
Ponzi Scheme Detection Based on
Control Flow Graph Feature Extraction

Shunhui Ji1,2, Congxiong Huang1,2, Pengcheng Zhang1,2,*, Hai Dong3, and Yan Xiao4

1Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing, China
2College of Computer and Information, Hohai University, Nanjing, China

3School of Computing Technologies, RMIT University, Melbourne, Australia
4School of Cyber Science and Technology, Sun Yat-sen University, Shenzhen, China

{shunhuiji, hcx, pchzhang}@hhu.edu.cn, hai.dong@rmit.edu.au, xiaoyan.hhu@gmail.com

Abstract—The blockchain ecosystem is expanding as a result
of advancements in blockchain technology and the emergence
of BaaS (Blockchain as a Service) platforms. Smart contracts
are designed to carry out diverse business operations, but there
is a risk of Ponzi schemes being concealed within them. These
schemes masquerade as investment agreements and deceive users,
resulting in substantial losses for the blockchain community.
Detecting Ponzi schemes in smart contracts is crucial. This
study introduces a machine learning approach to identify Ponzi
schemes by extracting features from smart contracts using the
control flow graph. During the construction of the control flow
graph for the smart contract’s bytecode, elements unrelated to its
functionality are identified and eliminated. We utilize the control
flow graph to extract n-gram Term Frequency and n-gram Term
Frequency-Inverse Document Frequency features. These features
are respectively employed to construct a Random Forest model
for Ponzi scheme detection. To address the issue of imbalanced
samples, the SVM SMOTE oversampling algorithm is applied to
balance the number of positive and negative samples. The results
from experiments conducted on a real-world dataset demonstrate
the effectiveness of our approach. The feature extraction method
based on the control flow graph outperforms the method based on
continuous text. Additionally, the Random Forest model utilizing
SVM SMOTE outperforms four existing models.

Index Terms—Blockchain, Smart contract, Ponzi scheme de-
tection, Control flow graph, Machine learning

I. INTRODUCTION

Blockchain [1], as a distributed ledger technology, shows
appealing advantages of decentralisation and anonymity.
Blockchain technology has been applied to a variety of do-
mains, such as healthcare [2] and energy [3]. However, the
development of blockchain network is challenging since it
requires multiple technologies, including network protocol,
consensus mechanism, cryptography, etc. This sets a high bar
for the development of blockchain business and makes it costly
in terms of time and money. Therefore, the concept of BaaS
(Blockchain as a Service) [4] emerged. BaaS aims to provide a
cloud-based blockchain service for business owners, reducing
the cost of constructing and maintaining the blockchain and
allowing owners to focus on their business scenarios.

* Corresponding Author.

On the top of the BaaS system architecture, smart contracts
are created to implement business functions. Ethereum can
be considered as a provider of a decentralized BaaS [5].
For the smart contract on Ethereum, the transaction and the
requirements required by the transaction are programmed in
Solidity. The compiled bytecode of the Solidity code is then
deployed on Ethereum, on which the transaction will be
automatically executed once the requirements are satisfied [6].
The emergence of smart contract enables various functions to
be implemented conveniently, thus forming rich application
ecology for users on Ethereum [7]. With the continuous
development, more and more applications can be realized on
Ethereum, such as issuing virtual tokens, trading digital assets,
playing smart contract games, etc. However, the criminals take
advantage of flaws in the development to launch various scams
in smart contracts for obtaining digital assets of the users. Due
to the anonymity and immutability of Ethereum itself [6], once
digital assets are stolen and transferred, it is an irrevocable
deal. This has severely affected the development of Ethereum.

Ponzi scheme is one of the most famous blockchain
schemes, which often causes huge economic losses. Ponzi
scheme is usually disguised as a high-yield investment pro-
gram, which promises investors and users much higher returns
than ordinary investments. However, in a Ponzi scheme, only
the previous investors are paid, and it will collapse if there are
no enough new investors. Finiko [8], a Russian Ponzi scheme
created in December 2019, was initially defined as a virtual
currency investment fund that promised investors 5% return
every day. By the end of 2020, about 200,000 investors par-
ticipated the scheme. By August 2021, the scheme collapsed,
making a profit of nearly $100 million from its victims. Ponzi
schemes usually use smart contracts as carriers, disguised as
investment projects, gambling games and other forms of fraud
to defraud trust and money of users, affecting the overall
reputation of blockchain platform. Therefore, detecting Ponzi
schemes in smart contracts is crucial.

Various detection methods have been proposed to detect
Ponzi schemes in smart contracts [9], [10]. The bytecodes of
smart contracts are publicly available on Ethereum. Bytecode-
oriented Ponzi scheme detection methods [11], [12] have made

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
S. Ji, C. Huang, P. Zhang, H. Dong and Y. Xiao, "Ponzi Scheme Detection Based on Control Flow Graph Feature Extraction," 2023 IEEE International
Conference on Web Services (ICWS), Chicago, IL, USA, 2023, pp. 585-594, doi: 10.1109/ICWS60048.2023.00077.

significant progress in terms of detection performance. How-
ever, Ponzi scheme detection still suffers from the following
challenges.

• Bytecode complexity. The processing of the bytecodes is
challenging. Bytecodes are highly abstract and difficult
to understand, with unique internal segmentation and
concatenation. It is difficult to obtain complete func-
tion information from the bytecodes directly, since there
are no structures such as functions and classes in the
bytecodes and the bytecodes are highly overlapped. In
addition, there is functionally unrelated information in the
bytecode, which is difficult to identify. Existing detection
methods [12], [13] usually take the opcode which is
obtained by disassembling bytecode as continuous text
to extract features for Ponzi scheme detection. Adjacent
words are directly combined into a sequence after remov-
ing stop words in the opcode to construct the feature.
This results in a lot of discontinuous operations in the
bytecode being combined into a sequence and taken as
the feature. However, such features are meaningless and
affect the effectiveness of machine learning-based detec-
tion. In addition, these methods usually treat frequently
appeared opcodes, such as PUSH, as stop words and
remove them [14], [15]. However, these opcodes have op-
erational meaning, especially when combined with other
opcodes in a sequence. Handling bytecodes improperly
may destroy the structural information of bytecode and
produce misinformation when extracting features.

