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Abstract—We propose a novel privacy-aware Quality of Service (QoS) forecasting approach in the mobile edge environment –
Edge-PMAM (Edge QoS forecasting with Public Model and Attention Mechanism). Edge-PMAM can make real-time, accurate and
personalized QoS forecasting on the premise of user privacy preservation. Edge-PMAM comprises a public model for privacy-aware
QoS forecasting in an edge region and a private model for personalized QoS forecasting for an individual user. An attention mechanism
atop Long Short-Term Memory and an automated edge region division solution are devised to enhance the prediction accuracy of the
public and private models. We conduct a series of experiments based on public and self-collected data sets. The results demonstrate
that our approach can effectively improve forecasting performance and protect user privacy.
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1 INTRODUCTION

THE digital revolution has made profound impact on all
walks of life, including society, business, entertainment,

etc [1]. The service paradigm is a powerful paradigm to
leverage the large amount of data generated from desktop
and mobile apps, social media, IoT devices, etc [2]. The
service paradigm abstracts data applications into small and
independent functions delivered within different Quality of
Service (QoS) parameters (called non-functional attributes).
Each service may encapsulate several functional and non-
functional attributes. Web services are one of the key tech-
nologies to implement the service paradigm [3]. Web ser-
vices are broadly used in such fields as business, service
sector, IT services, etc [4]. QoS of Web services typically
include response time, throughput, reliability, etc [5], [6].

Cloud computing is an emerging technology that pro-
vides virtualized computing resources, software and its
runtime environment as services over the Internet, known
as IaaS, SaaS and PaaS [7]. Web services provide stan-
dardized interfaces and protocols for cloud service inter-
operations and orchestration [8], [9]. Edge computing is a
new distributed computing paradigm. It moves computing
power from cloud data centers to edges of networks to
minimize delays. Edge computing is the ability to transfer
needed computing power closer to where it is needed [10].
Mobile Edge Computing (MEC) is a type of edge computing
technologies deployed on wireless base stations [11]. MEC
enables network services running closer to mobile users to
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reduce service latency [12], [13].
There are two major challenges in mobile edge environ-

ments: 1) the elevated requirements for data privacy protection
[14], [15], and 2) the needs of high accuracy and efficiency for
QoS forecasting. The following scenario illustrates the two
challenges.
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Fig. 1: A mobile edge service invocation scenario

Fig. 1 shows the distribution of edge servers in some
municipal districts of Nanjing. Each edge server serves its
located municipal district. Let us assume that a mobile user
Ailsa is taking a metro train from district A to district C
and passing through district B. She is watching a Twitter
video on the journey. The video service quality needs to be
forecasted. If the service quality is predicted to decline in the
next few seconds, the video service can cache or download
the effected video beforehand to maintain the smoothness.
The sequence of the edge servers accessed by Ailsa is:
S1-S2-S3. There is no Twitter video service quality data
(e.g., buffering speed, resolution, etc.) generated, when she
initially accesses the service in S1. The data is inadequate to
forecast the forthcoming service quality. Thus, Alisa’s service
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quality forecasting needs to employ other users’ historical
records in S1. The data interchange increases the likelihood
of data leakage and user privacy breach. Next, the edge
server accessed by Alisa is switched from S1 to S2, when
she reaches district B. Similarly, the video service quality
in S2 also needs to be predicted. Alisa does not have any
historical data in S2 when launching the service in S2. The
QoS forecasting may use Alisa’s data from S1. However, S1

and S2 may have different network status. Therefore, the
previous data in S1 cannot be directly leveraged in S2. The
same problem will occur again when she reaches district C .

We summarize the challenges faced by the QoS forecast-
ing in the above mobile edge scenario as follows:

i). Traditional privacy-aware QoS forecasting approaches can-
not guarantee local user data privacy. The historical QoS data
generated by the same users in different edge regions is
less referential due to the distributed and diverse nature
of mobile edge environment. Users need to obtain historical
QoS data of other users in same edge regions for forecasting
[15]. Thereby, the interactions between local users are more
intensive in an edge region. The traditional privacy mecha-
nisms usually employ random noise insertion or encryption
to protect the original data [16]. The behavioral patterns
and data encryption rules of users are easier to be mined
and reasoned, with the increasing number of interactions
between users [14]. In addition, the traditional mechanisms
cannot completely avoid the existence of malicious users.
Therefore, it is of great significance to propose a more secure
personalized QoS forecasting approach in the mobile edge
environment.

