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Abstract—Mobile edge computing transfers computing and
storage from traditional cloud servers to edge servers, pre-
senting new challenges to quality assurance of edge services.
Quality of Service (QoS) is considered as a defacto standard
to evaluate similar services with different quality. Given the
fact that QoS values are highly dynamic in complex edge envi-
ronments, QoS monitoring is viewed as a promising technique
to comprehensively and effectively understand QoS status of
edge services. Due to the distributed storage of historical QoS
data and the changeable edge environments, traditional QoS
monitoring approaches cannot be directly applied into mobile
edge computing. To address this problem, this paper proposes
a novel multivariate QoS monitoring approach, called Rs-
mBSRM (multivariate BayeSian Runtime Monitoring using
Rough set). First, the weights of different QoS attributes are
quantified and obtained according to the historical samples
based on rough set theory. Second, a Bayesian classifier is
constructed for each corresponding edge server during the
training stage. Finally, during the monitoring stage, considering
the distributed data storage, the classifier is dynamically
switched and the attribute weights are also updated due to
user mobility. Our experimental results on public data sets
show that Rs-mBSRM is better than existing QoS monitoring
approaches and is more suitable for mobile edge computing.

Keywords-Mobile edge computing; Quality of Service; Mon-
itoring; Bayesian classifier; Rough set

I. INTRODUCTION

Mobile edge computing [1] emerges as a novel computing
paradigm, in which multiple decentralized nodes can process
and store data close to data sources. In this way, the
computing and transmission stress on traditional centralized
cloud can be offloaded to decentralized edge servers. There
is no doubt that deploying services in edge servers will pro-
vide users with better experiences, such as faster response
times, greater throughput, and higher reliability. These non-
functional attributes of services are also called qualities of
service (QoS) [2]. For service providers, QoS can ensure
the quality of service operations by timely updating service
quality status and replacing failed/unsatisfied services. Ser-
vice consumers are concerned with how to choose services
of high quality from many services with similar functions.

Service monitoring is one of the promising techniques to
obtain the current state of edge services [3]. Some traditional
monitoring approaches [4], [5] deploy monitoring systems to

obtain QoS values for evaluation. However, these approaches
are not only costly, but also limit themselves in the deter-
mined QoS values. In fact, the QoS values of a service
might change rapidly in a dynamic network environment.
Therefore, on the one hand, it is not appropriate for deciding
whether QoS requirements are fulfilled based on the deter-
mined values. On the other hand, the requirements given
by service consumers are often very vague. For example,
a user may request a service to be normal for most of
its usage period. Consequently, researchers have proposed
novel approaches called probabilistic quality attributes [6],
which is used to describe the fuzzy requirements of QoS
attributes. For example, the probability that the service’s
response time is within 1s is greater than 85%. Based
on probabilistic quality attributes, Chan et al. [7] first
defined probabilistic standard of non-functional attributes
using Probabilistic Computational Tree Logic (PCTL) [8].
However, the error rate of this approach is relatively high.
The other researchers [9], [10], [11], [12] proposed several
QoS monitoring approaches based on hypothesis testing.
The main idea is to judge Whether or not the hypothesis is
true according to existing conditions. In recent years, with
the development of machine learning, Bayesian theory has
been applied for QoS monitoring [13], [14], [15], [16]. The
main feature of this idea is that the probabilistic status of
current events can be inferred by training historical data.
Zhang et al. proposed wBSRM [14] and IgS-wBSRM [15]
to consider the impact of environmental factors and solve the
timeliness problem of samples. However, these approaches
only consider a single QoS attribute. In many cases, users
may need to monitor more than one QoS attribute. For
example, a service’s response time meets user needs but
its throughput does not. Consequently, whether or not the
service meets user needs is still unclear. To comprehensively
monitor multivariate QoS attributes of service, Zhang et
al. proposed M-BSRM [16], which can weight multivariate
QoS attribute values based on user preference and fuse the
weighted QoS values using information fusion. In this way,
multivariate QoS monitor can be achieved using Bayesian
classifiers.

However, these approaches still contain the following two
major gaps when multivariate QoS monitoring is performed
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in mobile edge computing.

