
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 1

Swift and Accurate Mobility-Aware QoS
Forecasting for Mobile Edge Environments

Huiying Jin, Pengcheng Zhang, Member, IEEE, Hai Dong, Senior Member, IEEE, Athman Bouguettaya,
Fellow, IEEE, and Albert Y. Zomaya, Fellow, IEEE

Abstract—We propose an innovative approach named MEC-RDESN /mekr:dI"saIn/ (MEC QoS forecasting based on Region
recognition and Dynamic Echo State Network) enabling mobility-aware and swift QoS forecasting in the mobile edge computing
environment. MEC-RDESN offers efficient QoS forecasting while maintaining high accuracy. We can identify the edge region to which a
user belongs in real time while moving by leveraging mobile sensing technology. We employ a dynamic echo state network
characterized by multi-service adaptability to retain information about services invoked by users to ensure real-time training and
forecasting accuracy. Our approach is validated through a series of experiments using both public and collected datasets. The
experiments demonstrate that MEC-RDESN achieves the goal of fast forecasting while ensuring its forecasting accuracy in diverse
application scenarios.

Index Terms—Mobility-aware, User-centered edge region recognition, dynamic ESN, Swift QoS forecasting.

✦

1 INTRODUCTION

W ITH the rise of the Internet of Things, Service-
Oriented Computing (SOC) has attracted much at-

tention from industry and academia [1]. SOC is a computing
paradigm that uses services as the basic elements to develop
applications [2]. The main implementation technology of
SOC is service [3]. Services are widely used in e-commerce,
big data analysis and other application scenarios [4]. Quality
of Service (QoS, also called non-functional attributes) is typ-
ically used as a discriminant between services with similar
functions [5], [6]. QoS includes response time, throughput, and
security [7].

Mobile Edge Computing (MEC) specifically focuses on
bringing computing capabilities to the edge of mobile
networks. It is generally deployed on the Radio Access
Network (RAN), which is geographically adjacent to mo-
bile users, to provide computing power right where it
is needed [8]. Once MEC nodes receive service requests
from nearby users, these nodes can respond with signifi-
cant reductions in network transmission delay [8]. In this
regard, MEC can provide users with a superior service
experience [8]. The emergence of edge computing provides
key enabling technologies for the vigorous development of
smart transportation, smart life, virtual reality and other

• H. Jin is with the College of Computer, Nanjing University of Posts and
Telecommunications, Nanjing, China
E-mail: hyjin@njupt.edu.cn

• P. Zhang (Corresponding author) is with the Key Laboratory of Water
Big Data Technology of Ministry of Water Resources and the College of
Computer and Software, Hohai University, Nanjing, China
E-mail: pchzhang@hhu.edu.cn

• H. Dong is with the School of Computing Technologies and the Centre for
Cyber Security Research and Innovation, RMIT University, Melbourne,
VIC 3000, Australia
E-mail: hai.dong@rmit.edu.au

• Athman Bougettaya and Albert Y. Zomaya are with the School of Com-
puter Science, University of Sydney, Sydney, NSW 2006, Australia
E-mail: {athman.bouguettaya, albert.zomaya}@sydney.edu.au

Manuscript received XXX XX, XXXX; revised XXX XX, XXXX.

delay-sensitive applications [9].
Edge devices (e.g., smartphones, smart wearables, etc.)

generate massive streaming data, making real-time deci-
sions impractical when analytics are performed on remote
clouds. Edge nodes that are closer to end users may be
utilized to reduce network latency to complement the com-
putation performed on the cloud [10]. However, the low-
latency feature of MEC is highly constraining for edge
services quality prediction [11]. In addition, the real-time
movement of users and the variability of movement speed
also pose higher requirements for edge QoS forecasting. For
example, the Washington Post reported on Jun 13, 2023 that
Tesla’s Autopilot was involved in 736 crashes since 2019,
including 17 fatalities. How to provide real-time, reliable
autopilot services for users has always been a concern
of National Highway Traffic Safety Administration [12].
Therefore, it is critical to achieve swift and accurate QoS
forecasting while providing intelligent services. There are
two major challenges in this regard: 1) The continuous move-
ment of users and rapid switching among different edge servers
pose challenges in predicting and adapting to the dynamic
network environment; 2) The need to forecast and maintain
acceptable QoS in such dynamic network environments requires
rapid and accurate prediction capabilities. The following
scenario demonstrates these two challenges.

Fig. 1 shows the scenario of an urban road and its
surrounding edge server distribution. Assume a taxi is
going at a relatively fixed speed from southwest to northeast
between 9:00-9:10am. Also assume that the taxi passenger
Allen is watching a Twitch game live video during this jour-
ney. The video quality needs therefore to be continuously
predicted. If the predicted video quality deteriorates, Twitch
can compress video data while maintaining certain clarity
to reduce bandwidth consumption and fix video stuttering.
During this journey, the taxi may go at higher speeds requir-
ing Allen to quickly switch between different edge servers.
Hence, it is paramount to quickly and accurately predict

H. Jin, P. Zhang, H. Dong, A. Bouguettaya and A. Y. Zomaya, "Swift and Accurate Mobility-Aware QoS Forecasting for Mobile Edge Environments," in IEEE
Transactions on Services Computing, doi: 10.1109/TSC.2024.3417339. © 2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 2

S4

Edge server Taxi passenger Allen iPhone Wireless connection Time

S1

S2

S3

app

S5

Fig. 1: A mobility-aware edge service invocation scenario

video quality. Assume that between 9:00am to 9:10am, Allen
continuously accesses the edge servers S1, S2, S3, S4 and
S5. During this process, the service quality forecasting is
usually based on the service data previously generated
by him (from 9:00am). Since Allen’s position is constantly
changing, the status (e.g., bandwidth, communication rate,
etc.) of the network environment where he is located is
dynamic. Therefore, not all the previous QoS data generated
by Allen are valid for the subsequent prediction. In addition,
Allen may decide to make a voice call using WhatsApp from
9:05am to 9:10am. Similarly, the call quality also needs to
be continuously predicted so that WhatsApp can compress
audio to ensure the call quality. Thus, both of the quality
of Twitch and WhatsApp needs to be predicted in the second
half of the journey.

We summarize the challenges faced by the edge QoS
forecasting are as follows:

i). Existing QoS forecasting approaches cannot adapt to MEC
users’ dynamic movement in real-time. Users have the char-
acteristics of activity and mobility in the MEC environ-
ment. Each edge server has a certain coverage area and
provides services to users within its coverage area [13].
Since users may continuously access different edge servers
during the movement process, each edge server serves a
different number of users with limited resources [14]. How-
ever, the location-aware schemes in existing QoS forecasting
approaches mainly focus on geographic area awareness
(i.e., users’ movement between areas covered by different
edge servers) and overlook users’ real-time movement and
moving speed [11], [15], [16]. This may lead to low fore-
casting accuracy and unsatisfied forecasting lead time, i.e., the
forecasting result cannot be delivered before a user arrives
in an area covered by a different edge server. Therefore, it is
of great importance to monitor user movement in real-time
and achieve a satisfactory QoS forecasting lead time.

ii). Realizing swift and accurate QoS forecasting is an urgent
problem in MEC. The core concept of MEC is to use the wire-
less access network to provide computing power nearby,
thus creating a high-performance and low-latency service
environment. Similarly, realizing quick QoS forecasting is a
necessary condition for improving user service experience.

In this regard, most traditional time series QoS forecasting
approaches [17], [18], [19] need to go through a complex
model training process, which are not suitable for continu-
ous online training. In addition, these approaches are only
designed for performing predictions for existing services
without considering new services. More specifically, most
existing approaches can only predict QoS for a fixed set of
services. However, they ignore the fact that an MEC envi-
ronment is extremely dynamic and there would be many
new services being invoked in the next moment. Therefore,
swift and accurate QoS forecasting with the consideration
of new services in the mobile edge environment has great
research significance.

We propose a novel mobility-aware swift QoS forecast-
ing approach in the mobile edge environment, abbreviated
as MEC-RDESN (MEC QoS forecasting based on Region
recognition and Dynamic Echo State Network). A user-
centered edge region is continuously identified during a
user’s movement to obtain valid historical time series data
to ensure forecasting accuracy. We adopt an improved Echo
State Network to meet the requirement of fast forecasting
with significantly reduced training time. The contributions
of this paper include the following two aspects:

• We propose a mobility-aware user-centered edge re-
gion recognition scheme. Mobile sensing technology
is a low-cost but efficient way to collect environmen-
tal data [20]. The radius of the current 5G urban base
station signal coverage is around 300-500m [21]. We
introduce the concept of mobile recognition in user-
centered edge regions based on the sensing technol-
ogy and the signal coverage statistics of edge servers.
Let us assume that the current location of a user is
covered by one or many edge servers with the signal
coverage radii of 300-500m. Taking this location as
the center, a circle with the radius of 500m is used
to portray the user-centered edge region. This region
will contain the set of edge server(s) that this user
may visit next. This region also covers the server(s)
previously accessed by this user, by which we can
capture the relevant historical QoS data of services
(denoted as sold) of this user. The user-centered edge
region is constantly changing along with the user’s
dynamic movement to update the data captured
from the latest environment.