ii). Realizing real-time, accurate and efficient QoS forecasting
is a challenging task in the mobile edge environment. MEC aims
to reduce the latency of network operations and service
delivery by providing service environment and computing
capability on the edge of mobile network. Users’ requests
need to be quickly processed and answered to realize the
goal of MEC. The similar goal also applies to QoS fore-
casting in the mobile edge environment. Accurate QoS fore-
casting will better insure users’ service positive experience.
MEC requires real-time and reliable data to realize the
goal of accurate and real-time QoS forecasting. However,
traditional forecasting methods mostly use historical data.
They cannot meet the requirements of forecasting accuracy
in the edge environment. They also lack real-time dynamic
updating mechanism. Therefore the traditional forecasting
methods cannot be applied to the edge environment with
an intensified focus on real-time performance.

Our previous work [17] proposes a preliminary security-
aware edge QoS forecasting approach, named Edge QoS
Per-PM (Edge QoS forecasting with Personalized training
based on Public Models). Edge QoS Per-PM employs the
principle of integrating cooperative learning and indepen-
dent learning. It contains 1) a public model for privacy-aware
QoS forecasting in an edge region and 2) a private model for
personalized QoS forecasting for an individual user. The public
model is a machine learning model trained upon privacy-
insensitive public data in a region to avoid local user data
privacy breach. The private model is an extension of the
public model trained upon the user’s private data to en-
hance the QoS forecasting accuracy. However, Edge QoS
Per-PM has the following major limitations:

• Lack of the impact of long-term historical QoS data on
forecasting. The public and private models of Edge
QoS Per-PM are both built upon Long Short-Term
Memory (LSTM). It only considers the impact of
the QoS data in the previous single moment on the
forecasting results. It ignores the impact of the long-
term QoS historical data on the forecasting results.

• Lack of automated edge region division. An edge region
refers to a geographical area where its located edge
servers share the stored users’ historical QoS data
for training a public model. The QoS data from the
same edge region is usually subject to the similar
environmental conditions, e.g., network bandwidth,
communication rate, etc. Therefore, their stored QoS
data is more correlated and suitable for training
the same public model. Edge QoS Per-PM adopts
a manual edge region division process. It is time-
consuming and impractical for larger numbers of
edge servers.

In this paper, we propose novel approach - Edge-PMAM
(Edge QoS forecasting with Public Model and Attention
Mechanism) to be employed in a privacy-aware edge QoS
forecasting scheme.

The major contributions include:

• We adopt an attention mechanism on top of LSTM to
improve the performance of the public and private
models. Attention mechanism is a powerful neural
network technique. It allows neural networks to pay
more attention to some special parts of training data
[18]. This attention mechanism allows us to assign
different initial weights to historical moments. It
enables the model to comprehensively consider the
impact of several historical moments on prediction.
This enhanced model shows improved prediction
accuracy in comparison to our previous model in the
experiments.

• We devise an automated optimal edge region divi-
sion method. This method can 1) project the original
spherical coordinates onto a plain to calculate the
absolute distance between two edge servers based
on Miller projection, 2) obtain the optimal k for
edge region division by means of elbow method or
silhouette coefficient, and 3) automatically divide the
edge regions based on K-means clustering.

• We conduct a more comprehensive evaluation on
the data sets of two geographical areas and a self-
collected real world data set. The experimental re-
sults show that Edge-PMAM achieves the goal of
secure, accurate and efficient forecasting.

The structure of the paper is organized as follows. Sec-
tion 2 reviews the work relevant to QoS forecasting. Sec-
tion 3 introduces the background knowledge and relevant
theoretical basis of our approach. Section 4 presents the de-
tails of our approach. Section 5 elaborates the experimental
design and result analysis. Section 6 summarizes the paper
and plans our future work.

2 RELATED WORK
The existing QoS forecasting studies can be briefly divided
into QoS forecasting in traditional environments [19], [20]
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and mobile edge environments [15], [21].

2.1 Traditional QoS Forecasting
Traditional QoS forecasting mainly include context-aware,
time-based, location-based, and privacy preserving based
approaches.