• Data imbalance. Among all the smart contracts on
Ethereum, the difference between the numbers of Ponzi
scheme and non-Ponzi scheme contracts is huge. Al-
though this gap is artificially reduced in some datasets, it
is far from the optimal 1:1 ratio. The imbalance between
positive and negative samples may affect the performance
of the machine learning model and cause poor Recall
scores, which is evidently revealed in our experiments.

To address the above challenges in Ponzi scheme detec-
tion, we propose a novel Ponzi scheme detection method
based on control flow graph feature extraction. It converts
complex bytecode to opcode and constructs corresponding
control flow graphs. Then n-gram TF (Term Frequency) and n-
gram TF-IDF (Term Frequency-Inverse Document Frequency)
features are extracted from the control flow graph. Finally,
these features are respectively employed to construct a RF
(Random Forest) model for Ponzi scheme detection. The main
contributions are as follows:

• A control flow graph, which only contains function-
related elements, is constructed for feature extraction. Af-
ter translating the opcode into the control flow graph, the
content and structural information are analyzed to identify
and eliminate the elements that are not related to the
function of the smart contract. In this way, meaningless
features can be excluded.

• During the RF model construction for Ponzi scheme
detection, the SVM SMOTE (Support Vector Ma-

chine Synthetic Minority Oversampling Technique) algo-
rithm is used to balance the positive and negative features,
which improves the performance of the detection model.

• Experimental evaluation is performed on a real-world
dataset, by which 2-gram TF-IDF is selected as the
feature type to perform Ponzi scheme detection. By
comparing the control flow graph-based feature extraction
method with the existing continuous text-based feature
extraction method, and comparing the SVM SMOTE-
based RF model with four existing models, the experi-
mental results demonstrate the superior performance of
our method for Ponzi scheme detection, with Precision,
Recall, F1-score and AUC reaching 95.96%, 92.23%,
94.06% and 95.84%.

The rest of this paper is organised as follows: Section II
introduces the related work. Section III describes the detail of
our method. Section IV presents the experimental evaluation.
Finally Section V concludes the paper.

II. RELATED WORK

Existing research about Ponzi scheme detection on
blockchains can be divided into program analysis-based meth-
ods and data mining-based methods.

A. Program analysis-based methods

Bartoletti et al. [16] proposed a similarity measure-based
Ponzi scheme detection method. They collected a set of Ponzi
scheme contracts by manually analyzing the Solidity code
of smart contracts. Then they used the NLD (Normalized
Levenshtein Distance) [17] algorithm to measure the similarity
between the bytecodes of two smart contracts to determine
whether the bytecode of a contract is similar to that of some
Ponzi schemes identified in the initial collection. Sun et al. [9]
proposed a Ponzi scheme detection method based on contract
behaviour similarity comparison. They used traditional soft-
ware testing techniques to extract behavioural features, which
are described as behavioural trees, in the execution of smart
contracts. The smart contracts to be detected are compared
with each of the collected Ponzi scheme contracts by using
the AP-TED (All Path Tree Edit Distance) [18] algorithm to
calculate the similarity between behavioural trees. Chen et
al. [10] proposed a semantic-aware Ponzi scheme detection
approach. They summarized the patterns of different kinds of
Ponzi schemes and used semantic information extracted from
the bytecode of a smart contract to match the defined Ponzi
scheme patterns.

Program analysis-based methods are based on the pattern
of existing Ponzi scheme contracts. As new Ponzi scheme
patterns emerge or fraudsters deliberately add distractions, the
accuracy of these methods will be affected. In addition, as
the number of Ethereum smart contracts increases, the time
cost of these methods for detecting Ponzi schemes will also
increase.

Data preprocessing Control flow graph construction Detection model construction

Features

Dataset splitting

Oversampling

Model training

Bytecode

runtime bytecode
extract

Disassemble

Control flow graph

Runtime bytecode
extraction

Basic blocks
dividing

Control flow analysis

Opcode

Feature extraction

Operands removing

n consecutive terms
combination

n-gram TF & TF-IDF
features extraction

Meaningless elements
elimination

Instructions unitizing

Fig. 1. Framework of the proposed Ponzi scheme detection method.

B. Data mining-based methods

Bartoletti et al. [19] used transaction features to detect
Bitcoin Ponzi schemes. They extracted 11 transaction features,
such as lifetime, Gini coefficient and maximum daily trading
volume, to construct RIPPER, Bayes Network and RF for
detecting Ponzi schemes. Chen et al. [20] proposed a detection
method using code features and transaction features. They ex-
tracted the opcode frequencies and the Ether flow of contracts
to construct the XGBoost model for Ponzi scheme detection.
Fan et al. [12] used BOW (Bag of Words) [21] to extract
n-gram features and used an ordered boosting algorithm to
construct a Ponzi scheme detection model. The Borderline-
SMOTE oversampling technology is used to synthesize more
Ponzi schemes to balance the number of Ponzi and non-
Ponzi schemes. Zhang et al. [22] extracted bytecode similarity,
bytecode length and TF-IDF features from the smart contracts
to construct the CatBoost model for Ponzi scheme detection.
And they used the SMOTE Tomek algorithm to perform data
balance. Aljofey et al. [13] extracted four types of features
from the contract opcodes, including opcode frequency, count
vector, n-gram TF-IDF and opcode sequence features, for the
training of a classification model.

Although the above data mining-based methods achieve
positive results, most of them consider opcodes as contin-
uous text and neglect the logic features of opcodes. This
may result in redundant and meaningless features generated
during sequence feature extraction, which affects the detection
performance. Our method takes into account the logic features
by constructing the control flow graph of the opcode in which
functionally unrelated elements are identified and eliminated
to extract more precise features.

III. METHOD

Figure 1 shows the framework of our method. Firstly, the
runtime bytecode is extracted from the bytecode of a smart
contract, which is consequently disassembled into the opcode.
Secondly, a control flow graph is constructed based on the

opcode, in which meaningless elements are identified and
eliminated. Thirdly, the n-gram TF and TF-IDF features of
the smart contract are extracted based on the control flow
graph. Finally, an RF model is constructed for Ponzi Scheme
detection, in which the feature set extracted from the collected
dataset is balanced using SVM SMOTE algorithm.