• We describe an efficient QoS forecasting approach
in the mobile edge environment. This approach is
employed to predict the QoS performance of services
from the edge servers that a user may access next
based on the QoS data of sold. First, an initial model
is pre-trained based on Echo State Network (ESN).
Then, an improved ESN model is adopted for real-
time QoS forecasting during user movement. Since
the types and numbers of services invoked by users
in the edge environment are diverse, the improved
ESN model is multi-service adaptive and can store
information about services invoked by users. In com-
parison to ESN, the improved model is able to further
optimize training costs, and stabilize the connection
weights between neurons to improve forecasting ac-
curacy.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 3

We conduct a series of experiments based on public and
collected data sets to evaluate the effectiveness of MEC-
RDESN. The experiments verify the impact of mobility
awareness on QoS forecasting and the performance of the
improved ESN. The experimental results also demonstrate
that MEC-RDESN achieves the goal of swift forecasting
while ensuring forecasting accuracy in diverse application
scenarios, such as cycling, driving, taking trains, etc.

The structure of the paper is organized as follows. Sec-
tion 2 surveys relevant research about “mobility-aware” and
state-of-the-art QoS forecasting methods. Section 3 intro-
duces the background knowledge used by our approach.
Section 4 presents the details of our approach. Section 5 elab-
orates the experimental design and result analysis. Section 6
concludes the paper and plans our future work.

2 RELATED WORK
2.1 Mobility-Awareness

A. T. Campbell is recognized as a pioneer in mobility-
awareness. He introduced the ”human-centered” awareness
mode in 2006 [22]. In 2011, IBM Research [23] studied the
”mobile crowd sensing” application. In 2012, Y. Liu [24] pro-
posed the concept of “group-aware computing”, marking a
significant milestone in this area.

In recent years, many scholars have conducted re-
search on mobility-awareness in edge environments. Peng
et al. [25] devised a method to assess mobility-related
fitness values between unallocated edge users and avail-
able edge servers. They also designed a mobility model
to perform user allocation according to the fitness values.
Hoang et al. [26] investigated a mobility-aware computa-
tional offloading method for in-vehicle wireless networks.
This method uses an unbounded simulation area migration
model to simulate the movement of intelligent connected
cars, thereby constructing a mobility model. Ma et al. [27]
used data mining and machine learning technology to es-
timate the probability of a user moving to a certain lo-
cation based on the user’s historical movement trajectory,
thereby enhancing service delivery. Liu et al. [28] proposed
a mobility-aware dynamic edge service migration scheme.
This scheme calculates the probability of users crossing the
boundaries of cellular networks based on network shapes,
making the mobility behaviour of users predictable.

However, the above mobility-aware solutions predom-
inantly focus on monitoring changes in users’ locations
rather than continuously tracking users’ real-time move-
ment status.

2.2 QoS Forecasting

Traditional QoS forecasting. Traditional QoS forecasting
can mainly be achieved via similarity-based, model-based,
location-based, and time-based approaches. Zheng et al. [29]
proposed a web service QoS forecasting method based on
user similarity and service similarity. Ding et al. [5] con-
sidered the hidden environmental preference information
to build up a joint QoS forecasting method based on the
deep fusion of features. Liu et al. [30] employed Graph
Neural Networks (GNNs) for QoS forecasting. GNNs model
the impact between users/services and learn feature vectors

effectively. Zou et al. [31] proposed a novel framework for
data-protected QoS prediction. It ensures user data protec-
tion and the efficacy of predicting missing QoS values. Chen
et al. [32] employed the location information and QoS val-
ues to cluster users and services. They made personalized
service recommendations based on the clustering results.
Shen et al. [33] proposed a QoS forecasting method based
on the geographic location information of candidate services
to improve forecasting accuracy. These traditional location-
based QoS forecasting methods make service recommenda-
tions based on the location of services or users. They ignore
user mobility issues.

Many scholars consider the time factor during forecast-
ing to further analyze the dynamics of QoS data and pursue
more accurate predictions. Existing time series QoS forecast-
ing approaches can be divided into numerical and model-
based approaches. Numerical forecasting mostly targets
predicting null values by mining the relationship between
historical values. Wang et al. [34] considered the influence
of network states and time changes on service performance.
They presented a spatio-temporal QoS forecasting method,
which can improve the forecasting accuracy by more than
10%. Nevertheless, the forecasting leverages other available
QoS values in the current time slot and cannot be directly
applied to forecast future temporal QoS values. Ye et al. [35]
used QoS historical data and short-term advertisements to
predict the long-term QoS behavior of service providers.
However, QoS is inherently dynamic. The QoS history and
short-term advertisement cannot capture this dynamism.

Model-based forecasting generally builds a forecasting
model and trains the model based on time series QoS
data. Zhang et al. [36] proposed an online long-term QoS
forecasting method based on radial basis function (RBF) to
solve the problems of correlation of multiple attributes, in-
accurate long-term forecasting and lack of dynamic update
mechanism. This method achieves higher efficiency and
lower error rates than traditional methods. Nevertheless,
the establishment of complex relationships among multi-
ple QoS attributes needs to be further improved. Zou et
al. [37] devised a time-aware QoS forecasting method based
on deep learning and feature integration. It integrates the
binarization feature and the similarity feature. It learns and
mines temporal features between users and services based
on gated recurrent units (GRU) to realize better service QoS
forecasting. This method does not consider the influence of
geographic locations of users and services on the forecasting
result.

Edge QoS Forecasting. Existing edge QoS forecasting
approaches can be grouped into environment-sensitive and
model-based categories. Wang et al. [15] proposed a collab-
orative filtering-based service recommendation method. It
selects Top-k similar neighbors for forecasting based on the
similarity of users or edge servers. However, the forecasting
accuracy of this method is affected by the data density and
distribution of edge servers. Li et al. [16] designed a trusted
location-aware QoS forecasting method. They integrate loca-
tion clustering information and user reputation information
into hybrid MF models to forecast unknown QoS values.
They only consider user information as an important factor
in forecasting unknown values. Liu et al. [38] proposed
two context-aware MEC service QoS forecasting schemes

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 4

by combining user-related and service-related contextual
factors and various MEC service scheduling scenarios. At
the same time, they developed adaptive QoS forecasting
strategies to forecast the suitable QoS data format for dif-
ferent MEC service scheduling scenarios. However, these
schemes do not consider the impact of user mobility on
MEC service QoS forecasting.

White et al. [39] presented a forecasting approach based
on noisy ESN. This approach considers that traditional time
series forecasting methods have long training time and are
not suitable for dynamic environments. It fulfills the need
for accurate short-term forecasting in dynamic systems.
Nonetheless, they did not consider dynamic and persistent
forecasting. Zhang et al. [40] considered the privacy and
reliability issues in the MEC environment. They developed
a trusted privacy-preserving QoS forecasting model. This
model protects the credibility of personal information and
predicted results by using federated learning techniques
and a reputation mechanism. Nonetheless, this method
may be maliciously attacked during federated learning-
based data transmission. Our previous work [11] focuses
on achieving real-time and accurate forecasting when users’
geographic area changes. We did not consider real-time user
movement and the impact of moving speed on forecasting
effectiveness.

In MEC, QoS values are highly correlated with service
invocation time. Mobility is a unique feature of users in the
mobile edge environment, which may pose a major hurdle
for timely QoS forecasting. Therefore, it is crucial to achieve
swift forecasting. There is currently no swift QoS forecasting
approach both considering the user mobility and time factor
in mobile edge environments according to our literature
survey.

3 PRELIMINARIES
3.1 Mobile Edge Computing

Large-scale resources and extensive services in cloud com-
puting make it possible to generate new computing-
intensive applications. However, cloud computing relies
heavily on the centralization of computing and data re-
sources. Services provisioned in cloud data centers are usu-
ally far away from users. They cannot meet the needs of
latency-sensitive applications, such as low latency, location
awareness, and mobile support. In this context, researchers
introduce the MEC technology to provide services to users
by utilizing edge network resources.

The literature [41] defines MEC as ”bringing the com-
puting services of the wireless access network close to
mobile users, thereby serving delay-sensitive and context-
aware applications”. The distinguishing features of MEC are
dense geographical distribution of servers, close connection
with end users and mobile support. Therefore, higher re-
quirements are put forward for QoS forecasting in the edge
environment to ensure the service satisfaction of edge users.