• The distributed storage of data in the mobile edge envi-
ronment makes the traditional monitoring approaches
no longer applicable. Instead of centralized data storage
and computing in a traditional environment, most data
storage and computing are performed in a highly dis-
tributed way, where each edge server is only responsible
for data storage and computing requested for that
server [1]. When a user calls a new edge server, the
historical data in the old edge server is no longer valid
for monitoring [17].

• The dynamic network conditions in mobile edge envi-
ronments make it impossible to objectively evaluate the
effectiveness of different QoS attributes for a service
based on the weights given by users’ preferences. For
users who do not understand the concept of QoS, it is
difficult to reasonably assign weights. In addition, in the
mobile edge environment, QoS values vary remarkably
in different edge servers [18]. In contrast, the weights
assigned by users are usually static, which cannot adapt
to such a changeable environment.

To fill in the gaps, this paper proposes a novel mon-
itoring approach, namely, multivariate BayeSian Runtime
Monitoring using Rough set (Rs-mBSRM), which can re-
alize objective and effective multivariate QoS monitoring in
mobile edge computing. The contributions of this paper are
summarized as follows:

• We propose a multivariate QoS monitoring approach
for mobile edge computing. During the training phase,
the approach makes use of rough set theory to ob-
jectively evaluate the importance of multiple QoS at-
tributes for each edge server, obtain the comprehensive
weight values and construct the corresponding classi-
fier. During the monitoring phase, when a user invokes
a new edge server, to ensure the real-time monitoring
performance, the classifier is dynamically switched, the
attribute weights are updated, and the classifier for
the new edge server is used for monitoring. When
there is no historical data in the new edge server, the
surrounding k edge servers are selected for monitoring
based on the idea of kNN (k-Nearest Neighbor).

• We design a series of experiments to validate the
effectiveness of Rs-mBSRM. To overcome the problem
that the traditional data set does not meet the edge
characteristics, we use the method of data set fusion
to construct an edge data set for our experiments.

The remaining of the paper is organized as follow. Sec-
tion II introduces the related work of probabilistic QoS
monitoring. The theoretical foundation of our approach is
introduced in Section III. Section IV introduces our approach
in detail. Section V explains the evaluation process. Finally
Section VI summaries the paper.

II. RELATED WORK

Chan et al. [7]. proposed a .net-based framework,
which employed the Probabilistic Computational Tree Logic
(PCTL) language to define probabilistic constraints of non-
functional attributes. They deployed Windows Management
Instrumentation API (Application Programming Interface)
for constraint checking. Lee et al. [9]. delivered a run-
time probabilistic verification approach based on statistical
analysis. This approach is implemented in the Monitor-
ing and Checking (Mac) framework. Grunske et al. [10]
designed ProMo, which is a monitoring approach based
on acceptance sampling and sequential hypothesis testing.
They utilized CSLMON , a subset of continuous stochas-
tic logic (CSL), to define probabilistic attributes. The at-
tributes were verified with Sequential Probabilistic Ratio
Test (SPRT) [19]. Zhang et al. [11] developed a property
specification language – Probabilistic Timed Property Se-
quence Chart (PTPSC), an extension of Property Sequence
Chart (PSC) [20]. Based on this language, a probability
monitor is automatically generated by combining with the
process of continuous statistical assumptions. To realize
continuous monitoring, Grunske et al. [12] improved SPRT.
By reusing the results of the previous hypothesis test, the
time of statistical data is greatly reduced and the monitoring
results are ensured. Zhu et al. [13] proposed a probabilistic
monitoring approach based on Bayesian statistics, called
BaProMon. By calculating the Bayesian factors to check
the runtime information, the monitoring results are obtained
based on hypothesis tests.

Since QoS values are dynamical and changeable in dif-
ferent environments, and previous approaches do not con-
sider the environmental impact for QoS. Zhang et al. [14]
proposed weighted BSRM (wBSRM) based on the prin-
ciple of Bayesian classification. This approach combines
the influence of environmental factors on the monitored
samples and quantifies the sample weights based on the TF-
IDF algorithm in the training stage. To ensure the dynamic
and real-time monitoring performance, an extended wBSRM
framework, IgS-wBSRM [15], was designed. IgS-wBSRM
can dynamically update the classification results obtained
during the training phase by using the sliding window
mechanism and the information gain theory, so as to make
the monitoring results more accurate and effective. However,
all these approaches are designed for a single QoS attribute.
To support multivariate monitor, Zhang et al. proposed
the first work called Multivariate BRSM (M-BSRM) [16]
to monitor multivariate QoS demands of users. M-BSRM
adopts the information fusion theory to weight multiple QoS
attributes based on user preferences to obtain comprehensive
values, so as to more effectively monitor QoS.