Wu et al. [19] proposed a context-aware matrix factor-
ization based QoS prediction method for cloud services.
They considered the complexity of service invoking and the
implicit and explicit factors between QoS data. This method
effectively solves the sparse data prediction problem. How-
ever, it is not suitable for prediction scenario with temporal
attribute. Wang et al. [22] devised a spatial-temporal QoS
prediction model for time-aware Web services. Temporal
QoS prediction is expressed as a regression problem. The
most similar QoS sequence is retrieved based on the location
of the end user and the service to improve prediction accu-
racy. It cannot predict QoS values in the future time periods.
Chen et al. [23] adopted a Web service recommendation
method using location and QoS information. They clustered
users and services based on their historical geographic lo-
cation and service information. Personalized service recom-
mendation is made for users based on the clustering results.
Nevertheless, the scalability of the clustering method needs
to be improved.

Liu et al. [20] proposed a privacy preserving Web service
QoS prediction framework based on differential privacy.
The framework generates random noises based on Laplace
mechanism to protect the original data. Thereby, it ensures
the privacy of users on the premise of data availability.
However, this method disadvantages the forecasting ac-
curacy. Polat et al. [24] proposed a cooperative filtering
privacy protection approach based on the random distur-
bance technology. This approach realizes data disguising by
adding random numbers to different disguising ratings. It
then sends the results to the server to achieve the purpose
of privacy and accuracy balancing. However, the accuracy
of this approach is restricted by the degree of information
disclosure. Li et al. [25] devised a privacy preserving QoS
forecasting approach based on garbled circuit and homo-
morphic encryption. The final recommendation results and
all the intermediate results in the recommendation process
are in ciphertext or random shares. Hence, it ensures data
security. The method has the problem of high computation
and communication costs. It is generally suitable for off-line
predictions.

2.2 Edge QoS Forecasting
With the development of mobile edge computing technolo-
gies, many scholars have been devoted to the research of
QoS forecasting in the edge environment.

Wang et al. [15] designed a QoS prediction method based
on collaborative filtering in mobile edge environments. This
method performs QoS prediction and service recommen-
dation based on user mobility. However, this method is
constrained by the density of data matrix and distribution
density of edge servers. White et al. [26] designed a short-
term QoS forecasting algorithm deployed at edges of net-
works. The algorithm bases on the noisy echo state network
to reduce training time and improve prediction accuracy.

The universality of the algorithm in service-oriented edge
applications is still a challenge. Yin et al. [27] presents a
QoS prediction service recommendation model based on
deep feature learning in mobile edge computing. This model
employs learned neighbors’ deep latent features to infer
user or service features. Nonetheless, it does not consider
the influence of time and environment changes on edge
computing.

Privacy and security-aware QoS forecasting in mobile
edge environments has also become a hot research area.
Zhang et al. [21] proposed a privacy preserving QoS fore-
casting method in mobile edge environments. This method
adds noises to original data based on differential privacy
to protect user privacy. It achieves a trade-off between
prediction accuracy and privacy protection. This method
can be cracked once attackers master the noise addition
rules. Zhang et al. [28] comprehensively considered the
influence of user preferences on the edge environment. They
developed a distributed edge QoS prediction model with
privacy protection. Laplace vector mechanism was utilized
for privacy protection in edges. However, the usability of
this method in real edge environments needs further stud-
ies. Zhang et al. [29] designed a credible privacy protection
QoS prediction model based on federated learning and rep-
utation mechanisms. The training framework of this model
is jointly constructed by a central server and users. Users
do not need to transmit data to avoid the risk of privacy
leakage. Nevertheless, this model cannot completely avoid
the existence of malicious users.

3 PRELIMINARIES
3.1 Privacy Issues in Mobile Edge Environment
In recent years, mobile computing technology has gradually
shifted from centralized mobile cloud computing to Mobile
Edge Computing (MEC). This shift results from the rapid
development of mobile networks and the diversification
of service scenarios [30]. MEC has the characteristics of
location dependency, mobile support, low delay, decentral-
ization and distribution. It can better meet the new require-
ments of the Internet of Things, 5G, mobile devices, etc
[31]. It is an effective supplement and extension of cloud
computing. MEC aims to push mobile computing, network
control and storage to the edge of the network. It provides
IT service environments and cloud computing functions at
the edge of the network. It can effectively reduce delay to
ensure efficient network operations and service delivery.