3.2 Mobile Sensing Technology

The concept of mobile sensing technology was first pro-
posed by Professor Burke of University of California in
2006 [42]. He described it as a new network architecture

that can improve the trustworthiness, quality, privacy and
sharing, and encourage the participation of individuals,
societies and cities. In recent years, mobile sensing tech-
nology aims to use sensors on smart devices to collect and
process data in real time to provide advanced application
services, as smartphones and other types of mobile devices
have become mainstream computing and communication
methods.

In addition, most mobile sensing application scenarios
usually involve collection and processing of multiple types
of massive data when acquiring user information in a sens-
ing area in real time. Therefore, techniques such as machine
learning and data mining are widely used in data analy-
sis, management and feedback. At present, mobility-aware
systems are widely used in intelligent transportation, social
networking, environmental monitoring and other fields [43].

3.3 Echo State Network
The Echo State Network (ESN) is a new type of neural
network. It was proposed by H. Jaeger in 2001 [44]. The
core principle of ESN is employing a large-scale random
sparse network as an information processing medium. ESN
maps the input signal from a low-dimensional input space
to a high-dimensional state space. It then utilises a linear
regression method to train the partial connection weights of
the network in the high-dimensional state space [45].

ESN comprises an input layer, a hidden layer and an
output layer. Its structure is shown in Fig. 2. The unique fea-
tures of ESN lie in its utilization of randomly sparsely con-
nected neurons within the hidden layer, coupled with the
feature that the connection matrix remains unaltered once
generated. At the same time, the generation process is in-
dependent of the training process, which greatly simplifies
the training process [45]. ESN achieves a key breakthrough
in the problem that the traditional recurrent neural network
training more likely falls into local minimum values with
low convergence speed.

…

u(t)

…

y(t)x(t)

Win W Wout

input layer hidden layer output layer

reserve pool

Fig. 2: The structure of ESN

4 THE MEC-RDESN APPROACH
The workflow of MEC-RDESN is outlined in Section 4.1.
The four steps of MEC-RDESN are introduced in details in
Section 4.2, Section 4.3, Section 4.4 and Section 4.5.

4.1 Overview of MEC-RDESN
We propose a swift and mobility-aware QoS forecasting
approach (MEC-RDESN) in the mobile edge environment.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 5

MEC-RDESN works towards the goals of mobility-aware,
fast and accurate edge QoS forecasting. The system work-
flow is shown in Fig. 3. It is mainly divided into four steps:

Edge Nodes

Information

Time series

QoS data set

Spatio-temporal

mobility-aware

edge QoS data set

User mobile

information

Network infrastructure provider

Mobile device

Service provider

collect

collect

collect

Location info

and coverage

Distance and

average speed

Step 1 Data collection and processing

Network pre-training

Step 2 Model pre-training

Echo State Network

Initial model

Step 3

User-centered edge

region recognition

Determine the region

radius

Calculate the time

interval

Track the edge region

Step 4 Swift forecasting

N

Y

Value of

current time

Mean value of

time interval

Dynamic ESN

Real-time data

Update

continuously

Swift forecasting

Edge QoS

forecasting result

Y

N

If switching
to new edge

region
If user

continues to

move

Fig. 3: MEC-RDESN overview

1). Data collection and processing. First, time-series QoS
data, edge nodes and user movement information are
collected from service providers, network infrastructure
providers and mobile devices to form a spatio-temporal
mobility-aware edge QoS data set. The edge node informa-
tion includes geographic distribution of edge servers. Since
edge servers are commonly deployed in base stations for
mobile user access [46], we assume that edge servers and
base stations are in one-to-one correspondence. In addition,
a user’s mobile device records the user’s moving distance
and average speed. We adopt the scenario of Allen in Fig. 1
as an example. First, Allen’s iPhone records his movement
information. Next, the network infrastructure provider pro-
vides the edge servers accessed by Allen along the way.
Finally, we obtain the spatio-temporal mobility-aware edge
QoS data set based on the time-series QoS data collected by
the service provider, e.g., the time-series QoS data of Allen
watching the Twitch game live video along the road.

2). Model pre-training. The data previously generated by
the user after departure is used to activate the model. We
employ ESN to train an initial model for the user to provide
optimal hyper-parameters for subsequent predictions. In
Allen’s scenario, the QoS data generated in the first few sec-
onds after clicking Twitch is used for model pre-training. The
pre-training terminates when the optimal hyper-parameters
are obtained.

3). User-centered edge region recognition. The user’s whole
movement path is overlaid by the signal coverage of mul-
tiple edge servers. When the model pre-training is over,
we draw the circular edge region with a radius of 500m
by taking the user’s current location as the center. 500m is
the maximum signal coverage radius of an urban 5G base
station [21]. This user-centered edge region contains at least
one edge server that stores the user’s historical QoS data
and at least one edge server that the user may visit next.

The user is switched to a new edge region whenever the
user’s actual moving distance reaches 500m from the center
of the current edge region. Fig. 4 shows all user-centered
edge regions in Allen’s scenario.

S4

S1

S2

S3

S5

R1

R2

R3

R4

R5

500m

Fig. 4: User-centered edge regions in Allen’s scenario

4). Swift forecasting. The user employs the pre-trained
model in step 2) in Section 4.1 as the initial QoS forecasting
model. The input of the ESN is determined by whether the
user switches to a new edge region with the real-time track-
ing of the user-centered edge region. If the answer is no,
the current QoS values are used as the input; otherwise, the
input is the average QoS values obtained from the previous
500m. We design a dynamic ESN model to perform QoS
forecasting. The model stores information about services
that the user previously invoked (i.e., previously trained
connection weights among the neurons assigned to these
services). Once QoS data of new services is generated, the
model assigns connection weights between neurons to these
new services every 500m based on the real-time QoS data
generated by the user. This ensures the accuracy of edge QoS
forecasting results. The network training and forecasting
actions are terminated as the user stops moving. In Allen’s
example, the forecasting is performed by iPhone based
on the QoS data of the Twitch game live video instantly
generated from its service provider or the average QoS data
generated within the last 500m. The QoS data is provided
by its service provider in the form of data logs. At the same
time, the model parameters are periodically updated every
500m through training with the new data.

4.2 Data collection and processing
First, a user’s mobile device records his/her mobile in-
formation. The information is recorded as UMinfo ={
(Dt1 , Dt2 , . . . , Dtk), V̄u

}
, where Dtk is the user’s real-

time moving distance at time tk (e.g., 0.5km at 9:01 am)
and V̄u is the user’s average speed in the last 500m.
Then, edge server information is collected from its net-
work infrastructure provider. It is recorded as ENinfo =
{(Lt1 , Lt2 , . . . , Ltk), S}, where Ltk is the location (i.e., lon-
gitude and latitude) of an edge server accessed by the
user in real time, and S is the signal coverage radius
of base stations (i.e., 300-500m). Next, the user’s time se-
ries QoS data is collected from service providers. It is
recorded as QoS = {Qt1 , Qt2 , . . . , Qtk}, where Qtk is the
QoS data generated by the user at time tk. Finally, we
aggregate the three data sets into the user’s spatio-temporal
mobility-aware edge QoS data set, which is expressed as
[UM EN QoS]info =

{
(Dtk , V̄u), (Ltk , S), Qtk

}
.

Let us make use of the scenario of the taxi passenger
Allen to explain this process. During Allen’s journey, his

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 6

iPhone records the real-time moving distance, e.g., (10km,
9:10 am), and the average speed in the last 500m of the taxi,
e.g., 50km/h. Edge servers S1, S2, S3, S4 and S5 respectively
log the Twitch game live video quality data, e.g., frame rates
and bit rate. These QoS data and accessed edge server infor-
mation (i.e., longitude and latitude, signal coverage radius,
etc.) along the way are recorded by service providers and
network infrastructure providers, which are shared with
Allen’s iPhone. We fuse these three groups of data to form
a spatio-temporal mobility-aware edge QoS data set, e.g.,
[UM EN QoS]info=[(10km,9:10 am,50km/h),((118.79783,
31.92262),500m),(25fps,1800kbps)]. We then employ a map
software 1 to map the user’s movement and locate the
accessed edge servers.

4.3 Model pre-training

We view the QoS data generated in a user’s departure
phase as the initial data, and obtain a pre-trained ESN
model based on the initial data. Its main training process is
concentrated between the reserve pool and the output unit
due to the structural characteristics of the ESN. In addition,
the connection weights between neurons in the reserve pool
are randomly generated without training. Therefore, the
ESN model training process is simple and efficient. For
Allen, once he generates the data set in the departure phase,
the ESN can quickly complete the pre-training process. The
purpose of model pre-training is to provide him with an
initial model for forecasting QoS of the Twitch game live
video.