In general, these approaches cannot solve the two gaps
mentioned in mobile edge computing. To realize multivariate
QoS monitoring, this paper proposes a novel QoS monitor-



ing approach named Rs-mBSRM.

III. PRELIMINARIES

A. Mobile edge computing
Due to the limitation of resources, the problems such as

high latency and instability in the traditional cloud comput-
ing models are inevitable. Mobile edge computing is one of
the core technologies in the 5G era [21]. It provides services
for application developers and service consumers on the
edge of the network. The goal of mobile edge computing is
to provide computing, storage, and network bandwidth close
to data sources or users, thereby relieving the resource stress
of cloud computing. Mobile edge computing, as a distributed
architecture, migrates the applications, data and services
from network center nodes (such as data centers and cloud
centers) to network edge nodes (such as edge servers and
mobile terminals) for processing [1]. This paradigm turns
the bulk of the computation that was handled entirely by the
central node into smaller and more manageable pieces and
distributes them to the edge nodes. Using this architecture,
data transmission and processing efficiency are dramatically
improved. Consequently, mobile edge computing is more
suitable to handle big data tasks.

B. Naive Bayesian classifier
Bayesian method is a normal representation and inference

method of uncertain knowledge [22]. Bayesian theorem is a
theory of calculating posterior probability based on the prior
probability of a hypothesis and the probability of observing
different data under the given hypothesis. The main idea of
Bayesian classification algorithm is to calculate the proba-
bility of occurrence of all categories under given observation
conditions, i.e., posterior probability. Then the category to be
classified belongs to the category with the highest posterior
probability. X = {x1, x2, ...xD} represents a sample to be
classified with D attributes. Y = {y1, y2, ...yk} represents k
categories. As shown in equation 1, X belongs to yk with
the highest probability.

yk = argmax
yk∈Y

P (yk|X) (1)

According to Bayesian theorem:

P (yk|X) =
P (X|yk)P (yk)

P (X)
(2)

where P (X) is a constant for P (yk|X), and P (yk) is the
prior probability of yk,

P (X|yk) = P (x1|yk)P (x2|yk)...P (xD|yk) =
D∏
d=1

P (xd|yk)

(3)
In this way, Bayesian classification formula can be written
as follows:

yk = argmax
yk∈Y

P (yk)

D∏
d=1

P (xd|yk) (4)

C. Rough set theory

The main idea of rough set theory is to use known
knowledge to describe imprecise or uncertain systems [23].
Compared with other theories in dealing with uncertain
problems, the theory has the advantage that it does not
need any prior information outside a data set. Consequently,
the uncertainty description or treatment of the problem is
relatively objective. Rough set theory has been applied in
many fields, such as pattern recognition, data mining, image
processing, etc [23]. Attribute importance measures the
classification ability of attributes to an information system.
Rough set theory can be used to measure the importance
of attributes [24]. If an attribute is deleted from a knowl-
edge representation system, the greater the change of the
classification capability, the higher importance the attribute.

IV. THE RS-MBSRM APPROACH

A. The Overview of Rs-mBSRM

The overall framework of Rs-mBSRM is shown in Fig. 1.
It contains three steps:
• The first step is data collection and preprocessing.

The collected data includes the location information
and the historical QoS data of edge servers. Each
QoS data sample includes the values of multiple QoS
attributes of a service in each edge server that is invoked
by users. After cleansing invalid historical QoS data,
each attribute value is normalized for the convenience
of aggregation. The weight of each attribute is then
determined based on rough set theory. Finally, the com-
prehensive QoS value in a data sample is calculated by
aggregating the weighted values of each QoS attribute.

• The second step is classifier construction. By testing
user-defined probabilistic standards, the prior informa-
tion is calculated to construct a Bayesian classifier for
each monitored service in an edge server.

