it is necessary
to use the same fitness function in different approaches to
make the experimental results comparable.

Iteration. Iteration represents the number of iterations of
an optimization algorithm required for generating test cases,
which is a commonly used indicator for evaluating the per-
formance of an approach. With the same targets , the lower
Iteration is, the better performance the approach has.

Execution Time. Execution Time is an another straightfor-
ward indicator for evaluating the performance of an approach.
Although the average time consumption per iteration of GA is
tiny, it cumulatively makes significant time consumption when
the algorithm runs a large number of iterations. Therefore,
Execution Time and Iteration are combined to evaluate the
efficiency of an approach.

5) Comparative Approaches: The proposed approach Iga-
Sc is compared with the following existing approaches for test
case generation:

• ADF-GA. ADF-GA is an approach using GA to generate
test cases of smart contracts based on the improved fitness
function [16].

• RT. RT is an approach that randomly generates test cases
[12].

• GA-C#. GA-C# is originally designed for C# [17]. It uses
GA for the automatic test case generation based on the
traditional fitness function, as shown in Equation (3):

fit(tc) =
m

n
(3)

where n denotes the number of def-use pairs that need
to be tested, and m denotes the number of def-use pairs
covered by the current test case tc.

B. Experimental Result

We ran Iga-Sc, ADF-GA, GA-C#, and RT on top of the
30 smart contracts to generate test cases for covering their
embedded def-use pairs. The in-depth experimental analysis
against each aforementioned indicator can be found below.

1) Coverage Analysis: The test cases generated with dif-
ferent approaches for each smart contract are input into the
corresponding instrumented contract to analyze the coverage
rates of N dup and R dup. Fig. 6(a) and Fig. 6(b) respectively
show the results of N Coverage and R Coverage on the 30
smart contracts with the approaches.

The average N Coverage of Iga-Sc for the 30 smart con-
tracts is 89.2% and the average R Coverage for the 23 smart

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 11

(a) Statistical Results of f1 (b) Statistical Results of f2
Fig. 7. Fitness of Population for Different Approaches

contracts is 90.44% since the other 7 cases have no R dups.
It demonstrates that Iga-Sc can effectively generate test cases
with high coverage. We can also find that both N Coverage
and R Coverage of the test cases generated by Iga-Sc are
significantly higher than those of ADF-GA, GA-C#, and RT.
Iga-Sc increases the coverage of the test cases for def-use pairs
through the incorporation of Pbest and gbest and the improved
fitness function.

The fitness values of the test cases generated by the GA in
ADF-GA and by the improved GA in Iga-Sc are calculated
based on two different fitness functions, where f1 is the
traditional fitness function (shown in Equation (3)) and f2 is
the improved fitness function (shown in Equation (1)). The
fitness values for the 30 smart contracts based on f1 and f2
are respectively shown in Fig. 7 (a) and (b). It shows that the
fitness value of the test cases generated by Iga-Sc is equal to
or greater than that of ADF-GA. The average fitness of Iga-Sc
and ADF-GA for the 30 smart contracts based on f1 are 0.892
and 0.865, and the average fitness based on f2 are 1.031 and
0.998, respectively. The improved GA can generate better test
cases than the GA since it achieves a higher fitness compared
to the GA. It can be concluded that the improved GA performs
more effectively than the GA.

2) Efficiency Analysis: To evaluate the efficency of Iga-Sc,
the number of iterations of GA and the execution time of Iga-
Sc, ADF-GA, and GA-C#, are calculated and compared.

The number of iterations required in the algorithm execution
for generating test cases are given in TABLE VIII. Iteration
A represents Iteration of the three approaches. Iteration B1
and Iteration B2 represent the numbers of iterations required
by Iga-Sc to achieve the same optimal coverage acquired by
GA-C# and ADF-GA, respectively. The results of iterations
of the three approaches are shown in TABLE VIII. It can be
observed that the number of iterations of Iga-Sc is smaller
than the other two approaches for most of the contracts. The
average number of iterations for Iga-Sc is 15.61, which is
significantly lower than 21.02 for GA-C# and 19.03 for ADF-
GA. The average number of iterations of Iga-Sc to achieve the
same optimal coverage of GA-C# and ADF-GA are 6.93 and
8.28, respectively, which are notably lower than the number
of iterations required by the two approaches. This is because
the improved GA can accelerate the optimization process and
achieve a higher fitness value. Therefore, it requires smaller
number of iterations to achieve the same optimal fitness
acquired by the other approaches.