A. Data Preprocessing

The bytecode of a smart contract consists of three parts,
namely, deployment bytecode, runtime bytecode and auxdata,
as shown in blue, black and red parts respectively in Fig.2.
The deployment bytecode, which contains information such as
the address of the smart contract, is used to deploy the smart
contract on the Ethernet platform. The auxdata, which is the
encrypted data of the bytecode, is used for validation and will
not be executed. Since these two types of data are not relevant
to the execution of the smart contract, they are supposed
to be removed from the bytecode for obtaining the runtime
bytecode, which is the core of the bytecode. String matching
is used to identify the deployment bytecode and auxdata from
the bytecode. The deployment bytecode usually starts with
“0x6060” or “0x6080”, and ends with “f3” or “f300”. The
auxdata varies with Solidity versions, which usually starts
with “a165”, “a264” or “a265” and ends with “29”, “32” or
“33”. By matching the start and end strings, the deployment
bytecode and auxdata can be identified and removed, with the
runtime bytecode obtained.

For the extracted runtime bytecode, it is difficult to analyze
the function information and the functionally unrelated infor-
mation, since the bytecode is difficult to understand. There-
fore, we convert the bytecode to the opcode for subsequent
processing. The pyevmasm tool1 is used to disassemble the
bytecode into the opcode. The bytecode element and the
opcode element are in a one-to-one relationship. For example,
“0x60” is disassembled to PUSH1 and “0xf3” is disassembled

1https://github.com/crytic/pyevmasm

0x6060604052341561000f576
00080fd5b5b64174876e80060
03819055600160a060020a033
316600……155576000815560
010161015f565b5090565b905
65b6104c48061018960003960
00f3006060604052361561007
55763ffffffff7c0100000000000
0000000000000000000000000
0000000000000000……19055
917fddf252ad1be2c89b69c2b0
68fc378daa952ba7f163c4a116
28f5a165627a7a72305820e59a
5c0abb3696f699407f67257112
0209b7d2ff2612d98fda68372b
64de45e90029

0xb PUSH4 0xffffffff
……
0x39 EQ
0x3a PUSH2 0x8d
0x3d JUMPI

0x75 JUMPDEST
0x76 CALLVALUE
0x77 ISZERO
0x78 PUSH2 0x80
0x7b JUMPI

0x0 PUSH1 0x60
0x2 BLOCKHASH
……
0x7 PUSH2 0x75
0xa JUMPI

0x498 STOP

……

(a) Bytecode (b) Opcode (c) Control flow graph

0x0

0x8d

0x75

0x498

0x41d0x236

0x417

0x421

0x118

0x13d
0x166

0x1a4

(d) Control flow graph
 after elimination

0x0

0xb 0x75

0x7c0x80

0x498

0x3e 0x8d

0x41d

0x236 0x417

0x421

0x192

……

Fig. 2. An example for illustrating the proposed Ponzi scheme detection method.

to RETURN. Table I shows the description of some important
opcodes. Fig.2(b) shows the opcode corresponding to the
sample bytecode of a smart contract.

B. Control flow graph construction

To identify the meaningless information and avoid dis-
continuous operations in the bytecode being combined as a
feature, a control flow graph is constructed based on the
opcode for feature extraction, making the internal structure of
the smart contract become apparent. To construct the control
flow graph, the opcode needs to be divided into basic blocks,
for which the corresponding nodes will be created in the
control flow graph. Then the control flow among the basic
blocks needs to be analyzed, for which the edges will be
established among corresponding nodes. Finally, nodes that
correspond to meaningless blocks are identified and eliminated
from the control flow graph.

1) Basic blocks dividing: The basic block is the basic func-
tional unit in the opcode, in which no instruction changes the
control flow. Each basic block starts with the first instruction
of the opcode, or the JUMPDEST instruction, or the instruc-
tion following the previous basic block, and ends with the
instruction before JUMPDEST or the instruction that changes
the control flow, such as JUMP, JUMPI, RETURN, STOP, etc.
The opcode is traversed to divide the basic blocks according
to the above rules. For each basic block, a corresponding node
is created in the control flow graph, for which the offset of
the first instruction in the block is set as the identifier. For the
opcode shown in Fig.2(b), the basic block in blue starts with
JUMPDEST and ends with JUMPI, and the identifier of the
corresponding node is 0x75.

2) Control flow analysis: With the divided basic blocks, it
needs to analyze the control flow among them for establishing
edges among corresponding nodes. The last instruction in the
basic block determines which basic block will be executed
subsequently. For the basic block A and its corresponding node
nA in the control flow graph, there are four cases as follows:

• If the last instruction of A is JUMP, the smart contract
jumps unconditionally to the target address which is at
the top of the EVM (Ethereum Virtual Machine) stack.
It means the basic block B that corresponds to the
target address is executed after A. Therefore, an edge
is established between corresponding nodes nA and nB .

• If the last instruction of A is JUMPI, the smart contract
jumps conditionally to the target address. If the condition
is satisfied, the target basic block is the basic block B
that corresponds to the address at the top of the EVM
stack; otherwise, it is the basic block C next to A in
the opcode. Edges < nA, nB > and < nA, nC > are
established between corresponding nodes. As shown in
Fig.2(c), the nodes 0xb and 0x75 are the target nodes of
node 0x0 whose corresponding block ends with JUMPI.

• If the last instruction of A is of the termination type, in-
cluding STOP, RETURN, INVALID, REVERT and SELF-
DESTRUCT, then there is no subsequent block and the
control flow of the smart contract will terminate with the
corresponding node.

• If the last instruction of A is neither jumping nor termi-
nation, then the smart contract will continue in the order
of the offsets. Then, an edge will be established between
nA and nB whose corresponding basic block B is the
one next to A in the opcode.