• The third step is edge based multiple QoS monitoring.
A Bayesian classifier is selected upon user mobility.
If the monitored QoS data sample is obtained from
the user’s previous server, the classifier in the previous
server will be continuously used for QoS monitoring. If
the user’s monitored data sample is gained from a new
edge server that contains historical data, the classifier is
selected from the new server and the attribute weights
of the sample need to be updated based on the historical
data. When there is no historical data in the new edge
server, k surrounding edge servers need to be selected
to determine the monitoring results.

B. The Detail of Rs-mBSRM

1) Data Collection and Preprocessing: The collected
data includes the location of the edge server and the QoS
data for services invoked in each edge server. The location
of the edge server is used to find adjacent edge servers
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Figure 1: Overall workflow diagram of Rs-mBSRM

to monitor when the edge server does not have historical
data. The QoS samples of each edge server are described as:
X = {x1, x2, ..xn}, where xi = {a1, a2...ad} (i ∈ [1, n])
represents the i-th sample. Each sample records the QoS
data of a service invoked by all the users of an edge server.
Each sample contains d attributes, and aj(j ∈ [1, d]) is
the j-th attribute value of xi. Data filtering mainly focuses
on filtering invalid samples, such as samples with attribute
values of -1. Since different attributes have different units
and degrees of variation, we need to normalize the attributes
data when the comprehensive QoS is evaluated. In addition,
QoS attributes can be divided into positive constraints and
negative constraints, so two standardized formulas are used
to map these attribute values into [0,1]. For attributes with
positive constraints such as throughput and reliability, where
the higher the value, the better the QoS, we use formula 5 to
normalize the attribute values. For attributes with negative
constraints such as response time, where the smaller the
value, the better the QoS, we use formula 6 to normalize the
attribute values. aij is the original value of the i-th sample
and the j-th attribute.

rij =


aij − aminj

amaxj − aminj

,amaxj − aminj ! = 0

1 ,amaxj − aminj = 0

(5)

rij =


amaxj − aij
amaxj − aminj

,amaxj − aminj ! = 0

1 ,amaxj − aminj = 0

(6)

QoS monitoring is regarded as a dichotomous problem.
C = {c0, c1} is defined, where c0 represents the condition
that the comprehensive QoS meets the probabilistic standard,
and c1 represents the comprehensive QoS does not meet
the probabilistic standard. Two kinds of posterior proba-
bilities are obtained by constructing a Bayesian classifier,

and the ratio of posterior probabilities is defined as p =
afterproc0/afterproc1. When p>1, the monitoring result
is c0, and vice versa. When the weights of QoS attributes
are calculated based on rough set theory, we believe that the
attribute with greater changes of posterior probability ratio
before and after removing the attribute should be given a
higher weight. The specific process of weight calculation of
the j-th attribute is as follows:
• For the i-th sample, the comprehensive QoS

value before removing the j-th attribute is:
comprehensiveV alue = 1

d

∑d
k=1 rik. The posterior

probability ratio is denoted as afterproi.
• For the i-th sample, the comprehensive QoS

value after removing the j-th attribute is:
comprehensiveV aluei = 1

d−1
∑d
k=1,k 6=i rik. The

posterior probability ratio is denoted as afterproij .
• The sum of the differences in the posterior prob-

ability ratios of m training samples before and
after removing the j-th attribute is proj =∑m
k=1 |afterprok − afterprokj |.

• The weight of the j-th attribute is: wj =
proj∑d
k=1 prok

.

Finally, the comprehensive QoS value of the i-th sample is:
comprehensiveQoS =

∑d
j=1 rij ∗ wj .

2) Classifier Construction: When Bayesian classifiers are
used to classify continuous data, it usually assumes that the
data obey the Gaussian distribution. For QoS monitoring, a
Bayesian classifier can be described as:

cj = argmax
cj∈C

P (cj)

n∏
i=1

P (xi|cj) (7)

When a Bayesian classifier is trained by the historical data
in each edge server, the probabilistic standard is tested by:

P (X>QoS V alue) = 1 −
∫ QoS V alue

−∞
1√
2πσ

e−
(x−u)2

2σ2 dx,
where QoS V alue is the threshold of the comprehensive



QoS value, u represents the sample mean, and σ repre-
sents the sample standard deviation. If P is greater than
probabilistic standard s, the current sample belongs to c0;
otherwise the current sample belongs to c1. For example, the
probability that the comprehensive QoS is greater than 0.5 is
greater than 80%, where QoS V alue = 0.5, s = 80%. The
prior probability p(cj) is calculated based on the maximum
likelihood estimation:

P (cj) =
ncj
n

(8)

where ncj refers to the number of samples that belong to cj ,
and n refers to the total number of training samples. And
P (xi|cj) is calculated by:

P (xi|cj) = N(u, σ2) (9)

where N represents the normal distribution of the sample,
and xi is the comprehensive QoS value.