The results of Execution Time given in TABLE IX show that
the average execution time of Iga-Sc in 30 smart contracts is

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 12

TABLE VIII
Iteration of Different Approaches

SC Name Iteration A Iteration B1 Iteration B2GA-C# ADF-GA Iga-Sc
safeadd 7.50 7.00 7.00 1.00 1.00

basictoken 8.25 7.25 7.00 2.00 2.00
fund 15.00 16.75 12.00 2.75 3.25

gencenter 9.25 8.00 6.75 1.25 1.25
election 8.00 7.75 7.25 1.00 1.00
getsum 21.75 21.00 17.00 4.75 5.25

zuniswap 16.00 16.25 9.50 4.25 5.00
aztcharairdr 10.00 7.25 4.50 2.25 2.25
smdigicion 8.75 9.25 7.00 2.5 2.5
eip20token 15.25 13.75 11.75 4.00 4.00
lotterywin 12.25 10.75 7.75 3.00 3.50
monmail 7.00 7.75 4.00 1.25 1.25
greeter 14.50 13.25 13.75 5.25 5.75
mathop 30.00 30.00 25.25 7.00 7.25
safebuy 22.00 25.25 20.75 5.25 12.75

lottery10 30.50 26.00 21.25 10.75 14.25
idemana 26.75 23.00 20.50 14.50 15.25
fundraise 14.50 21.00 8.25 2.50 3.50

mathopreq 32.00 21.50 20.50 7.75 10.75
erc20 21.25 21.00 21.00 11.25 13.50

safemath 33.75 25.75 21.00 12.00 15.75
multiwallet 25.50 22.25 16.75 11.00 11.50
operofarr 27.75 18.25 12.00 5.50 7.00

rubixi 26.00 24.00 22.25 15.50 16.00
infomanasys 26.75 26.25 22.25 11.25 11.50

therun 22.00 21.50 20.75 13.75 15.00
erctoken 28.50 22.75 19.75 10.25 13.00

trade 25.75 31.25 26.25 9.25 11.25
geometry 31.75 18.25 16.25 8.50 9.25

timelibrary 52.25 46.75 38.25 16.50 22.75
Average 21.02 19.03 15.61 6.93 8.28

TABLE IX
Execution Time of Different Approaches

SC Name RT(s) GA-C#(s) ADF-GA(s) Iga-Sc(s)
safeadd 32.9612 3.0000 2.8378 2.9932

basictoken 32.3127 3.1317 2.8174 2.8154
fund 33.8622 6.0330 6.7771 4.9656

getcenter 33.4846 3.8869 3.2464 2.7581
election 33.4840 3.0208 2.9171 2.8159
getsum 32.8731 8.5434 8.3202 7.0006

zuniswap 33.7371 6.1856 6.3083 3.7696
aztcharairdr 33.3590 4.1840 2.9421 1.8621
smdigicion 33.1121 3.6190 3.7796 2.9218
eip20token 33.5844 6.0756 5.3983 4.8246
lotterywin 33.3973 4.8510 4.1560 3.2457
monmail 33.2942 2.8686 3.1512 1.6424
greeter 33.5336 5.7594 5.1092 5.6183
mathop 34.4372 12.1080 12.0180 10.8828
safebuy 33.4648 8.9188 10.3475 8.7026

lottery10 33.2926 12.4928 10.5508 8.9123
idemana 33.3230 10.9889 9.4852 8.7412
fundraise 33.6634 5.7304 8.5260 3.4320

mathopreq 34.7843 13.0048 8.7419 8.6838
erc20 33.4951 8.5255 8.4588 9.0048

safemath 34.7832 13.6958 10.3412 8.6226
multiwallet 33.4456 10.2816 8.9178 6.9312
operofarr 34.2238 11.3664 7.6614 5.2536