When the last instruction of the basic block is JUMP or
JUMPI, it requires identifying the target address. If the prece-
dent instruction of JUMP or JUMPI is the PUSH instruction,
the target address at the top of the EVM stack is obviously the
operand of the PUSH instruction, since the PUSH instruction
presses the operand to the top of the stack; otherwise, the
target address is unknown. In this case, it is necessary to
run the opcode to obtain the stack status. The opcode is
simulated to run, in which a stack is built to record the status
of the execution. To reduce the cost of execution, the operation
manipulation method proposed in [23] is used in the execution,
in which only the instructions related to the jump address are
executed with the real operands considered, such as PUSH,

TABLE I
DESCRIPTION OF SOME IMPORTANT OPCODES

Bytecode Opcode Description

0x03 SUB Subtract the top
two stack items

0x10 LT Less-than comparison
0x15 ISZERO Simple not operator
0x16 AND Bitwise AND operation

0x33 CALLER
Push the caller address
(msg.caller) to the top

of the stack

0x34 CALLVALUE
Push msg.value(Ether sent

to smart contracts)
to the top of the stack

0x35 CALLDATALOAD
Push the first 32 bytes

of CALLDATA(msg.data)
to the top of the stack

0x36 CALLDATASIZE
Return the size of

msg.data (data information
in Ethernet transactions)

0x50 POP Pop an element from the
top of the stack

0x52 MSTORE Write a data of
(u)int256 to memory

0x54 SLOAD Load data from storage
0x56 JUMP Unconditional jump
0x57 JUMPI Conditional jump

0x5b JUMPDEST Mark an address that
can jump to

0x60-0x7f PUSHX Push X byte elements to
the top of the stack

0x80-0x8f DUPX
Duplicate the Xth element
from the stack and push
the element to the stack

0xf1 CALL Message-call into an account

0xf3 RETURN Halt execution and
return output data

DUP. For those irrelevant instructions, operands are set with
“unknown” since only the times of push and pop operations
are required. By selecting the value at the top of the stack
as the desired target address, we can locate the specific basic
block associated with that address. This identification process
allows us to create an edge between the relevant nodes in
the control flow graph. Fig.2(c) shows the control flow graph
fragment of the example.

3) Meaningless elements elimination: In the constructed
control flow graph, there are some elements that are function-
ally unrelated, which are called meaningless elements. When
conducting feature extraction using the control flow graph
while preserving meaningless elements, there is a possibility
that the extracted features may contain impurities. This can
result in inaccurate detection outcomes. Eliminating the mean-
ingless elements can improve the effectiveness of the feature
extraction without affecting the functionality of the smart
contract. The meaningless elements in the control flow include
isolated nodes and the nodes corresponding to dispatchers and
the fallback function.

• Isolated node. For a smart contract, its execution paths
correspond to the paths starting with node 0x0 in its

……
0x9d PUSH2 0x7b
0xa0 JUMP

0x97 JUMPDEST
0x98 CALLVALUE
0x99 ISZERO
0x9a PUSH2 0xa2
0x9d JUMPI

function ()
{
 throw;
} ……

Fig. 3. An example of the fallback function.

control flow graph. So if the node is not contained
in any execution paths of the control flow graph, it is
functionally unrelated and regarded as an isolated node.

• Dispatcher. A dispatcher in the opcode is the entrance of
a function in a smart contract [23]. During the program
execution, the dispatcher is used to check the function
signature, which is obtained by taking the function name,
variable type and brackets as input to the KECCAK-
256 algorithm [24] and extracting the first four bytes
of the KECCAK-256 encoding, to determine the specific
function to be executed. The dispatcher manages the entry
of a function at the beginning of the opcode without
affecting the functionality of the smart contract.

• Fallback function. A fallback function is a special func-
tion in a smart contract, which has no function name, ar-
guments, or return value [24]. There is no corresponding
function signature in the opcode. The fallback function
is executed if there is no function that matches the called
function signature or if Ether is sent to the contract in
which there is no receive function for Ether. In some
smart contracts, the fallback function is not used to
process transaction data. The fallback function in Fig.3,
which only contains throw statement, is used to throw
exceptions. Such fallback functions are meaningless.

To eliminate isolated nodes, the control flow graph is
traversed in a depth-first manner starting from node 0x0. If
the nodes are not visited in the traversal, they are identified
as isolated nodes and eliminated from the control flow graph.
As shown in Fig.2, node 0x192 is an isolated node.

To eliminate the nodes that correspond to dispatchers, we
need to address two distinct situations as there are two types
of dispatchers in the bytecode [25].

• The first type of dispatcher is located in the second
block in the opcode. As shown in Fig.4(a), the basic
block in red is an example of the first type of dispatcher.
The CALLDATALOAD instruction at 0x30 reads the first
32 bytes of the input data of the transaction, which
is compared with the signature 0x6fdde03 at 0x33 by
EQ instruction. If the two groups of data are equal, it
will jump to the block whose offset is 0x8d. To detect
the first type of dispatcher, we examine the node in
the control flow graph whose identifier is equal to the
offset of the last instruction in the start node plus 1. If

0x0 PUSH1 0x60
0x2 PUSH1 0x40
0x4 MSTORE
0x5 CALLDATASIZE
0x6 ISZERO
0x7 PUSH2 0x75
0xa JUMPI

0xb PUSH4 0xffffffff
0x10 PUSH29 0x10…0
0x2e PUSH1 0x0
0x30 CALLDATALOAD
0x31 DIV
0x32 AND
0x33 PUSH4 0x6fdde03
0x38 DUP2
0x39 EQ
0x3a PUSH2 0x8d
0x3d JUMPI

0x3e DUP1
0x3f PUSH4 0x18160ddd
0x44 EQ
0x45 PUSH2 0x118
0x48 JUMPI

0x49 DUP1
0x4a PUSH4 0x313ce567
0x4f EQ
0x50 PUSH2 0x13d
0x53 JUMPI

0x54 DUP1
0x55 PUSH4 0x70a08231
0x5a EQ
0x5b PUSH2 0x166
0x5e JUMPI

(a) The first type (b) The second type

Fig. 4. Two types of dispatchers.

the block corresponding to the node ends with JUMPI
instruction that depends on the EQ instruction, then the
node corresponds to such a dispatcher and is eliminated
from the control flow graph.

• The second type of dispatcher contains five instructions
and is usually located after the dispatcher of the first
type. As shown in Fig.4(b), the basic blocks in blue are
dispatchers of the second type. The element from the top
of the stack is duplicated and compared with the function
signature. If the two groups of data are equal, it will jump
to the corresponding function. To identify the second type
of dispatchers, each node in the control flow graph is
checked. If the node contains such five instructions, it
corresponds to such a dispatcher and is eliminated.