3) Edge based Multiple QoS Monitoring: Once a current
monitored sample is obtained and normalized, the major
mission of the QoS monitoring stage is to calculate the
posterior probability ratio of the sample via the classifier
of the server. The monitoring result of the sample is deter-
mined by step 2. If the posterior probability ratio is greater
than 1, the monitoring result belongs to c0; otherwise, the
monitoring result belongs to c1. If the sample is obtained
from the new edge server that contains historical data, the
sample attribute weights are updated by rough set theory
(Algorithm 2) and the comprehensive QoS value of the
sample is monitored by the classifier of the new edge server
(Step 2). If the new edge server does not contain historical
data, the k nearest edge servers that contain historical
data around the edge server are selected in terms of their
distances di(i ∈ [1, k]) The comprehensive values of the
sample in the k edge servers are calculated based on the
attribute weights of each server. The posterior probability
ratios of the sample in the k edge servers are calculated as
posteriori(i ∈ [1, k]). The final posterior probability ratio
of the sample is the weighted aggregation of the posterior
probability ratios of the sample in these servers, where
the weights are inverse to these servers’ distances. The
aggregation is represented as

∑k
i=1

x
di
∗ posteriori, where

x is calculated by
∑k
i=1

x
di

= 1.
Algorithm 1 depicts the edge based multiple QoS mon-

itoring process. Algorithm 2 describes the attribute weight
calculation process via rough set theory.

V. EXPERIMENT

In this section, we designed a series of experiments to
validate the Rs-mBSRM approach based on public data. Our
experimental evaluation was conducted on a PC with In-
tel(R) Core(TM) i5-4200M CPU@2.50GHz, 4.00GB RAM,
and Windows 10. We develop and implement Rs-mBSRM
on Geany using Python. The experiments were designed to
investigate the following four research questions:

Algorithm 1 edgeMulMonitoring

Require: The monitored sample xk = {a1, a2, ...ad}; The
sample stream of each edge server S; probabilistic QoS
standard β; QoS threshold QoS V alue;

Ensure: Monitoring result cj ;
1: if isMove == False then
2: w[d] = computeWeight(oldedge)
3: comvalue = w[1]∗a[1]+w[2]∗a[2]+ ...+w[d]∗a[d]
4: afterpro = computeAftPro(comvalue, oldedge)
5: else
6: if isEmpty == False then
7: w[d] = computeWeight(newedge)
8: comvalue = w[1]∗a[1]+w[2]∗a[2]+...+w[d]∗a[d]
9: afterpro = computeAftPro(comvalue, newedge)

//Calculate the posterior probability ratio
10: else
11: edge[k] = Top k(nearest edge)
12: w[d] = computeWeight(edge[k])
13: comvalue[k] = w[1]∗a[1]+w[2]∗a[2]+ ...+w[d]∗

a[d]
14: pro[k] = computerAftPro(comvalue[k], edge[k])
15: wegde[k] = computerWi(d[k])
16: afterpro = wegde[1]∗pro[1]+wegde[2]∗pro[2]+

...+ wegde[k] ∗ pro[k]
17: end if
18: end if
19: if afterpro > 1 then
20: return c0
21: else if afterpro <1 then
22: return c1
23: else
24: return indecisive
25: end if

• RQ1: Is rough set effective to improve the monitoring
performance?

• RQ2: Is Rs-mBSRM more efficient than existing mul-
tivariate approaches on QoS monitoring such as M-
BSRM?

• RQ3: Is Rs-mBSRM more suitable for mobile edge
environments?

• RQ4: Does the number of peripheral servers selected
affect the final monitoring results?