rubixi 33.1341 10.4988 9.6480 9.0869
infomanasys 33.7525 10.7375 10.4843 9.3094

therun 33.3264 8.9848 8.6688 8.7731
erctoken 33.3915 11.7078 9.1774 8.3266

trade 33.3445 10.4442 12.5063 11.9018
geometry 34.3203 13.5319 7.5519 6.8250

timelibrary 36.5817 24.9024 21.5424 18.5360
Average 33.6587 8.6360 7.7463 6.6386

6.6386 seconds, which is the lowest compared to 33.6587s,
8.6360s and 7.7463s for RT, GA-C# and ADF-GA. The
reason why the execution time of RT is so high is that it
is executed iteratively to generate test cases of the same
number. The iteration of RT terminates if it achieves the same
coverage acquired by Iga-Sc; otherwise it terminates if the
maximum number of iterations is reached. In the experiments,
RT requires the maximum number (i.e. 100) of iterations
for each smart contract, whereas its coverage is still lower
than Iga-Sc. In general, it can be concluded that Iga-Sc
significantly improves the performance of test case generation
for smart contracts from the perspectives of coverage quality
and efficiency.

VI. THREATS TO VALIDITY

In this section, we discuss the possible validity threats of
the proposed approach.

A. Internal Validity

There are three main threats against the internal validity.
First, the parameters adopted for the improved GA, such as
the population size, the methods of selection and crossover,
and the possibility of mutation, may affect the coverage of
the generated test cases and the efficiency of the algorithm.
Second, the parameter ε specified in the fitness function may
also affect the experimental results. Third, the measured time
cost for each iteration relies on the actual experimental envi-
ronment, which might be different in a different environment.

To address the randomness of the experimental study, the
same initial population is used by the three approaches for
each smart contract during the test case generation.

B. External Validity

The dataset used in our experiment is based on open-source
contracts collected from GitHub and real smart contracts
deployed on the Ethereum platform. Since the size of the
experimented smart contracts is not large and these smart
contracts only contain numerical inputs, we cannot claim
that this dataset represents all the available smart contracts.
Although the size of the smart contracts is small, they have
diverse sizes and the same constructs as large-scale smart
contracts. Therefore, it is believed that our approach would
have the feasibility to handle smart contracts with larger sizes.

In addition, Solidity is a quickly evolving language, whose
version was updated from version 0.4.0 to 0.8.0 in just a
few years. With the continuous development of Solidity, new
syntax and semantics may bring novel challenges to test case
generation of Solidity-based smart contracts.

VII. CONCLUSION

This paper presents a test case generation technique for
Solidity-based smart contracts. On the one hand, there is a
lack of research on data flow testing for smart contracts.
On the other hand, it is difficult to balance the coverage of
generated test cases and the efficiency of test case generation.
We propose an improved Genetic Algorithm-based test case

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 13

generation approach for smart contract data flow testing,
called Iga-Sc, in which we introduce the theory of Particle
Swarm Optimization to improve Genetic Algorithm. Within
the improved approach, pbest and gbest are introduced to
save generated optimal test cases. The recombination of parent
populations is adopted to reduce the randomness of the Genetic
Algorithm. The improvements make it more effective and
efficient to find the optimal solution.

A dataset comprising 30 open-source smart contracts is
collected from Ethereum and GitHub to perform the experi-
mental study. The comparative experiments among Iga-Sc and
three baseline models, including ADF-GA, GA-C#, and RT
are performed to evaluate the coverage of the generated test
cases on def-use pairs and the efficiency of the algorithms.
The experimental results show that Iga-Sc can notably reduce
the execution time of the algorithm, while generating a set of
test cases with overall high coverage.

In future work, we will expand the dataset with more large-
size and complex smart contracts for large-scale experiments.
In addition, we will design more advanced fitness functions to
consider whether the same def-use pairs are covered by test
cases and further guide the searching of optimal test cases.
We also will detect vulnerabilities in smart contracts with the
generated test cases.

ACKNOWLEDGMENT

The work is supported by the National Natural Science
Foundation of China (U21B2016, 61702159), the Fundamen-
tal Research Funds for the Central Universities of China
(B220202072, B210202075) and the Natural Science Foun-
dation of Jiangsu Province (BK20191297) .