The input and output of ESN are both time-series data
when it is used for time-series forecasting. At this point,
the ESN can be regarded as a nonlinear filter to realize the
conversion from input to output. The update process of the
ESN is as follows:

x̃ (t) = f (Win [1;u(t)] +Wx(t− 1)) (1)

x(t) = (1− α)x(t− 1) + αx̃(t) (2)

where f(·) is the activation function of the neurons in the
reserve pool, and the common activation functions include
sigmoid, tanh and relu. u(t) ∈ RNu is the input, x(t) ∈ RNx

is the state of the reserve pool and x̃(t) ∈ RNx is its update.
α ∈ (0, 1] is the leaking rate. At time step t, f(·) is applied
element-wisely. [·; ·] stands for a vertical vector (or matrix)
concatenation. Win ∈ RNx×(1+Nu) and W ∈ RNx×Nx are
the input and recurrent weight matrices respectively. They
do not need to be trained, which will remain unchanged
after the initial generation.

We design an improved ESN that stores information
about services invoked by users, without regenerating the
weight connections between all neurons in each subsequent
round of training and forecasting. In other words, MEC-
RDESN stores Win for sold (i.e., old services) and W . It only
needs to allocate Win for snew (i.e., new services).

Generally, it is necessary to generate an appropriate
reserve pool to ensure the echo state characteristics of the
ESN, i.e., the spectral radius ρ(W) of the connection weight

1. https://www.ldmap.net/

matrix W of the reserve pool, is less than 1. The calculation
process of W is:

W = αw
W r

|λmax|
(3)

where αw (0 < αw < 1) is a scaling factor, W r is a randomly
generated sparse matrix, and λmax is the largest eigenvalue
of the matrix W r .

A typical supervised ESN training process can be ex-
pressed as: 1) the sparse connection weight matrix W be-
tween the processing units of the reserve pool is randomly
generated in advance; 2) training data stimulates the pro-
cessing units of the reserve pool to generate state variables
through the randomly generated weight matrix Win; 3)
linear regression is used to minimize the training error to
obtain Wout after collecting the state variables. The linear
readout layer is defined as:

y(t) = Wout [1;u(t);x(t)] (4)

where y(t) ∈ RNy is the output of the ESN, Wout ∈
RNy×(1+Nu+Nx) is the output weight matrix, and [·; ·; ·]
again stands for a vertical vector (or matrix) concatenation.

The ridge regression is one of the methods used in
the weight learning process. The calculation formula is
expressed as:

Wout = YtargetX
T (XXT + λrI)

−1 (5)

where X =
[
x(1) . . . x(t)

]
is the pool state, Ytarget =[

y(1) . . . y(t)
]

is the target value, λr (λr > 0) is the ridge
parameter, and I is the identity matrix.

For a given input signal u(t) ∈ RNu , the desired target
output signal ytarget(t) ∈ RNy is known. Our goal is to
learn a model whose output is y(t) ∈ RNy making the error
E between ytarget and y(t) is as small as possible and can be
applied to more data. We use the Root Mean Square Error
(RMSE) to measure E:

E(y, ytarget) =
1

Ny

Ny∑
i=1

√√√√ 1

T

T∑
t=1

(yi(t)− yitarget(t))2 (6)

It is also the mean of the i dimension of the output Ny ,
where i is the total dimension of Ny . T is the total number
of discrete time points in the training data set.

4.4 User-centered edge region recognition
In real scenarios, the signal coverage of a base station where
an edge server co-locates can cover a certain circular region.
Mobile users within the region can access the edge server.
Correspondingly, suppose the whole area where the user
is located is fully covered by the signal coverage of edge
servers. In that case, all the edge servers that s/he can
access are also within a circular area. We name this area as a
user-centered edge region. We denote the maximum signal
coverage radius (i.e., 500m [21]) of urban base stations as
SC. We use SC as the radius R to draw a user-centered edge
region (i.e., Ru∈ER = SC). We calculate the time Tu spent
by the user when his/her moving distance reaches R (i.e.,
Tu = R/V̄u), where V̄u is the user’s average speed over R.
Whenever the user’s moving distance reaches D

′
= D +R,

a new user-centered edge region is created. The edge region
recognition mode provides effective time series historical

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 7

data for QoS forecasting. The edge region follows the user’s
movement in real time to further ensure the freshness of
historical data.

4.5 Swift forecasting

The swift QoS forecasting of an edge service deployed by
a user can be accomplished by means of a dynamic ESN.
The dynamic ESN is based on a pre-trained ESN and the
historical QoS data obtained from the edge servers in the
user-centered edge region. We judge whether the user has
entered a new user-centered edge region according to the
user-centered edge region recognition solution depicted in
Section 4.4. If not, the forecasting will be made by feeding
the ESN with the current QoS value; otherwise, the average
QoS value in the latest time interval Tu will be fed into the
ESN. The prediction process is calculated in terms of equa-
tion (1)∼(4). During the process of user movement, when
the user-centered edge region changes, the dynamic ESN is
updated based on the latest historical data in the last Tu (i.e.,
the QoS data generated in the last 500m moving distance
of the previous region) to ensure the forecasting accuracy.
Here the dynamic ESN can memorize the services have been
invoked. In other words, the model stores the Win of the
invoked services and W . It only needs to generate random
connection weights for new services. This improvement can
assist saving training and forecasting costs. In Allen’s case,
the model stores the weights of Twitch game live video. If
he uses new app services such as WhatsApp, the model will
assign weights to these new app services.

The dynamic ESN is updated based on the historical QoS
data generated in the last time interval whenever a user
enters a new edge region during the forecasting process (see
Algorithm 1 and equation (5)∼(6)). It then produces the QoS
forecasting results. The training and forecasting are iterated
until the user stops moving or no new QoS data is generated
(e.g., Allen reaches his destination or stops watching the
video).

5 EVALUATION
We conduct both simulation experiments based on several
existing data sets and real world experiments on a univer-
sity campus to verify the feasibility and effectiveness of our
model.

5.1 Research Questions

A set of dedicated experiments are performed to explore the
following research questions:

• RQ1: How much data can effectively activate the
model?

• RQ2: What are the optimal hyper-parameters for user
mobility-aware model pre-training?

• RQ3: What is the performance of the proposed
method in comparison to existing forecasting meth-
ods?

• RQ4: What are the impact of the base station signal
coverage radius and movement speed on the time
efficiency of edge forecasting?

Algorithm 1 Mobility-aware swift edge QoS Forecasting

Require: The moving distance of mobile user u at time tk is
Dtk , the average speed of u is V̄u. SC is the base station
maximum signal coverage radius, {Qt1 , Qt2 , . . . , Qtk} is
the real-time data generated by u accesses edge servers
along the way. A is the user-centred edge region. s are
services invoked by u, sold are all services have been
invoked by u, and snew are new services invoking by u.

Ensure: Edge QoS forecasting results for u
1: Record Dtk , V̄u of u;
2: Collect Qtk ;
3: Pre-train the network based on {Qt1 , Qt2 , . . . };
4: Draw the edge region with the u’s location as the center,

and the SC value as the radius R;
5: Calculate the time interval Tu = R/V̄u;
6: for Dtk++ do
7: if Dtk < DTu−n + R (n = 1, 2 . . .), i.e., u.location ∈

Edge region An then
8: Perform forecasting based on the current moment

value Qtk to obtain the forecasting result q′;
9: q′ → B;

10: else
11: Tu−n ++, An ++;
12: if s ∩ sold ̸= ∅ then
13: Assign new connection weights to snew and use

all current connection weights;
14: else
15: Use stored connection weights;
16: end if
17: Continuously train the network based on the latest

time interval value QTu−n;
18: Take the mean value of the latest time interval

QTu−n as the network input for forecasting to ob-
tain the result q′;

19: q′ → B;
20: end if
21: return B
22: end for

5.2 Simulation Experiment

5.2.1 Data Set Description

Our simulation experiments base on two data sets – a GPS
trajectory data set and a time series QoS data set. These data
sets can be downloaded from the data sources used in [47],
[48]. The first data set 2 is provided by Geolife project. It
contains 17,621 trajectories with a total distance of 1,292,951
kilometers and a total duration of 50,176 hours. The data
set is in the form of a sequence of time-stamped points,
each of which contains the information of latitude, longitude
and altitude. We use the longitude and latitude information
to describe user movement paths. The second data set 3

describes real-world QoS evaluation results of 142 users
(IDs: 0-141) on 4,500 Web services over 64 consecutive time
slices (with a 15-minute interval between each two slices).
The QoS attributes mainly include Response Time (RT) and
Throughput (TP). In addition, we employ a base station

2. https://www.microsoft.com/en-us/download/details.aspx?id=52367
3. http://wsdream.github.io/dataset/wsdream dataset2.html

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 8

distribution service 4 to obtain the geographical locations
of base stations.