For the elimination of nodes corresponding to the fallback
function, it requires to identify these nodes first. The fallback
function consists of multiple blocks, which locate after the
last dispatcher block and before the first function block in the
opcode. During the identification of nodes corresponding to
dispatchers, the offsets of the last dispatcher i1 and the first
function block i2 are recorded. In the control flow graph, if
the identifier of the node i satisfies i1 < i < i2, the node is
considered as a part of the fallback function. With all the nodes
that correspond to the fallback function being identified, they
are further analyzed to determine whether the fallback function
is meaningless. It is found that there usually exists the block,
as shown in blue in Fig.3, which is used to check if Ether is
sent to the contract, in the corresponding blocks of the fallback
function. If there is no other CALL-related block, the fallback
function is considered as meaningless. Each node ni (i1 <
i < i2) is checked. If there is no node corresponding to other
CALL-related blocks, these nodes are regarded as meaningless
and eliminated from the control flow graph.

As shown in Fig.2(d), the final control flow graph is

obtained after eliminating the meaningless nodes in Fig.2(c),
including isolated node 0x192 and nodes 0xb and 0x33 that
correspond to dispatchers.

C. Feature extraction

Based on the control flow graph, two types of smart contract
features are respectively extracted for Ponzi scheme detection,
including n-gram TF and n-gram TF-IDF. These two types of
features are widely used in Ponzi scheme detection [12], [26].

The n-gram TF feature is the frequency of the sequence
which is combined by n consecutive terms in the smart
contract’s opcode. For extracting n-gram TF feature from the
opcode, the operands need to be removed from each instruction
and the instructions of the same type need to be unitized.
For example, DUP1, DUP2, ..., DUP16 are unitized as DUP,
since only the operational semantics are focused in Ponzi
scheme detection. After performing the above processing on
blocks corresponding to all the nodes in the control flow
graph, n consecutive terms in each block are combined and
recorded. Then the frequency of each n-gram in all the blocks
is computed.

TF-IDF, which is commonly used in natural language pro-
cessing, assesses the importance of words within a specific
document within a collection of documents. In Ponzi scheme
detection, TF-IDF is used to evaluate the importance of n-
grams within a smart contract within the dataset. The more
the n-gram appears in the opcode of a smart contract, the
more it can represent the logic of the smart contract; the more
the n-gram appears in all the opcodes, the less representative
it is [22]. The formula of TF-IDF for the ith n-gram term is
shown as follows [27]:

TF–IDFi = TFi ∗ IDFi

IDFi = log(
m+ 1

n(i) + 1
) + 1

where TFi is the frequency of the ith n-gram, m is the total
number of smart contracts in the dataset, and n(i) is the
number of smart contracts that contain the ith n-gram. The TF-
IDF value of the n-gram within a smart contract is determined
by the whole dataset.

With the increase of the gram length, the detection accuracy
is generally higher, but the memory consumption increases
[26]. Therefore, only a gram whose length is less than 4 is
considered. The n-gram TF feature and n-gram TF-IDF feature
(n ≤ 3) will be explored to determine which feature performs
best in Ponzi scheme detection.

Compared with feature extraction based on continuous text,
extracting n-gram TF features and n-gram TF-IDF features
based on the control flow graph can obtain more precise
results. This is due to the fact that combing n consecu-
tive terms in the continuous text may generate meaning-
less features. For example, given two adjacent instructions
JUMP and JUMPDEST that cannot be executed at the same
time, continuous text-based feature extraction will generate
JUMP JUMPDEST 2-gram. However, the 2-gram is mean-
ingless. With the control flow graph-based feature extraction,

there is no JUMP JUMPDEST 2-gram since they are sepa-
rated into two different blocks.

D. Detection model construction

With the extracted features of the smart contracts in the
dataset, the Ponzi scheme detection model is constructed on
top of an RF model [28]. RF is an ensemble machine learning
model based on decision trees, which constructs multiple
decision trees and combines their predictions to obtain more
accurate predictions. RF models have been demonstrated to be
effective in Ponzi scheme detection [29].

In machine learning-based Ponzi scheme detection, the ratio
of Ponzi to non-Ponzi schemes in the training dataset is
unbalanced. This imbalance can result in a disproportionate
focus on the non-Ponzi scheme class and the potential ne-
glect of the Ponzi scheme class. To alleviate the problem of
class imbalance in a dataset, the SVM SMOTE oversampling
algorithm [30], which is an improved algorithm of SMOTE,
is used to generate new samples of Ponzi scheme features.
It constructs an SVM classifier with the original training
dataset to obtain the classification boundary for the Ponzi and
non-Ponzi samples. Then it generates new samples of Ponzi
schemes located near this boundary, which are critical for
estimating the optimal classification boundary. With the over-
sampling algorithm, the training dataset that consists of the
same number of Ponzi and non-Ponzi samples is constructed
for the forthcoming RF model training.

IV. EXPERIMENTAL EVALUATION

In this section, an empirical study is performed to evaluate
the effectiveness of the proposed Ponzi scheme detection
method with a constructed dataset.

A. Experimental Setup

The experimental setup includes the following three aspects:
Experimental dataset, evaluation metrics, and research ques-
tions.

1) Experimental Dataset: The dataset of smart contracts
used in this paper is collected from three open source datasets,
[29], [31] and XBlock2. Firstly, the dataset in Ref. [29], which
contains a total of 3,788 smart contracts, including 200 Ponzi
scheme contracts and 3,588 non-Ponzi scheme contracts, is
chosen. To address the significant disparity between the quanti-
ties of positive and negative samples, we collect additional 167
Ponzi scheme contracts from the dataset referenced in [31] and
another 180 Ponzi scheme contracts from XBlock. Eventually,
the dataset consists of 547 Ponzi scheme contracts and 3,588
non-Ponzi scheme contracts, which is 4,135 smart contracts
in total. We randomly divide the constructed dataset into 80%
as the training set and 20% as the testing set. During the
model training process, we perform parameter optimization to
identify the most suitable values for crucial parameters. Each
experiment is conducted ten times with the optimal model
parameters.

2http://xblock.pro/

Fig. 5. Performance of six types of features in Ponzi scheme detection.

2) Evaluation metrics: The performance of the proposed
method is evaluated upon Precision, Recall, F1-score and
AUC.