A. The Experimental Data

Our experimental data mainly includes three parts: i) A
real-world QoS data set QWS [25]. This data set consists
of 150 files. Each file name indicates a user’s IP address.
Each file contains the QoS data of 100 different services
invoked by a user. From these files we can obtain four QoS
attribute values: response time, throughput, reliability, and
availability. ii) A Shanghai Telecom dataset [26], which
contains location information of 3233 base stations and



Algorithm 2 computeWeight

Require: The QoS samples S = {x1, x2, ...xm}, xi =
{a1, a2, ...xd}; probabilistic QoS standard β; QoS
threshold QoS V alue;

Ensure: Attribute weights w[d];
1: for each sample do
2: r[i][j] = normalizing(a[i][j])
3: compvalue (r[i][1] + r[i][2] + ...r[i][d])/d
4: compvaluei = (r[i][1] + ...r[i][j − 1] + r[i][j + 1] +

...r[i][d])/(d− 1)
5: afterpro = computerAfterpro(compvalue)
6: afterproi = computerAfterpro(compvaluei)
7: pro[j] = pro[j] + |afterpro− afterproi|
8: end for
9: for each attribute do

10: sum = sum+ pro[j]
11: end for
12: w[j] = pro[j]/sum

records of users who called these base stations. iii) A
simulated data set according to the probabilistic criterion.
Since real data set cannot reflect whether or not a service is
normal, error samples are injected into the QWS data set to
create a data set to validate the effectiveness of Rs-mBSRM.

Since traditional data sets do not meet the requirements
of the edge environment, we employed the principle of data
fusion to fuse the real and simulated QoS data set with
the base station locations from the Shanghai Telecom data
set, so as to construct a data set which can meet the edge
characteristics. First, the users from QWS data set with same
network numbers, i.e., the first byte of an IP address, are
regarded as being in same edge servers. Therefore, the QoS
data of the 150 users were divided into 46 groups according
to the network numbers. Second, 46 base stations from the
Shanghai Telecom data set were randomly selected as the
locations of the edge servers. The geographical distribution
of the 46 edge servers is shown in Fig. 2. Finally, the QoS
data is randomly corresponding to the base stations.

Data preprocessing includes invalid data filtering and
data normalization. The invalid QoS sample data contains
attribute (such as response time) values of -1. The data of
response time, throughput, reliability and availability were
normalized by formulae 5 and 6 respectively.

B. Experimental Results

To address RQ1, we compared the monitoring perfor-
mance between the Rs-mBSRM approaches with and with-
out rough sets based on the QWS dataset. We randomly
selected four edge servers (whose IDs are 11, 19, 21, and
39). The probabilistic QoS standards for the servers are
described as follows: “the probability the comprehensive
QoS value being greater than 0.5 is greater than 80%”, “the

Figure 2: Distribution of edge servers

Table I: Attributes weights

Edge server ID wrt wtp wre wav

11 0.1052 0.8053 0.0599 0.0296
19 0.0618 0.4894 0.0161 0.4326
21 0.0698 0.3810 0.2064 0.3427
39 0.1623 0.3411 0.0820 0.4146

probability the comprehensive QoS value being greater than
0.5 is greater than 70%”, “the probability the comprehensive
QoS value being greater than 0.4 is greater than 80%”, “the
probability the comprehensive QoS value being greater than
0.4 is greater than 70%”. For each edge server, the first
2000 QoS data samples are extracted for training, and the
rest 5000 data samples are used for monitoring performance
testing.

Table I shows the rough set based weights of response
time, throughput, reliability and availability of the four edge
servers against their corresponding QoS standards. It can be
seen that their weights of attributes are different because of
different network conditions.

We used the posterior probability ratios to display the
monitoring results to demonstrate their variations more in-
tuitively. When the posterior probability ratio is greater than
1, it represents a probabilistic standard being met; otherwise
the standard is not met. Fig. 6 shows the monitoring results
of the four edge servers against their respective probabilistic
QoS standards. NonRs-mBSRM refers to the Rs-mBSRM
approach without rough sets, where the attribute weights are
set as 0.25. The figure shows that the posterior probability
ratio based on rough set is significantly lower than that
without rough sets, which indicates that Rs-mBSRM can
more effectively monitor service failures with rough sets.