5.2.2 Experimental Data Preprocessing
In the trajectory data set, there are some users who labeled
their trajectories with transportation mode. We choose four
trajectories, each of which is with a distinct mode (namely
bike, taxi, subway and train). Then, we locate the base stations
around the four paths by referencing the base station distri-
bution data. We label them with IDs from 0 to 141. Next,
we use the IDs to identify the corresponding QoS data set.
Thereby, we can obtain the spatio-temporal mobility-aware
edge QoS data set of each path. Finally, we set the radius of
the user-centered edge regions to R (R=500m). Fig. 5 shows
the distribution of the four paths and their surrounding
edge servers.

subway, 1:1km

bike, 1:200m taxi, 1:500m

train, 1:2km

N

S
W E

N

S
W E start end path edge server coverage

Fig. 5: Paths with different transportation modes and edge
server distribution

We determine the time interval Tu of each user accord-
ing to their average speed. In this experiment, we set the
average speed of four transportation modes as: V̄bike =
20km/h, V̄taxi = 50km/h, V̄subway = 100km/h, V̄train =
200km/h. Therefore, the corresponding time intervals are:
Tbike = R/20, Ttaxi = R/50, Tsubway = R/100, Ttrain =
R/200. Since Ttrain is the smallest time interval, we fuse
Ttrain with one time slice (T) of the QoS data set depicted
in Section 5.2.1. Therefore, we obtain the number of time
slices contained in each time interval of the four paths (i.e.,
Tbike = 10T, Ttaxi = 4T, Tsubway = 2T, Ttrain = T). We
conduct experiments based on the RT data set.

5.2.3 Experimental Procedure
It is expected that the experiments can prove that the pro-
posed mobility-aware swift edge QoS forecasting approach
can achieve accurate and swift forecasting.

To address RQ1, the ESN is activated to generate the
first Wout. Since theoretically the data of the first two time
slices can activate the model (i.e., obtaining the Wout), we
calculate the RMSE of different time slices (i.e., 3T-6T, where
the last time slice of each is the forecasting result).

To address RQ2, we adjust the hyper-parameters of the
ESN through pre-training and try to find the optimal values
for subsequent user mobility-aware model training.

4. https://www.opengps.cn/Data/Cell/Region.aspx

To address RQ3, we compare MEC-RDESN with sev-
eral mainstream time series methods, including a baseline
method, a time series model, two classical neural networks,
a vanilla ESN model, and a vanilla ESN model with region
recognition. The six comparative approaches are as follows:
(1) Average: A simple time series forecasting model that uses
the average of a time series as the forecasting value for the
next period without training. (2) SARIMA: An extension
of AutoRegressive Integrated Moving Average (ARIMA),
which is used to model periodic time series data and predict
future values [49]. (3) RNN: A recurrent neural network that
takes sequence data as input for forecasting, where all nodes
are connected in a chain [50]. (4) LSTM: An RNN that is
able to learn long-term dependence within time-series data.
It contains three control gates and a cell structure to make
the network have memory capabilities [51]. (5) ESN: A fore-
casting model based on the original echo-state network [44].
(6) RESN: A forecasting model based on region recognition
and ESN that does not store connection weights for invoked
services during movement.

To address RQ4, we calculate the lead time of edge
forecasting at different signal values and speeds.

5.2.4 Experimental Results
(1) The amount of data to activate the model

Theoretically the data of two time slices can activate
the model to obtain the Wout value for forecasting. Table 1
shows the forecasting errors under different time slices. The
time slice with the lowest error is used to activate the model.

TABLE 1: RMSE of different time slices

Path/T 3 4 5 6
bike 0.8025 0.7153 1.0499 1.0296
taxi 1.0534 0.9723 0.85 1.1605

subway 2.4601 1.5353 1.5768 1.6826
train 0.6114 1.3205 2.0614 0.7908

(2) The optimal hyper-parameters for model pre-training
For each user, the training of the initial model uti-

lizes data generated specifically by that user after their
departure. The pre-training terminates when optimal hyper-
parameters are obtained. Hence, users have distinct initial
models. By observing experimental results, we identify a
relatively uniform hyper-parameter (i.e., the activation func-
tion tanh). This decision is depicted as follows:

Leaking Rate. The leaking rate α of the reserve pool in
equation (2) can be regarded as the rate of dynamic update
of the reservoir. For time-varying data, α is an important
parameter that determines the duration of short-term mem-
ory in ESN [52]. Fig. 6 shows the forecasting error values of
the four different paths depicted in Section 5.2.2 at different
leaking rates. It can be seen that all the forecasting errors
show a U-shaped curve with the increase of the leaking rate.
We take the leaking rate value of each path when the error
is the lowest, e.g., 0.5 in the bike path.

Reservoir Size. Another important parameter in equa-
tion (2) is the size of the reserve pool Nx, which refers to the
number of neurons contained in the reserve pool. The choice
of the size of the reserve pool is related to the complexity of

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 9

(a) (b)

(c) (d)

Fig. 6: Forecasting errors of four paths with increasing
leaking rate: (a) bike, (b) taxi, (c) subway, (d) train.

the model and the number of training samples. In general,
the larger the value of N , the stronger the description ability
of the network and the higher the forecasting accuracy.
However, if N is too large, overfitting will easily occur. Fig. 7
shows the changes in the forecasting error values of the four
different paths with the reservoir size increased from 50 to
500 in the step of 50. It can be seen from Fig. 7(a) and Fig. 7(c)
that the forecasting error is decreasing with the increase of
the reservoir size. Thus, we take 500 as the reservoir size of
the bike and subway. For taxi and train, overfitting occurred.
Therefore, we take 350 and 100 respectively as the parameter
of the model in their cases.

Activation Function. Table 2 shows the error values of
the four paths under different activation functions. It can
be seen that tanh achieves the best forecasting performance
in the taxi and subway paths, with little difference in the
bike and train paths. We choose tanh as the uniform model
activation function based on the above analysis. The average
time for model pre-training is 1.59s, indicating that a user
only needs less than 2s after departure to obtain a pre-
trained model.

TABLE 2: RMSE of Activation Functions

Fuction/Path bike taxi subway train
sigmoid 0.8738 1.3093 1.1777 1.867

tanh 0.8669 1.3063 1.1505 1.8671
relu 0.8628 1.3098 1.1565 1.9931

(3) MEC-RDESN Performance
The user performs a prediction based on the pre-trained

model. Whenever s/he enters a new edge region, model
training is performed based on the historical data in the
latest time interval to improve the real-time performance.
The training frequency exhibits periodic characteristics as

(a) (b)

(c) (d)

Fig. 7: Forecasting errors of the four paths with increasing
reservoir size: (a) bike, (b) taxi, (c) subway, (d) train.

the user moves. We perform periodic training and predict
the QoS value in the next time interval based on the number
of time slices in the time interval of each path introduced in
Section 5.2.2. The forecasting performance in the movement
process is measured in terms of training time, forecasting
time and forecasting accuracy.

Training Time. Fig. 8 shows the training time of the four
paths in each edge region during the movement process.
The Average method does not require training. Since the
number of services invoked by a user changes dynamically,
the training time fluctuates with the number of services.
Among all the models, the training time of SARIMA has
the least fluctuations. The training time of RNN and LSTM
fluctuates greatly, especially LSTM. In contrast, the training
time of the ESN series of methods is very short, where the
longest training time is about 1s. The training time of MEC-
RDESN is the shortest in the ESN series, because it further
saves the time to generate connection weights.

Table 3 shows the total training time of the six methods
on each path. It can be seen that our proposed MEC-RDESN
method has the lowest total training time. Therefore, it
greatly reduces the training cost.

TABLE 3: Total training time of four paths/(s)

Method bike taxi subway train
SARIMA 1.493 6.622 17.986 39.95

RNN 7.094 8.187 38.618 70.448
LSTM 30.443 39.172 393.608 645.1
ESN 1.287 1.669 14.971 16.478

RESN 1.285 1.768 14.508 14.646
MEC-RDESN 1.039 1.084 12.055 13.724

Forecasting Time. The forecasting time is very short
compared to the training time. Table 4 shows the average
forecasting time of each method on the RT data set. It

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 10

(a) (b)

(c) (d)

Fig. 8: Training Time of the four paths: (a) bike, (b) taxi, (c)
subway, (d) train.

can be seen that the Average has the shortest forecasting
time because it only requires some simple calculations. The
forecasting time of MEC-RDESN is about 0.005s, which
completely meets the requirement of swift forecasting.

TABLE 4: Average forecasting time/(ms)

Average SARIMA RNN LSTM ESN RESN MEC-RDESN
0.15 24.22 2.51 4.58 5.89 5.64 5.63

Forecasting Accuracy. An updated forecasting is per-
formed each time when a user enters a new edge region.
Table 5 and Table 6, Fig. 9(a) and Fig. 9(b) show the fore-
casting errors of the four transportation modes in each edge
region5. The most accurate forecasting results in Table 5 and
Table 6 are marked in bold, and the lowest point of each
region in Fig. 9(a) and Fig. 9(b) represents the most accurate
forecasting.