Let TP denote the number of Ponzi scheme contracts
that are correctly detected, FP denote the number of non-
Ponzi scheme contracts that are misclassified as Ponzi scheme
related, and FN denote the number of Ponzi scheme contracts
that are misclassified as non-Ponzi scheme related, the evalu-
ation metrics are described as follows.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1–score =
Precision ∗Recall

Precision+Recall
∗ 2

AUC represents the probability that a positive sample has
a higher estimated probability of belonging to the positive
class than a negative sample, which is a more appropriate
performance metric than accuracy [32].

For each of the evaluation metrics, the higher the value is,
the better the detection model performs.

3) Research questions: The following research questions
are specified to evaluate the proposed method:

• RQ1: Feature Selection. Between the n-gram TF features
and the n-gram TF-IDF features (n ≤ 3), which performs
better for Ponzi scheme detection?

• RQ2: Performance of Feature Extraction Method. How
does the control flow graph-based feature extraction
method perform in comparison with the existing feature
extraction method?

• RQ3: Performance of Detection Model. How does the
SVM SMOTE based RF model perform in comparison
with the existing detection models?

B. Feature Selection

To select the feature type that has better Ponzi scheme
detection performance, we respectively extract n-gram TF
features and n-gram TF-IDF features (n ≤ 3) based on the
control flow graph of a smart contract to construct the RF
models for Ponzi scheme detection.

(a) Ponzi scheme (b) non-Ponzi scheme

Fig. 6. The 2-gram TF-IDF feature cloud in Ponzi scheme and non-Ponzi
scheme contracts.

For the smart contracts in the collected dataset, 67 1-
gram TF features, 805 2-gram TF features and 4,349 3-gram
TF features are obtained. In addition, the same number of
corresponding n-gram TF-IDF features (n ≤ 3) are obtained.
The extracted features of the six types of the dataset are
respectively used to construct and test the Ponzi scheme
detection models.

Fig.5 shows the performance of the RF based Ponzi scheme
detection models constructed with six types of features.
Among the six models, the models constructed with 2-gram
TF-IDF features and 3-gram TF-IDF features perform best in
terms of the four evaluation metrics. It is worth noting that
constructing the detection model with 3-gram TF-IDF features
costs more time since the number of 3-gram TF-IDF features
is much larger than that of 2-gram TF-IDF features. Therefore,
2-gram TF-IDF is chosen as the feature type to perform Ponzi
scheme detection.

With 2-gram TF-IDF as the feature type, we conduct statis-
tical analysis on the numbers of different 2-gram TF-IDF fea-
tures in Ponzi scheme and non-Ponzi scheme contracts of the
dataset. Fig.6 shows the cloud graphs of the 2-gram TF-IDF
features for Ponzi scheme and non-Ponzi scheme contracts, in
which the top 20 features are extracted for comparison. Each
word is a 2-gram sequence with its font size representing its
average frequency. In both the Ponzi scheme and non-Ponzi
scheme contracts, PUSH PUSH, PUSH DUP and DUP DUP
are the most frequent 2-gram sequences. It indicates that these
three 2-gram sequences commonly exist in all smart contracts
since all the computations are performed based on the stack.
The rest of the features are ranked differently. For example,
POP PUSH and DUP REVERT only exist in the top 20
list of the Ponzi scheme contracts, while SWAP PUSH and
DUP ADD only exist in the top 20 list of the non-Ponzi
scheme contracts.

Answer to RQ1: Among the six types of features, the
2-gram TF-IDF feature performs best in Ponzi scheme
detection.

C. Performance of Feature Extraction Method

According to the finding for RQ1, 2-gram TF-IDF features
are extracted based on the control flow graph of a smart

TABLE II
PERFORMANCE OF DIFFERENT FEATURE EXTRACTION METHODS IN PONZI

SCHEME DETECTION.

Method Precision Recall F1-score AUC Number
M1 0.9400 0.9126 0.9261 0.9522 1633
M2 0.9495 0.9126 0.9307 0.9529 1353
Our 0.9596 0.9223 0.9406 0.9584 805

contract with meaningless elements eliminated. To evaluate
the proposed feature extraction method, we extract 2-gram TF-
IDF features of smart contracts using the following methods.
Then the features extracted by these extraction methods are
respectively used to construct the RF models for Ponzi scheme
detection.

• M1. The features are extracted based on the opcode of
a smart contract directly by treating the opcode as con-
tinuous text, which is commonly used in Ponzi scheme
detection [15], [29].

• M2. The features are extracted based on the original
control flow graph of a smart contract in which the
functionally unrelated elements are not eliminated.

Table II shows the performance of the RF based Ponzi
scheme detection models with different feature extraction
methods, in which the number of extracted 2-gram TF-IDF
features is shown in the last column. The feature extraction
method M2 performs better than M1 in terms of the four
evaluation metrics. The main reason is that, compared with the
text-based feature extraction method, extracting features based
on control flow graphs can reduce the meaningless features.
The number of 2-gram TF-IDF features decreases from 1633
to 1353 by using M2 rather than M1. By eliminating the
functionally unrelated elements in control flow graphs, the
number of 2-gram TF-IDF features decreases from 1353 to
805, and its performance is further improved on all the metrics,
since more precise features are extracted. The experimental
results show that both the control flow graph construction and
the meaningless element elimination have positive impacts on
Ponzi scheme detection.

To further analyze the feature extraction methods, we
list the ten most significant 2-gram TF-IDF features re-
spectively learned by the RF models using the three fea-
ture extraction methods in Fig.7. The description of the
related opcodes can be found in Table I. Among them,
PUSH CALLVALUE, SUB CALL, CALLDATASIZE LT and
DUP CALL are shown in the top six significant features
of all the models, which indicates these four features play
an important role in Ponzi scheme detection. In M1 based
model, RETURN JUMPDEST is in the top ten significant
features. However, RETURN JUMPDEST is a meaningless
feature since JUMPDEST instruction cannot be executed after
RETURN instruction. Compared with the feature extraction
method M2, our method eliminates 548 features, in which the
importance value of 488 features is 0. This indicates that most
of the features eliminated by our method lack significance
when distinguishing between Ponzi scheme and non-Ponzi

(a) M1 (b) M2 (c) Our

Fig. 7. The importance of the ten most significant features.

TABLE III
PERFORMANCE OF DIFFERENT MODELS IN PONZI SCHEME DETECTION.