REFERENCES

[1] W. Zou, D. Lo, P. S. Kochhar, X. B. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and opportunities,”
IEEE Transactions on Software Engineering, vol. 47, no. 10, pp. 2084–
2106, 2019.

[2] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[3] M. Almakhour, L. Sliman, A. E. Samhat, and A. Mellouk, “Verification
of smart contracts: A survey,” Pervasive and Mobile Computing, vol. 67,
p. 101227, 2020.

[4] D. He, Z. Deng, Y. Zhang, S. Chan, Y. Cheng, and N. Guizani,
“Smart contract vulnerability analysis and security audit,” IEEE Net-
work, vol. 34, no. 5, pp. 276–282, 2020.

[5] J. W. Liao, T. T. Tsai, C. K. He, and C. W. Tien, “Soliaudit: smart
contract vulnerability assessment based on machine learning and fuzz
testing,” in 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS). IEEE, 2019, pp. 458–
465.

[6] Z. Zheng, S. Xie, H. N. Dai, W. Chen, X. Chen, J. Weng, and M. Imran,
“An overview on smart contracts: Challenges, advances and platforms,”
Future Generation Computer Systems, vol. 105, pp. 475–491, 2020.

[7] L. Ante, “Smart contracts on the blockchain–a bibliometric analysis and
review,” Telematics and Informatics, vol. 57, p. 101519, 2021.

[8] W. Wang, J. Song, G. Xu, Y. Li, H. Wang, and C. Su, “Contractward:
Automated vulnerability detection models for ethereum smart contracts,”
IEEE Transactions on Network Science and Engineering, vol. 8, no. 2,
pp. 1133–1144, 2020.

[9] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Smart contract
vulnerability detection using graph neural network.” in IJCAI, 2020, pp.
3283–3290.

[10] S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE transactions on software engineering, no. 4,
pp. 367–375, 1985.

[11] A. S. Ghiduk, M. J. Harrold, and M. R. Girgis, “Using genetic algorithms
to aid test-data generation for data-flow coverage,” in 14th Asia-Pacific
Software Engineering Conference (APSEC’07). IEEE, 2007, pp. 41–48.

[12] P. McMinn, “Search-based software test data generation: a survey,”
Software testing, Verification and reliability, vol. 14, no. 2, pp. 105–
156, 2004.

[13] M. Pei, E. D. Goodman, Z. Gao, and K. Zhong, “Automated software test
data generation using a genetic algorithm,” Michigan State University,
Tech. Rep, no. 1, pp. 1–15, 1994.

[14] M. R. Rajkumari and B. Geetha, “Automatic test data generation using
genetic algorithm and program dependence graph,” Journal of Computer
Applications, vol. 3, no. 4, p. 1, 2010.

[15] N. Nayak and D. P. Mohapatra, “Automatic test data generation for
data flow testing using particle swarm optimization,” in International
conference on contemporary computing. Springer, 2010, pp. 1–12.

[16] P. Zhang, J. Yu, and S. Ji, “Adf-ga: data flow criterion based test
case generation for ethereum smart contracts,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software Engineering
Workshops, 2020, pp. 754–761.

[17] M. R. Girgis, A. S. Ghiduk, and E. H. Abd-Elkawy, “Automatic gen-
eration of data flow test paths using a genetic algorithm,” International
Journal of Computer Applications, vol. 89, no. 12, pp. 29–36, 2014.

[18] L. Luu, D. H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[19] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceedings of
the 34th annual computer security applications conference, 2018, pp.
653–663.

[20] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
2018, pp. 9–16.

[21] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis framework
for smart contracts,” in 2019 IEEE/ACM 2nd International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB).
IEEE, 2019, pp. 8–15.

[22] W. K. Chan and B. Jiang, “Fuse: An architecture for smart contract
fuzz testing service,” in 2018 25th Asia-Pacific Software Engineering
Conference (APSEC). IEEE, 2018, pp. 707–708.