TABLE 5: RMSE of bike path

ER ID Average SARIMA RNN LSTM ESN RESN MEC-
RDESN

a-1 0.8753 1.2351 0.9537 1.1451 0.8669 0.8699 0.8669
a-2 0.9343 1.265 1.0162 1.3066 0.9719 0.9305 0.9276
a-3 0.8209 0.9063 0.8483 1.1927 0.7853 0.7768 0.7758
a-4 0.6796 0.918 0.7206 1.1788 0.693 0.6624 0.6617
a-5 0.899 1.1344 0.9921 1.4238 0.9301 0.8989 0.8949
a-6 0.8864 1.2583 1.0757 1.5897 0.9978 0.8818 0.8754

Further analysis of the experimental results shows that
MEC-RDESN achieves the most accurate forecasting results
on 80% of the RT data set. The RNN-related approaches
perform well in only a few edge regions (e.g., edge regions
3 and 10 in Table 6), because the training data in these
regions has faster convergence rates. Tt can be seen that

5. Note: Since the paths of subway and train modes contain too many
time intervals, their results are shown in figures instead of tables.

TABLE 6: RMSE of taxi path

ER ID Average SARIMA RNN LSTM ESN RESN MEC-
RDESN

b-1 1.4445 2.3673 1.3645 1.5123 1.3561 1.3572 1.3561
b-2 1.3361 1.6255 1.3903 1.7067 1.3864 1.3042 1.3039
b-3 2.7298 2.8079 2.4027 2.4925 2.7948 2.7576 2.7671
b-4 2.5257 2.7072 2.0887 2.5877 2.1117 2.0681 2.0671
b-5 1.5683 1.6111 1.3242 2.0292 1.5919 1.2508 1.2504
b-6 1.901 2.7531 1.8273 2.2586 1.8567 1.8247 1.8025
b-7 2.1888 3.5497 2.1922 2.6654 2.211 2.1918 2.1428
b-8 1.9869 1.9495 1.8079 2.8102 1.87 1.6871 1.6781
b-9 1.149 1.3741 1.271 1.6219 1.6638 1.1482 1.1458
b-10 1.0871 1.4476 0.9557 1.2301 1.3306 1.1351 1.1398
b-11 1.6653 1.7052 1.6885 2.3537 1.892 1.834 1.8192
b-12 1.5048 3.2046 1.416 1.718 1.4094 1.4216 1.4032
b-13 1.5021 1.8191 1.4983 2.0317 1.6146 1.5985 1.4698
b-14 1.5875 1.6213 1.498 1.612 1.4847 1.4791 1.4781

(a) (b)

Fig. 9: RMSE of two paths: (a) subway, (b) train.

obtaining valid regional historical data based on edge region
recognition plays an important role in improving forecasting
accuracy, by comparing the results between RESN and ESN.
Since MEC-RDESN has a more stable weight connection
than RESN, it has better forecasting performance.

In addition, we employ Harvey, Leybourne and New-
bold (HLN) to determine whether the difference between
the improvement achieved by MEC-RDESN is signifi-
cant [53]. The null hypothesis H0 indicates that the two time
series forecasting models have the same forecasting accu-
racy. The alternative hypothesis H1 indicates that the models
have different forecasting accuracy. We mark ”significant at
the 0.05 level” (P < 0.05) as ▲, and ”significant at the 0.01
level” (P < 0.01) as ⋆. The HLN results of all the baseline
methods compared to MEC-RDESN are shown in Table 7.
It shows that there is a significant difference between the
forecasts made by the baselines and our method.

TABLE 7: HLN results compared to MEC-RDESN

Data set Average SARIMA RNN LSTM ESN RESN
RT ⋆ ⋆ ⋆ ⋆ ⋆ ▲

(4) Lead time of edge forecasting
Lead time refers to the amount of time that a user can

utilize the predicted QoS in the current time interval. It is an
important indicator in swift moving scenes, as it measures
the effective time length of the forecasting. Its formula is as
follows:

tL = (R− (tT + tF)× V̄u)/V̄u (7)

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 11

where R is the distance to be reached in the current time
interval, tT is the model training time, tF is the service
forecasting time, and V̄u is the user’s average moving speed.
An explanation of the calculation process is shown in Fig. 10.

DTDT-1

Vu

tT

tF

tL

-

Fig. 10: Calculation process of lead time

We explore the forecasting lead time of the seven meth-
ods at different base station signal coverage radii and
speeds. Here we employ three radii values, i.e., 300m, 400m,
and 500m, according to [21]. Fig. 11 shows the lead time of
the four transportation modes under different signal cover-
age radii. Among them, RESN and MEC-RDESN belong to
the ESN series of methods, and their results are close. In the
view of single subfigures, when the R value decreases under
the same transportation mode, the lead time of forecasting
also decreases. Our method is second only to the trainingless
Average method. In addition, it can be seen from Fig. 11(a)-
11(d) that the faster the speed under the same R value,
the shorter the lead time of forecasting. Negative numbers
appear in Fig. 11(c) and Fig. 11(d), i.e., the results of the
LSTM method, indicating the incompetence of the method
to predict in time. In contrast, MEC-RDESN can achieve at
least 10s and 5s lead time, with a significant gap ahead
of SARIMA and RNN. Thus, MEC-RDESN is suitable for
different transportation modes, the advantages of which is
more obvious in swift moving scenes.

(a) (b)

(c) (d)

Fig. 11: Lead time of different signal coverage radii on the
paths of (a) bike, (b) taxi, (c) subway, and (d) train.

In summary, the simulation experimental results prelim-
inarily approve that our proposed MEC-RDESN forecasting
approach can achieve the purpose of swift forecasting while
ensuring the accuracy.

5.3 Real-world Experiment
5.3.1 Scene and Data set Description
We conduct experiments on two modes on the university
campus. The two students invoked a total of 273 different
services. The coverage radius of the micro edge server in
the campus is 150m. The user moving scenario is shown in
Fig. 12. We record the students’ real-time locations, service
invocation time, locations of accessed edge servers, network
conditions, service transmission bytes, and response time.
The data set (i.e., hhu rt) can be accessed from 6.

walk, 1:50m run, 1:100m

start end path edge server coverage walk run
wireless

connection
moving
direction

Fig. 12: The real-world experimental scenario on the campus

5.3.2 Experimental Process and Results
We use two time slices of data generated by students after
departure to activate the model. We pre-train the model, fol-
lowed by real-time region recognition and swift forecasting.
The experimental results are discussed as follows.
(1) The optimal hyper-parameters for model pre-training
Fig. 13 and Fig. 14 show the error values of the two modes
with various leaking rates and reserve sizes. We select the
hyper-parameters corresponding to the lowest error values.
As a result, (0.6, 40) is used as the optimal hyper-parameter
for walk, and (0.5, 90) is used for run.

(a) (b)

Fig. 13: hhu walk rt: (a) leaking rate, (b) reservoir size.

Table 8 shows the error values under different activation
functions, and we choose tanh as the activation function.
Here the average time for model pre-training is 0.07s.

6. https://github.com/hyjin1996/mobility-aware-QoS-dataset

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 12

(a) (b)

Fig. 14: hhu run rt: (a) leaking rate, (b) reservoir size.

TABLE 8: RMSE of Activation Functions on walk and run

Paths/Fuctions sigmoid tanh relu
walk 1.6595 1.5658 1.5924
run 2.4316 2.3783 2.3822

(2) Performance
Table 9 shows the total training time and average forecasting
time of the two modes based on our collected response time
(i.e., hht rt) dataset. It can be seen that the total training time
of MEC-RDESN is the shortest, and its forecasting time is
extremely low. Table 10 shows the forecasting errors for the
two models, where our method shows higher forecasting
accuracy. Table 11 shows the results of the HLN test. It
shows that MEC-RDESN is significant compared to the
other methods. In addition, as students’ movement time
and distance increase, more forecasting error values will
be generated, which will further improve the HLN test
performance.

TABLE 9: Total training time and average forecasting time

Mode Approach Total training
time (s)

Average forecasting
time (ms)

walk

Average \ 0.265
SARIMA 0.619 41.971

RNN 0.187 2.002
LSTM 4.158 2.991
ESN 0.026 0.723

RESN 0.024 0.583
MEC-RDESN 0.013 0.689

run

Average \ 0.13
SARIMA 0.704 27.039

RNN 0.233 1.062
LSTM 4.054 2.196
ESN 0.064 0.653

RESN 0.06 0.554
MEC-RDESN 0.014 0.544

(3) Lead time of edge forecasting
We apply MEC-RDESN to the trajectories of the walk and
run modes. The forecasting lead time calculated based on
equation (7) is shown in Fig. 15. It can be seen that MEC-
RDESN achieves sufficient lead time in the both modes,
which is equal to the Average method.