Method Precision Recall F1-score AUC
XGBoost 0.9293 0.8932 0.9109 0.9418

RF 0.9468 0.8641 0.9036 0.9286
LightGBM 0.9479 0.8835 0.9146 0.9383
CatBoost 0.9300 0.9029 0.9163 0.9466

Our 0.9596 0.9223 0.9406 0.9584

scheme contracts.

Answer to RQ2: The control flow graph-based feature
extraction method performs better than the existing fea-
ture extraction method in Ponzi scheme detection.

D. Performance of Detection Model

To evaluate the performance of SVM SMOTE based RF
model, the following existing methods are chosen to perform
comparative experiments:

• XGBoost: A method [20] that constructs a XGBoost
(Extreme Gradient Boosting) [33] classification model for
Ponzi scheme detection.

• RF: A method [29] that constructs a RF model for Ponzi
scheme detection, in which no oversampling algorithm is
used.

• LightGBM: A method [15] that constructs a LightGBM
model [34] for Ponzi scheme detection, in which a mixed
sampling method called SMOTE Tomek is used.

• CatBoost: A method [22] that constructs a CatBoost
model [35] for Ponzi scheme detection, in which the
SMOTE Tomek algorithm is used.

With the same dataset and the same 2-gram TF-IDF features
extracted by the proposed feature extraction method, we re-
produce the above four methods for comparative experiments.
Table III shows the performance of the five models in Ponzi
scheme detection. The following findings can be made from

the experimental results. Firstly, our method has the best
performance in terms of the four evaluation metrics, which
indicates its effectiveness to detect Ponzi schemes. Secondly,
compared with RF, our method exceeds 1.35%, 6.74%, 4.09%
and 3.21% in Precision, Recall, F1-score and AUC, which
indicates the effectiveness of the SVM SMOTE algorithm to
enhance the Ponzi scheme detection performance of the RF
model.

Answer to RQ3: Compared with the existing four
models, the proposed SVM SMOTE based RF model
has the best performance for Ponzi scheme detection.

V. CONCLUSION

This paper presented a Ponzi scheme detection method for
bytecode-based smart contracts. For a machine learning-based
detection method, on the one hand, it is difficult to extract
features of smart contracts based on the bytecode directly due
to the bytecode complexity; on the other hand, the model
performance will be significantly affected by the imbalance
problem of Ponzi scheme and non-Ponzi scheme contracts
that exists among all Ethereum smart contract datasets. In
this regard, we proposed a control flow graph-based Ponzi
scheme detection method. After disassembling the bytecode of
a smart contract into opcode, a control flow graph is generated
for the opcode, in which the non-function-related elements
are identified and eliminated. Then n-gram TF and TF-IDF
features are extracted and used to construct the RF-based
Ponzi scheme detection model in which the SVM SOMTE
algorithm is used to balance the proportion of positive and
negative samples.

A dataset comprising 547 Ponzi scheme contracts and 3,588
non-Ponzi scheme contracts was collected to perform the
experimental evaluation. The experimental results show that
the 2-gram TF-IDF performs best in Ponzi scheme detection
among the six types of features, including the n-gram TF
features and n-gram TF-IDF features (n ≤ 3). In addition,

the control flow graph-based feature extraction method out-
performs the continuous text-based feature extraction method,
and the SVM SMOTE-based RF model outperforms the four
existing models, including XGBoost, RF, LightGBM and
CatBoost. With 805 2-gram TF-IDF features extracted from
the dataset, our method achieves 95.96% Precision, 92.23%
Recall, 94.06% F1-score and 95.84% AUC.

In future work, we will extract the other types of the
features, such as text vector and structural features, to construct
a Ponzi scheme detection model with better detection perfor-
mance. In addition, we will expand the dataset by including
more smart contracts for large-scale experiments. We will also
carry out empirical studies with more machine learning or deep
learning-based methods.

ACKNOWLEDGMENTS
The work is supported by the Fundamental Research

Funds for the Central Universities of China under Grant
No.B220202072, the National Natural Science Foundation
of China under Grant No.U21B2016, No.62272145 and
No.61702159, the CloudTech RMIT Green Bitcoin Joint Re-
search Program/Laboratory, and the Cooperative Research
Centres Projects (CRC-P) funding scheme “Fast and Se-
cure Crypto Payments for E-Commerce Merchants” (CR-
CPXIII000145).

REFERENCES

[1] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang, “Blockchain
challenges and opportunities: A survey,” International journal of web
and grid services, vol. 14, no. 4, pp. 352–375, 2018.

[2] M. Mettler, “Blockchain technology in healthcare: The revolution starts
here,” in 2016 IEEE 18th international conference on e-health network-
ing, applications and services (Healthcom). IEEE, 2016, pp. 1–3.

[3] M. Andoni, V. Robu, D. Flynn, S. Abram, D. Geach, D. Jenkins,
P. McCallum, and A. Peacock, “Blockchain technology in the energy
sector: A systematic review of challenges and opportunities,” Renewable
and sustainable energy reviews, vol. 100, pp. 143–174, 2019.

[4] “Blockchain as a service.” [Online]. Available: https://en.wikipedia.org/
wiki/Blockchain as a service

[5] J. Singh and J. D. Michels, “Blockchain as a service (baas): Providers
and trust,” in 2018 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). IEEE, 2018, pp. 67–74.

[6] “Ethereum Whitepaper.” [Online]. Available: https://ethereum.org/en/
whitepaper/

[7] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart contract
and use cases in blockchain technology,” in 2018 9th international
conference on computing, communication and networking technologies
(ICCCNT). IEEE, 2018, pp. 1–4.

[8] CHAINALYSIS, “The Chainalysis 2022 Crypto Crime Re-
port,” 2022. [Online]. Available: https://go.chainalysis.com/
2022-crypto-crime-report.html

[9] W. Sun, G. Xu, Z. Yang, and Z. Chen, “Early detection of smart ponzi
scheme contracts based on behavior forest similarity,” in 2020 IEEE 20th
International Conference on Software Quality, Reliability and Security
(QRS). IEEE, 2020, pp. 297–309.

[10] W. Chen, X. Li, Y. Sui, N. He, H. Wang, L. Wu, and X. Luo,
“Sadponzi: Detecting and characterizing ponzi schemes in ethereum
smart contracts,” Proceedings of the ACM on Measurement and Analysis
of Computing Systems, vol. 5, no. 2, pp. 1–30, 2021.