[23] X. Mei, I. Ashraf, B. Jiang, and W. K. Chan, “A fuzz testing service for
assuring smart contracts,” in 2019 IEEE 19th International Conference
on Software Quality, Reliability and Security Companion (QRS-C).
IEEE, 2019, pp. 544–545.

[24] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart contracts
for vulnerability detection,” in 2018 33rd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 2018,
pp. 259–269.

[25] X. Wang, Z. Xie, J. He, G. Zhao, and R. Nie, “Basis path coverage
criteria for smart contract application testing,” in 2019 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC). IEEE, 2019, pp. 34–41.

[26] H. Wu, X. Wang, J. Xu, W. Zou, L. Zhang, and Z. Chen, “Mutation
testing for ethereum smart contract,” CoRR, vol. abs/1908.03707, 2019,
[Online]. Available: https://arxiv.org/abs/1908.03707.

[27] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen, “Musc: A tool for
mutation testing of ethereum smart contract,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 1198–1201.

[28] X. Wang, H. Wu, W. Sun, and Y. Zhao, “Towards generating cost-
effective test-suite for ethereum smart contract,” in 2019 IEEE 26th
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER). IEEE, 2019, pp. 549–553.

[29] K. B. Kim and J. Lee, “Automated generation of test cases for smart
contract security analyzers,” IEEE Access, vol. 8, pp. 209 377–209 392,
2020.

[30] Y. Liu, Y. Li, S. W. Lin, and Q. Yan, “Modcon: A model-based testing
platform for smart contracts,” in Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020, pp. 1601–1605.

[31] S. Driessen, D. Di Nucci, G. Monsieur, and W. J. van den Heuvel,
“Agsolt: a tool for automated test-case generation for solidity smart
contracts,” CoRR, vol. abs/2102.08864, 2021, [Online]. Available: https:
//arxiv.org/abs/2102.08864.

[32] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic

 https://arxiv.org/abs/1908.03707
 https://arxiv.org/abs/2102.08864
 https://arxiv.org/abs/2102.08864

IEEE TRANSACTIONS ON RELIABILITY, VOL.XXX,NO.XXX. 14

selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122–158, 2017.

[33] P. G. Frankl and E. J. Weyuker, “An applicable family of data flow
testing criteria,” IEEE Transactions on Software Engineering, vol. 14,
no. 10, pp. 1483–1498, 1988.

[34] S. Sheoran, N. Mittal, and A. Gelbukh, “Artificial bee colony algorithm
in data flow testing for optimal test suite generation,” International
Journal of System Assurance Engineering and Management, vol. 11,
no. 2, pp. 340–349, 2020.

[35] S. Singla, D. Kumar, H. Rai, and P. Singla, “A hybrid pso approach to
automate test data generation for data flow coverage with dominance
concepts,” International journal of advanced science and technology,
vol. 37, pp. 15–26, 2011.

[36] S. Kumar, D. K. Yadav, and D. A. Khan, “A novel approach to automate
test data generation for data flow testing based on hybrid adaptive pso-ga
algorithm,” International Journal of Advanced Intelligence Paradigms,
vol. 9, no. 2-3, pp. 278–312, 2017.

[37] P. Zhang, F. Xiao, and X. Luo, “Soliditycheck: Quickly detecting
smart contract problems through regular expressions,” CoRR, vol.
abs/1911.09425, 2019, [Online]. Available: https://arxiv.org/abs/1911.
09425.

[38] I. Grishchenko, M. Maffei, and C. Schneidewind, “A semantic frame-
work for the security analysis of ethereum smart contracts,” in Interna-
tional Conference on Principles of Security and Trust. Springer, 2018,
pp. 243–269.

[39] L. Mei, W. Chan, T. Tse, and F. C. Kuo, “An empirical study of
the use of frankl-weyuker data flow testing criteria to test bpel web
services,” in 2009 33rd Annual IEEE International Computer Software
and Applications Conference, vol. 1. IEEE, 2009, pp. 81–88.

[40] D. E. Goldberg, “Genetic algorithms in search, optimization, and ma-
chine learning,” Queen’s University Belfast, 2010.