In summary, the real-world experiment can preliminarily
validate the usability and effectiveness of our proposed

TABLE 10: RMSE of hhu rt data set: (a) walk, (b) run.

(a)

ER ID 1 2 3 4
Average 3.4987 6.7966 4.0672 2.1114
SARIMA 8.0519 10.8191 3.9347 5.0079

RNN 2.1748 4.2754 3.2079 2.6666
LSTM 2.037 4.394 2.7525 2.7408
ESN 1.9265 5.4471 2.217 2.5438

RESN 1.9302 4.2361 2.0626 1.9485
MEC-RDESN 1.8807 4.1278 1.9045 1.8926

(b)

ER ID 1 2 3 4 5

Average 3.4379 3.067 2.8614 2.6322 3.3958

SARIMA 3.6228 2.9591 2.958 3.2096 3.5882

RNN 2.5661 1.9169 2.0028 2.7286 3.0918

LSTM 2.7325 1.9507 1.9407 2.5953 3.0752

ESN 2.4564 2.3022 2.2657 2.798 2.9777

RESN 2.3934 1.9404 1.953 2.3918 2.737

MEC-RDESN 2.3783 1.9276 1.8787 2.3889 2.6709

TABLE 11: HLN results on hhu rt

Data set Average SARIMA RNN LSTM ESN RESN
hhu rt ⋆ ▲ ▲ ⋆ ⋆ ⋆

MEC-RDESN approach in the real environment. In future,
we will deploy our approach on terminals (e.g., mobile
phones, car tablets, etc.) for evaluation in large-scale real-
world scenarios characterized by densely distributed edge
nodes, high numbers of users and significant mobility.

6 CONCLUSIONS AND FUTURE WORK
Existing QoS forecasting approaches cannot meet the de-
mand of the MEC environment on user-mobility-aware,
swift and accurate QoS forecasting. We propose a novel
edge QoS forecasting approach named MEC-RDESN, with
user-mobility-awareness and high forecasting efficiency and
accuracy. MEC-RDESN is based on a dynamic echo state
network. In addition, we introduce the techniques of user-
centered edge region recognition and model pre-training to
achieve the goals of user-mobility-aware, swift and accurate
QoS forecasting. In the future, we will focus on the fol-
lowing issues. First, the current user-centered edge region
recognition bases on a uniform signal coverage radius. In
reality, it needs to adapt to the different signal coverage radii
of the surrounding base stations to achieve more accurate
regional recognition. Second, we will further investigate the
impact of client device resources on forecasting accuracy to
optimize the proposed approach.

ACKNOWLEDGMENTS

This work is funded by the Natural Science Research Start-
up Foundation of Recruiting Talents of Nanjing University
of Posts and Telecommunications (Grant No. NY223166),
the National Natural Science Foundation of China under
Grant No.62272145 and No.U21B2016, and the Australian

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 13

Fig. 15: Lead time of walk and run in hhu rt data set

Research Council’s Discovery Projects funding scheme
(DP220101823).

REFERENCES

[1] D. Karastoyanova and F. Leymann, “Service Oriented
Architecture–overview of technologies and Standards,” it-
Information Technology, vol. 50, no. 2, pp. 83–85, 2008.

[2] Q. Yu, X. Liu, A. Bouguettaya, and B. Medjahed, “Deploying and
managing web services: issues, solutions, and directions,” The
VLDB Journal, vol. 17, pp. 537–572, 2008.

[3] J. Wu, L. Chen, Z. Zheng, M. R. Lyu, and Z. Wu, “Clustering web
services to facilitate service discovery,” Knowledge and information
systems, vol. 38, no. 1, pp. 207–229, 2014.

[4] A. Bouguettaya, M. Singh, M. Huhns, Q. Z. Sheng, H. Dong, Q. Yu,
A. G. Neiat, S. Mistry, B. Benatallah, B. Medjahed, et al., “A service
computing manifesto: the next 10 years,” Communications of the
ACM, vol. 60, no. 4, pp. 64–72, 2017.

[5] L. Ding, J. Liu, G. Kang, Y. Xiao, and B. Cao, “Joint QoS
prediction for web services based on deep fusion of features,”
IEEE Transactions on Network and Service Management, DOI:
10.1109/TNSM.2023.3255253, 2023.

[6] A. G. Neiat, A. Bouguettaya, T. Sellis, and S. Mistry, “Crowd-
sourced coverage as a service: two-level composition of sensor
cloud services,” IEEE Transactions on Knowledge and Data Engineer-
ing, vol. 29, no. 7, pp. 1384–1397, 2017.

[7] H. Jin, P. Zhang, H. Dong, X. Wei, Y. Zhu, and T. Gu, “Mobility-
aware and Privacy-protecting QoS optimization in mobile edge
networks,” IEEE Transactions on Mobile Computing, vol. 23, no. 2,
pp. 1169–1185, 2024.

[8] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5g,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[9] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,
“Survey on multi-access edge computing for internet of things
realization,” IEEE Communications Surveys and Tutorials, vol. 20,
no. 4, pp. 2961–2991, 2018.

[10] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S.
Nikolopoulos, “Challenges and opportunities in edge comput-
ing,” in 2016 IEEE International Conference on Smart Cloud (Smart-
Cloud), pp. 20–26, IEEE, 2016.

[11] H. Jin, P. Zhang, H. Dong, Y. Zhu, and A. Bouguettaya, “Privacy-
aware forecasting of quality of service in mobile edge computing,”
IEEE Transactions on Services Computing, vol. 16, no. 1, pp. 478–492,
2023.

[12] S. Blanco, “Report: Tesla autopilot involved in 736 crashes
since 2019.” https://www.caranddriver.com/news/a44185487/
report-tesla-autopilot-crashes-since-2019/, 2023.

[13] E. Ahmed and M. H. Rehmani, “Mobile edge computing: oppor-
tunities, solutions, and challenges,” Future Generation Computer
Systems, vol. 70, pp. 59–63, 2017.

[14] S. Deng, Z. Xiang, J. Taheri, M. A. Khoshkholghi, J. Yin, A. Y.
Zomaya, and S. Dustdar, “Optimal application deployment in re-
source constrained distributed edges,” IEEE Transactions on Mobile
Computing, vol. 20, no. 5, pp. 1907–1923, 2020.

[15] S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, “Qos prediction
for service recommendations in mobile edge computing,” Journal
of Parallel and Distributed Computing, vol. 127, pp. 134–144, 2019.

[16] S. Li, J. Wen, and X. Wang, “From reputation perspective: a hybrid
matrix factorization for QoS prediction in location-aware mo-
bile service recommendation system,” Mobile Information Systems,
vol. 2019, 2019.

[17] G. White, A. Palade, and S. Clarke, “Forecasting QoS attributes
using LSTM networks,” in 2018 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, IEEE, 2018.

[18] Q. Wang, M. Chen, M. Shang, and X. Luo, “A momentum-
incorporated latent factorization of tensors model for temporal-
aware QoS missing data prediction,” Neurocomputing, vol. 367,
pp. 299–307, 2019.

[19] G. White, A. Palade, C. Cabrera, and S. Clarke, “Autoencoders for
QoS prediction at the edge,” in 2019 IEEE International Conference
on Pervasive Computing and Communications (PerCom, pp. 1–9, IEEE,
2019.

[20] E. Macias, A. Suarez, and J. Lloret, “Mobile sensing systems,”
Sensors, vol. 13, no. 12, pp. 17292–17321, 2013.

[21] J. Li, Y. Feng, and Y. Hu, “Load forecasting of 5g base station in
urban distribution network,” in 2021 IEEE 5th Conference on Energy
Internet and Energy System Integration (EI2), pp. 1308–1313, IEEE,
2021.

[22] A. T. Campbell, S. B. Eisenman, N. D. Lane, E. Miluzzo, and R. A.
Peterson, “People-centric urban sensing,” in Proceedings of the 2nd
annual international workshop on Wireless Internet, pp. 18–es, 2006.

[23] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state
and future challenges,” IEEE Communications Magazine, vol. 49,
no. 11, pp. 32–39, 2011.

[24] Y. Liu, “Group-aware computing,” Communications of the China
Computer Federation, vol. 8, no. 10, pp. 38–41, 2012.

[25] Q. Peng, Y. Xia, Z. Feng, J. Lee, C. Wu, X. Luo, W. Zheng, S. Pang,
H. Liu, Y. Qin, et al., “Mobility-aware and migration-enabled
online edge user allocation in mobile edge computing,” in 2019
IEEE International Conference on Web Services (ICWS), pp. 91–98,
IEEE, 2019.

[26] V. H. Hoang, T. M. Ho, and L. B. Le, “Mobility-aware computa-
tion offloading in mec-based vehicular wireless networks,” IEEE
Communications Letters, vol. 24, no. 2, pp. 466–469, 2019.