The computing power of distributed nodes in MEC can
reduce the load of cloud data centers. However, MEC nodes
adjacent to end users may collect sensitive data related to
user identity, locations, application usage, etc. In addition,
centralized control in MEC is difficult due to the large-scale
and decentralized MEC nodes. Therefore, the edge nodes
with security vulnerabilities may become the entrance for
intruders to attack MEC networks. Intruders can mine and
steal the privacy data exchanged between entities once they
enter the network. MEC is an open ecosystem. Different
trust domains are controlled by different infrastructure own-
ers. It is difficult to locate attackers. Obtaining evidences
becomes a challenge once privacy breach occurs [32]. There-
fore, security is a significant challenge for MEC [11].
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3.2 Notion of Privacy
Privacy has been defined in a variety of ways. For example,
Saltzer et al. [33] defined privacy as ”the ability of an
individual (or organization) to determine whether, when,
and to whom to disclose information about an individual
(or organization)”. Zhou et al. [34] defined it as ”sensitive
information or data characteristics that the data owner is
unwilling to be disclosed”. We provide the following defini-
tions related to the privacy in the context of QoS forecasting
guided by these existing definitions.
Definition 1 (QoS training data privacy). It refers to a user’s

personal information or data characteristics that the user
is unwilling to be disclosed, including the user’s geo-
graphic location, the area he/she belongs to, the user’s
service invocation information, and the user’s original
service quality data.

Definition 2 (QoS forecasting model privacy). It refers to the
information related to a QoS forecasting model, i.e., the
structure, algorithm, weight parameters, and activation
function of the model.

Definition 3 (QoS forecasting data privacy). It is a special
form of a user’s personal data. This type of data can
generally be used to infer the user’s historical and future
personal data.

Definition 4 (QoS forecasting result privacy). It refers to the
results for a user through the QoS forecasting model.

The above types of privacy need to be protected during
the QoS forecasting process. Their leakage will lead to
serious consequences.

3.3 Threat Model
QoS forecasting in the edge environment usually involves
three parts: user groups, mobile networks, and edge servers.
As shown in Fig. 2, when Alisa first uses the service, she
needs to reference the QoS data of the service from other
users through wireless connection P1 due to the lack of QoS
data. When she generates a certain amount of QoS data, she
transfers the data to an edge server to train a forecasting
model through wireless connection P2. The server will send
back the forecasting result to her. During this process, user
privacy may be threatened as follows: 1) the data of other
users transmitted may be subject to leakage, tampering or
inference attacks during P1; 2) the training data, inputs
and outputs of the forecasting model might be leaked or
tempered during P2.

The existing privacy-aware QoS forecasting approaches
are built upon traditional clouds [20], [24], [25] or mo-
bile edge environments [15], [21], [28]. They usually rely
on random disturbance technologies, data encryption or
random noise mechanisms for privacy protection. Most of
these technologies directly interact with user data (through
P1). User data can be leaked or tempered, causing these
technologies to be less secure in theory. In addition, there
are model-based approaches [29], [35]. They usually rely
on transferring parameters of the local (i.e. private) model
(through P2) for protection. These private model parameters
are vulnerable to the attacks during the transfer process
[36]. Therefore, how to ensure user data privacy and model

security is a key issue in dealing with QoS forecasting
privacy threats in the edge environment.

Ailsa

Edge Server

User 

group

P1

P2

Fig. 2: A privacy threat scenario during edge QoS forecast-
ing

3.4 LSTM and Attention Mechanism
Long Short-Term Memory (LSTM) is a type of time recurrent
neural networks. LSTM is specially designed to solve the
long-term dependence problem of Recurrent Neural Net-
work (RNN) [37]. It was first proposed by Sepp Hochreiter
and Jürgen Schmiduber in 1997 [38]. There are four network
layers in LSTM. The cell information is controlled by the
gate structure. The gate can selectively decide which infor-
mation can pass through to exchange information. LSTM
consists of three gates: forget gate, input gate and output
gate. Forget gate determines the reserved information of the
cell state. Input gate determines the updated information
of the current network. Output gate controls the output
information of the cell state.

Attention mechanism is formed on the basis of human
vision. Attention attracts people to pay more attention to
important parts of captured information and obtain details
of targets as much as possible. Similarly, less attention is
paid to irrelevant information around targets, i.e., suppress-
ing the irrelevant information. Attention mechanism was
only applied to image recognition in computer vision at
first [18]. Now it has become a key concept in the field
of neural networks. Attention has become a critical part
of neural network structure in the field of AI. It has been
widely used in question answering systems [39], machine
translation [40], speech recognition [41], image capture [42]
and other fields.

Attention mechanism is a part of a prediction model. It
can allow the prediction model to focus on different parts
of the input in order. The order is based on the impact of
each part on the final prediction. Using attention mechanism
can enable a system to extract and output the most relevant
information. This can effectively improve the output quality
of the model. Attention mechanism can be introduced into
LSTM to effectively employ the LSTM output of historical
moments [43]. The output of a LSTM network in different
time slices can be weighted to express the correlation be-
tween the current time slice and the historical time slice.
This can improve the output accuracy of the network.