[41] S. Kumar, D. K. Yadav, and D. A. Khan, “An accelerating pso algorithm
based test data generator for data-flow dependencies using dominance
concepts,” International Journal of System Assurance Engineering and
Management, vol. 8, no. 2, pp. 1534–1552, 2017.

[42] Y. Shi et al., “Particle swarm optimization: developments, applications
and resources,” in Proceedings of the 2001 congress on evolutionary
computation (IEEE Cat. No. 01TH8546), vol. 1. IEEE, 2001, pp. 81–
86.

[43] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in MHS’95. Proceedings of the sixth international symposium
on micro machine and human science. IEEE, 1995, pp. 39–43.

Shunhui Ji received the B.S. degree in computer
science and technology and the Ph.D. degree in com-
puter software and theory from Southeast University,
in 2008 and 2015, respectively. She is currently an
Associate Professor with the College of Computer
and Information, Hohai University, Nanjing, China.
Her research interests include service computing,
cloud computing, software modeling, analysis, test-
ing, and verification. She is a Reviewer of some
international conferences and journals.

Shaoqing Zhu is an M.S. candidate in the College
of Computer and Information, Hohai University,
Nanjing, China. He received his bachelor’s degree in
Aliyun School of Big Data from Changzhou Univer-
sity, Changzhou, China in 2020. His current research
interests include software analysis and testing.

Pengcheng Zhang received the Ph.D. degree in
computer science from Southeast University in 2010.
He is currently a Professor with the College of
Computer and Information, Hohai University, Nan-
jing, China, and was a visiting scholar at San Jose
State University, USA. His research interests include
software engineering, services computing and data
science. He has published in premiere or famous
computer science journals. He was the co-chair of
IEEE AI Testing 2019 conference. He served as
technical program committee member on various

international conferences. He is a member of the IEEE and has published in
premiere or famous computer science journals, such as IEEE Transactions on
Services Computing, IEEE Transactions on Knowledge and Data Engineering,
IEEE Transactions on Big Data, IEEE Transactions on Emerging Topics in
Computing, and IEEE Transactions on Software Engineering.

Hai Dong is a Lecturer at School of Comput-
ing Technologies in RMIT University, Melbourne,
Australia. He was previously a Vice-Chancellor’s
Research Fellow in RMIT University and a Curtin
Research Fellow in Curtin University, Perth, Aus-
tralia. He received a PhD from Curtin University. His
primary research interests include: Service-Oriented
Computing, Distributed Computing, Cyber Security,
Machine Learning and Data Analytics. He is a senior
member of the IEEE and has published a monograph
and more than 100 research articles in international

journals and conferences, such as ACM Computing Surveys, Communications
of the ACM, IEEE Transactions on Services Computing, IEEE Transactions on
Industrial Informatics, IEEE Transactions on Industrial Electronics, Journal
of Computer and System Sciences, World Wide Web, ICSOC, ICWS, etc. He
received the Best Paper Award in ICSOC 2016.

Jianan Yu received her master’s degree from the
College of Computer and Information, Hohai Uni-
versity, Nanjing, China in 2021, and her bachelor’s
degree in the College of Internet of Things Engi-
neering from Hohai University, Nanjing, China in
2018. Her current research interests include software
analysis and testing.

 https://arxiv.org/abs/1911.09425
 https://arxiv.org/abs/1911.09425

	Introduction
	Related Work
	Testing for Smart Contracts
	Test Case Generation for Data Flow Testing

	Preliminaries
	Smart Contract
	Data Flow Testing
	Genetic Algorithm
	Particle Swarm Optimization Algorithm

	The Iga-Sc Approach
	Control Flow Graph Construction
	Data Flow Analysis
	Extraction of Variable Information
	Identification of Require Statements
	Extraction of Def-Use Pairs

	Test Case Generation

	Experimental Evaluation
	Experimental Setup
	Experimental Environment
	Experimental Dataset
	Experimental parameters
	Evaluation Indicators
	Comparative Approaches

	Experimental Result
	Coverage Analysis
	Efficiency Analysis

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	References
	Biographies
	Shunhui Ji
	Shaoqing Zhu
	Pengcheng Zhang
	Hai Dong
	Jianan Yu