[27] Y. Ma, W. Liang, J. Li, X. Jia, and S. Guo, “Mobility-aware and
delay-sensitive service provisioning in mobile edge-cloud net-
works,” IEEE Transactions on Mobile Computing, vol. 21, no. 1,
pp. 196–210, 2020.

[28] F. Liu, B. Lv, J. Huang, and S. Ali, “Towards mobility-aware
dynamic service migration in mobile edge computing,” in Collab-
orative Computing: Networking, Applications and Worksharing: 16th
EAI International Conference, CollaborateCom 2020, Shanghai, China,
October 16–18, 2020, Proceedings, Part I 16, pp. 115–131, Springer,
2021.

[29] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Qos-aware web service
recommendation by collaborative filtering,” IEEE Transactions on
Services Computing, vol. 4, no. 2, pp. 140–152, 2010.

[30] M. Liu, H. Xu, Q. Z. Sheng, and Z. Wang, “QoSGNN: Boosting
QoS prediction performance with graph neural networks,” IEEE
Transactions on Services Computing, vol. 17, no. 2, pp. 645–658, 2024.

[31] G. Zou, W. Yu, S. Hu, Y. Gan, B. Zhang, and Y. Chen,
“FRLN: Federated residual ladder network for data-protected
QoS prediction,” IEEE Transactions on Services Computing, DOI:
10.1109/TSC.2024.3377100, 2024.

[32] X. Chen, Z. Zheng, Q. Yu, and M. R. Lyu, “Web service recommen-
dation via exploiting location and QoS information,” IEEE Transac-
tions on Parallel and distributed systems, vol. 25, no. 7, pp. 1913–1924,
2013.

[33] Y. Shen, J. Zhu, X. Wang, L. Cai, X. Yang, and B. Zhou, “Geographic
location-based network-aware qos prediction for service composi-
tion,” in 2013 IEEE 20th International Conference on Web Services,
pp. 66–74, IEEE, 2013.

[34] X. Wang, J. Zhu, Z. Zheng, W. Song, Y. Shen, and M. R. Lyu,
“A spatial-temporal QoS prediction approach for time-aware web
service recommendation,” ACM Transactions on the Web (TWEB),
vol. 10, no. 1, pp. 1–25, 2016.

[35] Z. Ye, S. Mistry, A. Bouguettaya, and H. Dong, “Long-term QoS-
aware cloud service composition using multivariate time series
analysis,” IEEE Transactions on Services Computing, vol. 9, no. 3,
pp. 382–393, 2014.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 14

[36] P. Zhang, H. Jin, H. Dong, W. Song, and L. Wang, “LA-LMRBF:
Online and long-term web service qos forecasting,” IEEE Transac-
tions on Services Computing, vol. 14, no. 6, pp. 1809–1823, 2019.

[37] G. Zou, T. Li, M. Jiang, S. Hu, C. Cao, B. Zhang, Y. Gan, and
Y. Chen, “Deeptsqp: Temporal-aware service QoS prediction via
deep neural network and feature integration,” Knowledge-Based
Systems, vol. 241, p. 108062, 2022.

[38] Z.-Z. Liu, Q. Z. Sheng, X. Xu, D. Chu, and W. E. Zhang, “Context-
aware and adaptive QoS prediction for mobile edge computing
services,” IEEE Transactions on Services Computing, vol. 15, no. 1,
pp. 400–413, 2022.

[39] G. White and S. Clarke, “Short-term Qos forecasting at the edge
for reliable service applications,” IEEE Transactions on Services
Computing, vol. 15, no. 2, pp. 1089–1102, 2022.

[40] Y. Zhang, P. Zhang, Y. Luo, and L. Ji, “Towards efficient, credi-
ble and privacy-preserving service QoS prediction in unreliable
mobile edge environments,” in 2020 International Symposium on
Reliable Distributed Systems (SRDS), pp. 309–318, IEEE, 2020.

[41] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE internet of things journal, vol. 3, no. 5,
pp. 637–646, 2016.

[42] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan,
S. Reddy, and M. B. Srivastava, “Participatory sensing,” 2006.

[43] S. A. Hoseini-Tabatabaei, A. Gluhak, and R. Tafazolli, “A sur-
vey on smartphone-based systems for opportunistic user context
recognition,” ACM Computing Surveys (CSUR), vol. 45, no. 3, pp. 1–
51, 2013.

[44] H. Jaeger, “The “echo state” approach to analysing and training
recurrent neural networks-with an erratum note,” Bonn, Germany:
German National Research Center for Information Technology GMD
Technical Report, vol. 148, no. 34, p. 13, 2001.

[45] H. Jaeger, “Adaptive nonlinear system identification with echo
state networks,” Advances in neural information processing systems,
vol. 15, 2002.

[46] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server
placement in mobile edge computing,” Journal of Parallel and
Distributed Computing, vol. 127, pp. 160–168, 2019.

[47] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on gps data,” in Proceedings of the 10th international
conference on Ubiquitous computing, pp. 312–321, 2008.

[48] Z. Zheng, Y. Zhang, and M. R. Lyu, “Investigating Qos of real-
world web services,” IEEE transactions on Services Computing,
vol. 7, no. 1, pp. 32–39, 2012.

[49] L.-M. Liu, G. B. Hudak, G. E. Box, M. E. Muller, and G. C. Tiao,
Forecasting and time series analysis using the SCA statistical system,
vol. 1. Scientific Computing Associates DeKalb, IL, 1992.

[50] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural networks, vol. 61, pp. 85–117, 2015.

[51] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[52] M. Lukoševičius, “A practical guide to applying echo state net-
works,” in Neural networks: Tricks of the trade, pp. 659–686, Springer,
2012.

[53] D. Harvey, S. Leybourne, and P. Newbold, “Testing the equality of
prediction mean squared errors,” International Journal of forecasting,
vol. 13, no. 2, pp. 281–291, 1997.

Huiying Jin received the PhD degree in Soft-
ware Engineering form the College of Computer
and Software, Hohai University, Nanjing, China
in 2023. She is now a lecturer with the Col-
lege of Computer, Nanjing University of Posts
and Telecommunications, Nanjing, China. Her
current research interests include services com-
puting and edge computing. She has published
in international journals such as IEEE Transac-
tions on Mobile Computing, IEEE Transactions
on Services Computing and Information and

Software Technology.

Pengcheng Zhang (Member, IEEE) received
the Ph.D. degree in computer science from
Southeast University in 2010. He is currently a
full professor in the College of Computer and
Software, Hohai University, Nanjing, China. His
research interests include software engineering,
service computing, and data science. He co-
authored more than 70 peer-reviewed confer-
ence and journal papers, and has served as
technical program committee member on vari-
ous international conferences. He is a member

of the IEEE.

Hai Dong (Senior Member, IEEE) received
the Ph.D. degree from Curtin University, Perth,
Australia. He is currently a Senior Lecturer
with the School of Computing Technologies,
RMIT University, Melbourne, Australia. His pri-
mary research interests include services com-
puting, edge computing, blockchain, cyber se-
curity, machine learning, and data science. His
publications appeared in ACM Computing Sur-
veys, IEEE Transactions on Industrial Electron-
ics, IEEE Transactions on Industrial Informatics,

IEEE Transactions on Mobile Computing, IEEE Transactions on Ser-
vices Computing, and IEEE Transactions on Software Engineering, etc.

Athman Bouguettaya (Fellow, IEEE) is a Pro-
fessor in the School of Computer Science at the
University of Sydney, Australia. He received his
PhD in Computer Science from the University
of Colorado at Boulder (USA) in 1992. He was
previously Science Leader in Service Computing
at CSIRO ICT Centre, Canberra. Australia. He is
a Fellow of the IEEE and a Distinguished Scien-
tist of the ACM. including, the IEEE Transactions
on Services Computing, IEEE Transactions on
Knowledge and Data Engineering, ACM Trans-

actions on Internet Technology, ACM Computing Surveys, and VLDB
Journal. He has published more than 250 books, book chapters, and
articles in journals and conferences in the area of databases and service
computing (e.g., the IEEE TKDE, the ACM TWEB, WWW Journal, VLDB
Journal, SIGMOD, ICDE, VLDB, and EDBT).

Albert Y. Zomaya (Fellow, IEEE) is Peter Nicol
Russell Chair Professor of Computer Science
and Director of the Centre for Distributed and
High-Performance Computing at the University
of Sydney. To date, he has published over
700 scientific papers and articles and is (co-
)author/editor of more than 30 books. Also, he is
a Fellow of the Australian Academy of Science,
Royal Society of New South Wales, Foreign
Member of Academia Europaea, and Member
of the European Academy of Sciences and Arts.

He is a Clarivate 2022 Highly Cited Researcher, and his research inter-
ests lie in parallel and distributed computing, networking, and complex
systems.