4 THE EDGE-PMAM APPROACH
The scheme of privacy-aware forecasting is presented in
Section 4.1. The workflow of Edge-PMAM is outlined in
Section 4.2. The four steps of Edge-PMAM are introduced in
details in Section 4.3, Section 4.4, Section 4.5 and Section 4.6.
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4.1 Privacy-Aware Forecasting Scheme

We realize privacy-aware edge QoS forecasting by combin-
ing edge clouds and users’ mobile devices. Fig. 3 shows
our proposed privacy-aware forecasting scheme, where
Edge-PMAM is employed for QoS forecasting. The service
providers own copies of users’ QoS data [44]. They provide
the privacy-insensitive public data (i.e. median QoS values)
for the offline public model training in edge clouds. Mobile
users can download public models to their devices. The
devices perform user-side online training and forecasting
based on users’ private data. The scheme prevents users
from the situation where their privacy defined in Section 3.2
is breached. Therefore, this architecture can effectively solve
the issues faced by the existing solutions when confronting
the threat model. In addition, the public model can be
continuously reinforced and generate sound private models
for each individual user.

Ailsa

Edge Cloud

public data

public model

download

User 

group

Devices

offline

online

private model

...

service provider

Fig. 3: Privacy-aware edge QoS forecasting scheme

4.2 Overview of Edge-PMAM

We propose a privacy-aware QoS forecasting approach
(Edge-PMAM) in the mobile edge environment. Edge-
PMAM works towards the goals of privacy-aware, accurate
and real-time personalized forecasting. The system work-
flow is shown in Fig. 4. It is mainly divided into four steps:

Edge location 
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K-means clustering
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forecasting result

Step 4  Personalized forecasting
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Fig. 4: The overview of Edge-PMAM

1) Data collection and processing. First, the edge location
information and the QoS data sets are collected to
form the spatio-temporal edge user QoS data set. The
longitude and latitude values in the edge location in-
formation are employed to determine the geographical
distribution of edge servers. Here we adopt the scenario
of Ailsa in Fig. 1 as an example. First, we obtain the
longitude and latitude location information of edge
servers in three municipal districts of Nanjing. Next, we

collect the QoS attribute values generated by users, e.g.,
the QoS data of Ailsa watching the Twitter video across
different districts. Finally, we form the spatio-temporal
edge QoS data set of mobile users.

2) Edge region division. The longitude and latitude values
of the edge servers collected in step 1 is converted into
the plane coordinate values based on Miller projection.
K-means clustering is then employed to determine the
number of clusters k (k ≥ 2) of the plane coordinate
data by means of the elbow method or silhouette coeffi-
cient. The whole area is therefore divided into k regions.
In Ailsa’s example, districts A, B and C are the final
result of the edge region division.

3) Public model training. The spatio-temporal edge user
QoS data set collected in step 1 is divided according to
the edge regions identified in step 2. We then make use
of the public data set of each region to train an LSTM
model with attention mechanism to obtain the public
model. The weight parameters of these public models
will be transferred to users of corresponding regions for
personalized forecasting. In Ailsa’s example, we extract
and train the QoS data of certain users in district A. All
these users watch Twitter videos in a specific period of
time. Ailsa can then obtain the public training results.

4) Personalized forecasting. A user uses the weight parame-
ters of the public model in his/her belonged region as
the initial parameters of his/her own private model.
The private model is then trained upon the user’s
private data to make personalized forecasting. A user’s
private data is the temporal QoS data generated in the
process that the user interacts with a service. The pri-
vate data is used to train the private model in each time
interval to update its weight parameters continuously.
This ensures the real-time performance of the weight
parameters in the dynamic edge environment and im-
proves the prediction accuracy. The private model is
continuously optimized with increasing training iter-
ations. QoS forecasting results will be generated for
future time slices. In Ailsa’s example, the prediction of
Twitter video quality is first based on the public model
of district A. A private model is then continuously
trained based on the data steam generated by Ailsa.
New QoS is therefore predicted in terms of the trained
private model. The personalized QoS forecasting will
become increasingly more accurate with the time.