To address RQ2, we compare Rs-mBSRM with M-
BSRM [16], which is superior to existing single QoS mon-
itoring approaches.

The edge server with ID of 20 is randomly selected.
The probabilistic standard is defined as ”the probability the
comprehensive value being greater than 0.5 is greater 80%”.
Error samples are injected into 1000∼2000 and 3000∼4000
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(b) Ratio when edge server ID=19
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Figure 3: Posterior probability ratios of different edge
servers
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Figure 4: Monitoring results of different approaches

of the monitored sample sequence, i.e., the samples with the
comprehensive values being less than 0.5 are more than 20%
in the data set. The monitoring results of the two approaches
are shown in Fig. 4. Rs-mBSRM and M-BSRM respectively
detect the first group of service failures at 1076 and 1096.
Since Rs-mBSRM can distinguish the different importance
of the attributes based on rough sets, it can detect service
failures more efficiently. Similarly, Rs-mBSRM outperforms
M-BSRM for the second group of service failures. Table II
compares the average training time and monitoring time
of the two approaches against 6 different probabilistic QoS
standards. Due to the complexity of calculating the attribute
weights and the integrals of the continuous data, Rs-mBSRM
takes slightly more time than M-BSRM. Rs-mBSRM is still
deemed as efficient considering the relatively small scale
(10s ms) of time spent on training and monitoring.

To address RQ3, we randomly selected user1 and user14
from the Shanghai telecom data set. The users’ invoked
edge servers are shown in Table III and Table IV, re-
spectively. This experiment is based on the QWS data
set. The probabilistic QoS standard is “the probability the

Table II: Training and monitoring time

Time(ms) QoS threshold
0.48 0.49 0.50 0.51 0.52 0.53

Training Rs-mBSRM 41.96 45.23 36.88 37.48 35.67 40.03
M-BSRM 20.45 28.27 23.89 26.72 20.67 29.36

Monitoring Rs-mBSRM 26.25 25.88 25.85 27.04 24.39 29.65
M-BSRM 20.03 21.34 21.39 20.88 18.09 19.85

Table III: Edge servers called by user 1

User ID 1
Edge server ID 3 4 8 21 22 42

Table IV: Edge servers called by user 14

User ID 14
Edge server ID 5 12 26 29 31 33
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Figure 5: Monitoring results in different environments

comprehensive value being greater than 0.5 is greater 80%”.
Fig. 5 compares the monitoring results of the two users in
the mobile edge and traditional environments. In the mobile
edge environment, when users invoke new edge servers,
the historical data from old edge servers is invalid and
monitoring results are obtained from the new servers. As
shown in Fig. 5, since the change of edge servers, the
monitoring results of the service invoked by user1 varied at
833 and 1666 in the mobile edge environment. In contrast, in
the traditional environment, the changes of the service state
were not detected because monitoring results were obtained
from the centralized storage. The similar case happened to
user14. Consequently, Rs-mBSRM is more effective in the
edge environment.

To address RQ4, we randomly selected an edge server
with ID of 8. When the edge server does not contain
historical data, the monitoring results are obtained from the
k neighboring edge servers. The probability standard is “the
probability the comprehensive value being greater than 0.5
is greater than 80%”. Similarly, error samples are injected
into 1000∼2000 and 3000∼4000 of the monitored sample
sequence. According to the experimental results, the range
of k is gradually narrowed down, and the optimal value of k
is finally determined based on the monitoring performance.
Since the total number of edge servers is 46, we narrow
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(a) k=1∼45
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Figure 6: Monitoring results for different k values

down the value of k from 45 to 1 with a step of 7. As
shown in Fig. 6a, when k ≥8, the service failures in the
second stage cannot be monitored. Next, we narrow down k
from 7 to 1. As shown in Fig. 6b, when k=1, the monitoring
performance is optimal. Therefore, the number of selected
peripheral edge servers can lead to different monitoring
results.

VI. CONCLUSION

In this paper, a novel QoS monitoring approach, Rs-
mBSRM, is proposed to address the limitations of traditional
QoS monitoring approaches in mobile edge computing. For
future work, it is important to study the need of updating
QoS attribute weights in same edge servers. In addition, we
will explore the relevance among multivariate QoS attributes.
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