[11] X. Shen, S. Jiang, and L. Zhang, “Mining bytecode features of smart
contracts to detect ponzi scheme on blockchain,” Computer Modeling
in Engineering & Sciences, vol. 127, no. 3, pp. 1069–1085, 2021.

[12] S. Fan, S. Fu, H. Xu, and C. Zhu, “Expose your mask: smart ponzi
schemes detection on blockchain,” in 2020 International Joint Confer-
ence on Neural Networks (IJCNN). IEEE, 2020, pp. 1–7.

[13] A. Aljofey, Q. Jiang, and Q. Qu, “A supervised learning model for
detecting ponzi contracts in ethereum blockchain,” in Big Data and Se-
curity: Third International Conference, ICBDS 2021, Shenzhen, China,
November 26–28, 2021, Proceedings. Springer, 2022, pp. 657–672.

[14] L. Wang, H. Cheng, Z. Zheng, A. Yang, and X. Zhu, “Ponzi scheme
detection via oversampling-based long short-term memory for smart
contracts,” Knowledge-Based Systems, vol. 228, p. 107312, 2021.

[15] Y. Zhang, W. Yu, Z. Li, S. Raza, and H. Cao, “Detecting ethereum ponzi
schemes based on improved lightgbm algorithm,” IEEE Transactions on
Computational Social Systems, vol. 9, no. 2, pp. 624–637, 2021.

[16] M. Bartoletti, S. Carta, T. Cimoli, and R. Saia, “Dissecting ponzi
schemes on ethereum: identification, analysis, and impact,” Future
Generation Computer Systems, vol. 102, pp. 259–277, 2020.

[17] L. Yujian and L. Bo, “A normalized Levenshtein distance metric,” IEEE
transactions on pattern analysis and machine intelligence, vol. 29, no. 6,
pp. 1091–1095, 2007.

[18] E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Characterizing and
predicting program behavior and its variability,” in 2003 12th Interna-
tional Conference on Parallel Architectures and Compilation Techniques.
IEEE, 2003, pp. 220–231.

[19] M. Bartoletti, B. Pes, and S. Serusi, “Data mining for detecting bitcoin
ponzi schemes,” in 2018 Crypto Valley Conference on Blockchain
Technology (CVCBT). IEEE, 2018, pp. 75–84.

[20] W. Chen, Z. Zheng, J. Cui, E. Ngai, P. Zheng, and Y. Zhou, “Detecting
ponzi schemes on ethereum: Towards healthier blockchain technology,”
in Proceedings of the 2018 world wide web conference, 2018, pp. 1409–
1418.

[21] Y. Zhang, R. Jin, and Z.-H. Zhou, “Understanding bag-of-words model:
a statistical framework,” International journal of machine learning and
cybernetics, vol. 1, pp. 43–52, 2010.

[22] Y. Zhang, S. Kang, W. Dai, S. Chen, and J. Zhu, “Code will speak:
Early detection of ponzi smart contracts on ethereum,” in 2021 IEEE
International Conference on Services Computing (SCC). IEEE, 2021,
pp. 301–308.

[23] F. Contro, M. Crosara, M. Ceccato, and M. Dalla Preda, “Ethersolve:
Computing an accurate control-flow graph from ethereum bytecode,” in
2021 IEEE/ACM 29th International Conference on Program Compre-
hension (ICPC). IEEE, 2021, pp. 127–137.

[24] “Solidity Docs.” [Online]. Available: https://docs.soliditylang.org/en/v0.
8.19/

[25] X. Li, T. Chen, X. Luo, T. Zhang, L. Yu, and Z. Xu, “Stan: Towards
describing bytecodes of smart contract,” in 2020 IEEE 20th International
Conference on Software Quality, Reliability and Security (QRS). IEEE,
2020, pp. 273–284.

[26] S. Fan, S. Fu, H. Xu, and X. Cheng, “Al-spsd: Anti-leakage smart
ponzi schemes detection in blockchain,” Information Processing &
Management, vol. 58, no. 4, p. 102587, 2021.

[27] G. Salton and C. T. Yu, “On the construction of effective vocabularies for
information retrieval,” Acm Sigplan Notices, vol. 10, no. 1, pp. 48–60,
1973.

[28] L. Breiman, “Random forests,” Machine learning, vol. 45, pp. 5–32,
2001.

[29] W. Chen, Z. Zheng, E. C.-H. Ngai, P. Zheng, and Y. Zhou, “Exploiting
blockchain data to detect smart ponzi schemes on ethereum,” IEEE
Access, vol. 7, pp. 37 575–37 586, 2019.

[30] H. M. Nguyen, E. W. Cooper, and K. Kamei, “Borderline over-sampling
for imbalanced data classification,” International Journal of Knowledge
Engineering and Soft Data Paradigms, vol. 3, no. 1, pp. 4–21, 2011.

[31] X. He, T. Yang, and L. Chen, “Ctrf: Ethereum-based ponzi contract
identification,” Security and Communication Networks, vol. 2022, 2022.

[32] Z. Yang, Q. Xu, S. Bao, X. Cao, and Q. Huang, “Learning with
multiclass auc: theory and algorithms,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7747–7763, 2021.

[33] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[34] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-
Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, 2017.

[35] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin,
“Catboost: unbiased boosting with categorical features,” Advances in
neural information processing systems, vol. 31, 2018.

https://en.wikipedia.org/wiki/Blockchain_as_a_service
https://en.wikipedia.org/wiki/Blockchain_as_a_service
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://go.chainalysis.com/2022-crypto-crime-report.html
https://go.chainalysis.com/2022-crypto-crime-report.html
https://docs.soliditylang.org/en/v0.8.19/
https://docs.soliditylang.org/en/v0.8.19/

	Introduction
	Related Work
	Program analysis-based methods
	Data mining-based methods

	Method
	Data Preprocessing
	Control flow graph construction
	Basic blocks dividing
	Control flow analysis
	Meaningless elements elimination

	Feature extraction
	Detection model construction

	Experimental Evaluation
	Experimental Setup
	Experimental Dataset
	Evaluation metrics
	Research questions

	Feature Selection
	Performance of Feature Extraction Method
	Performance of Detection Model

	Conclusion
	References