4.3 Data Collection and Processing
Let us make use of the scenario of Ailsa to explain this
process. Edge servers S1, S2, S3 respectively log quality
data about the Twitter video service, e.g., frame rates and
resolution, from many users. We collect the QoS data from
these scattered servers and the location information of the
edge servers (i.e., longitude and latitude values). For the
QoS data generated on the user side, such as response time,
we collect it from users through a trusted third party. We
fuse the QoS data and the location information to form the
spatio-temporal edge user QoS data set. We then adopt a
map service 1 to locate the edge servers on the map based on
the longitude and latitude information of the edge servers.

1. https://zt.changjing.com.cn/
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4.4 Edge Region Division
We employ Miller projection to convert the longitude and
latitude values of the edge servers into plane coordinates.
We then make use of K-means clustering to cluster the edge
servers into k edge regions based on their plane coordinates.
In an edge region, the QoS is affected by many factors, e.g.,
bandwidth, network traffic or the number of concurrent
service requests. Servers in the same edge region can be
assumed to share the similar edge environment based on
the survey result from [45]. They concurrently respond to
multi-user service requests in the region. The logged and
predicted QoS data is the result of the concurrency. Thus,
a public model is trained for each region. A user will use a
new public model for initial QoS forecasting when the user’s
region changes. The clustering can improve the forecasting
accuracy. The edge region division consists of the following
steps.

4.4.1 Miller Projection
The longitude and latitude values of edge servers collected
are points on the sphere. We use Miller projection method
to convert the longitude and latitude values into plane
coordinates. The calculation formulas of Miller projection
are as follows:

L = 2πR (1)

L is the circumference of the earth, where R = 6381.372.
The longitude and latitude values are respectively converted
from degrees to radians. Let xr and yr represent the radians
of the longitude and latitude values, then

xr = lon ∗ π/180 (2)

yr = lat ∗ π/180 (3)

A plane projection is also needed for yr. The projection can
be realized by the following formula:

yp = 1.25 ∗ log(tan(0.25 ∗ π + 0.4 ∗ yr)) (4)

Finally, the radian is converted to the actual distance as
follows:

X = (W/2) + (W/(2 ∗ π)) ∗ xr (5)

Y = (H/2)− (H/(2 ∗mill)) ∗ yp (6)

When the plane is expanded, the x-axis is equal to the
circumference, so W = L. The y-axis is about half the
circumference, so H = L/2. mill is a constant in Miller
projection.

We get a set of coordinates (X,Y ) after the above
transformation. The coordinates can be directly used in
the operation of a two-dimensional rectangular coordinate
system.

4.4.2 K-means Clustering
Clustering refers to dividing samples into several groups.
The samples in each group have smaller difference accord-
ing to the distance or similarity between samples. The k
value of K-means clustering is the number of clusters. The
optimal k value can be determined by elbow method or
silhouette coefficient [46].

The mathematical principle of elbow method is ex-
pressed as follows. Let us assume that the cluster is divided

into (C1, C2, ..., Ck). The goal is to minimize the squared
error E:

E =

k∑
i=1

∑
x∈Ci

∥x− µi∥22 (7)

where x ∈ (X,Y ), µi is the mean vector of cluster Ci, also
known as the centroid. It is expressed as:

µi =
1

|Ci|
∑
x∈Ci

x (8)

Silhouette coefficient is another way to evaluate the
clustering effect. Its value is between [-1, 1]. The closer it
is to 1, the better cohesion and resolution the clustering. For
a point i in the cluster, its silhouette coefficient is:

S(i) =
b(i)− a(i)

max {a(i), b(i)}
(9)

where i ∈ (X,Y ), bi is the mean of the distance from sample
point i to points in the nearest cluster except its own cluster,
and ai is the mean of the distance from point i to other
points in the same cluster. The mean value of all samples is
called silhouette coefficient of clustering results. We select
the k value corresponding to the maximum coefficient.

We randomly select k points in the data set as the cen-
troid after determining the k value. The detailed clustering
steps are as follows. Step 1: The Euclidean distance from
each point to each centroid in the data set is calculated. The
points are divided based on their distance to the nearest
centroid. Step 2: k clusters are formed after classifying
all the data. We recalculate the centroid of each cluster.
Step 3: If the distance between the new centroid and the
original centroid is less than a certain threshold value, it
means that the clustering has achieved the desired effect.
The algorithm is terminated. Step 4: If the distance between
the new centroid and the original centroid changes greatly,
we repeat Steps 1∼3 until the position of the centroid no
longer changes or it reaches the maximum number of itera-
tions. The algorithm is terminated. Finally, the clustering is
formed.

4.5 Public Model Training

The spatio-temporal edge user QoS data set fused in Sec-
tion 4.3 is divided according to the edge regions identified
in Section 4.4. A public model is trained offline based on the
divided QoS data in each region. The purpose of the public
model training is to provide an initial QoS forecasting model
for all users in an edge region. The public model can capture
general video quality in that region. Its training bases on
privacy-insensitive public data, e.g., the average frame rate
and resolution of the video published by Twitter formed
upon mass user data. In addition, it does not expose users’
personal data. The trained public model is passed to each
individual user to make initial forecasting. The public model
training improves the private model training efficiency. It
also ensures the performance of the personalized forecasting
in addition to achieving the purpose of data security. The
public model training consists of the following steps.
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4.5.1 Public Data Set Extraction

The public data extraction process is divided into four steps.
Step 1: The QoS data of each edge region is rearranged in
the order of User ID, Time slice ID, Service ID and QoS
attribute Value. Step 2: The QoS attribute values of all users
that invoke service I1 in T1 time slice in each region are
extracted. These values are expressed in the form of I1-
T1 column vector. The medians in statistics can reflect the
middle level characteristic for a set of data. The machine
learning models trained upon the medians can cater for
the set of data [47]. It is not affected by extreme values.
Therefore, we take the median of I1-T1 column vector to
represent the public data of the users invoking service I1
in each region in T1 time slice. Step 3: We take the attribute
values of all users invoking services I2, I3, ..., Im in turn. We
repeat Step 2 to get the median column vector I1→m-T1 as
the public data of users invoking all services in the region in
T1 time slice. Step 4: We take the attribute values of T2, T3,
..., Tn in turn. We repeat Step 2 and Step 3 to respectively get
the median column vectors I1→m-T2, I1→m-T3, ..., I1→m-
Tn (m,n ≥ 2). Finally, the n median column vectors are
synthesized to obtain the m×n (service-time slice) public
data set matrix, which is privacy-insensitive. At this point,
the public data set extraction process is complete.

4.5.2 Public Data Set Training

Each regional public model is trained based on the regional
public data set. We reach a consensus between the learning
rate and the number of training iterations before the model
training. The larger learning rate in a certain range will
make the error adjustment speed faster. In other words, it
will need less training iterations to achieve the same training
effect. In contrast, the more training iterations, the more
computing resources and time cost needed. Therefore, we
use a set of parameter combinations (i.e., learning rate and
training iterations) to measure the training effect. Generally,
there is a negative correlation between them. When the
learning rate increases, the number of training iterations
decreases.

We use LSTM and the attention mechanism to train the
public data set after tuning the parameters. Here, LSTM uses
switch to control. The switch is realized in the form of a gate.
Suppose W is the weight vector of the gate and b is the bias
term, then the gate can be expressed as:

g(x) = σ(Wx+ b) (10)

Where σ is the sigmoid function and its value range is (0, 1).
The following are the formulas of the forget gate, the

input gate, the current time cell state and the output gate.

ft = σ(Wf · [ht−1, xt] + bf ) (11)

it = σ(Wi · [ht−1, xt] + bi) (12)

Where Wf and Wi are the weight matrices, ht−1 and xt

respectively represent the output of the previous time slice
and the input of the current time slice, bf and bi are the bias
terms. Next, we calculate the cell state ct in the current time
slice. It is based on the aggregation between the previous cell
state ct−1 multiplied by the forget gate ft and the current

input cell state c̃t multiplied by the input gate it, as shown
in equation (13) and (14):

c̃t = tanh(Wc · [ht−1, xt] + bc) (13)

ct = ft ◦ ct−1 + it ◦ c̃t (14)

Wc and bc in equation (13) are respectively the weight
matrix and the bias term of the current cell state. In equation
(14), only the previous cell state ct−1 is included in the
calculation. The cell state in the current time slice may be
affected by the latest λ time slices in the prediction of time-
dependent data series. However, the influence degree is
positively correlated with the closeness of time slices. That
is, the closer the time slice, the greater the influence degree.
Therefore, we introduce the attention mechanism to further
refine the calculation of the current cell state. In attention
mechanism, we take the weighted sum of cell states in
the previous few time slices as the historical cell states.
We assign unequal initial weights to the previous few time
slices, i.e., wt−λ = 1/(1 + 2 + ...+ λ). Its structure diagram
is shown in Fig. 5.

σ σ tanh σ 

tanh

xt

ht

ht-1

Ct

ht

ct-1

ct-2

ct-λ

...

Wc

cell group

weight 

matrix

Attention module

Fig. 5: The structure of LSTM with Attention Mechanism

We add the input cell group calculation to LSTM and
replace ct−1 with sλ. It is calculated as follows:

sλ = Wc ∗ C (15)

Where Wc is the weight matrix of the cell group, C =[
ct−λ, ct−(λ−1), ..., ct−1

]
(λ ≥ 2). The following equation can

be obtained by substituting equation (15) into equation (14):

ct = ft ◦ sλ + it ◦ c̃t (16)

In this way, we combine LSTM’s current memory c̃t and
long-term memory sλ to form a new cell state ct. They can
not only save the information in the previous time slices, but
also effectively avoid the irrelevant content from entering
the memory, by controlling the forget gate and the input
gate. Equation (17) is the calculation process of the output
gate. It controls the influence of the long-term memory on
the current output. Wo and bo are the weight matrix and the
bias term of the output gate respectively.

ot = σ(Wo · [ht−1, xt] + bo) (17)

The final output of LSTM is determined by the output gate
and the cell state.

ht = ot ◦ tanh(ct) (18)

We estimate the loss function by calculating RMSE
(Root Mean Square Error):

RMSE =

√√√√ 1

N

N∑
i=1

(hti − h′
ti)

2 (19)



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL.XXX, NO.XX, XXXXXX 8

Where hti is the output value of LSTM at time slice ti, h′
ti is

the real value at time slice ti, and N is the total number of
time slices.

All the parameters in the LSTM back-propagation algo-
rithm are calculated based on the partial derivative of the
loss function. These parameters are updated iteratively by
the gradient descent method. The training error decreases
continuously with the increasing number of training itera-
tions. Thus, it can provide the best initial weight parameter
values for personalized forecasting.

4.6 Personalized Forecasting
A user makes personalized QoS forecasting online based
on LSTM and attention mechanism with the initial weight
parameters passed from the public model. A private model
is later trained upon a user’s own QoS data (i.e. private
data that is privacy-sensitive and owned by the user). In
our scenario, the QoS data is generated when Ailsa watches
the Twitter video using her mobile device. Only model fine-
tuning is performed on the user side to save costs. The
forecasting process is shown in equation (11)∼(18). The
user’s actual QoS is obtained from a time slice T after a
QoS forecasting is made for T . We adjust the private model
weight parameters with the error between the predicted and
actual QoS data. The weight parameters are adjusted by the
following equation:

weighti = weight0 − l ∗ error (20)

Where weight0 is the initial weight parameter, l is the
learning rate and error = 2 ∗ (hti − h′

ti)
′ is the derivation

of the prediction error.

Algorithm 1 Privacy-Aware edge QoS forecasting

Require: Mobile user u accesses edge server b in edge
region rA, followed by edge server c in edge region rN .
pu−A and pu−N are private data generated by u in rA
and rN respectively. vi are other users in edge regions
rA and rN . s are the same services invoked by users u
and vi in the two regions in T1→i time period.

Ensure: Edge QoS forecasting result for u
1: Collect QoS data of users u and vi;
2: Extract the public data set dA of rA based on s-T1→i;
3: Extract the public data set dN of rN based on s-T1→i;
4: Train the public model mA by dA;
5: Train the public model mN by dN ;
6: if there is new QoS data generated from user u then
7: if u.location ∈ rA then
8: Use the weight parameters of mA;
9: Make personalized forecasting based on pu−A;

10: Output edge QoS forecasting result;
11: else
12: Obtain the public model mN of rN ;
13: Use the weight parameters of mN ;
14: Make personalized forecasting based on pu−N ;
15: Output edge QoS forecasting result;
16: end if
17: end if

Based on Algorithm 1 and equation (20), the forecasting
will be performed for the next time slice after completing

the forecasting and training in the first time slice T . If there
is actual QoS data obtained from the next time slice after the
forecasting, the training will be executed again to further
adjust the weight parameters. The forecasting followed by
the training process will repeat until no new QoS data is
obtained from the next time slice (i.e., the user terminates
the service(s)). Finally we obtain the personalized edge QoS
forecasting result.

5 EVALUATION
We conduct the experiments in a computer system with
Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz, 16.0 GB RAM,
Windows 10, Python 3.8.5 and MATLAB R2018b. We divide
edge region, train public model and carry out personalized
forecasting.

The evaluation process is divided into two parts to verify
the usability and effectiveness of the proposed model: (1) We
carry out simulation experiment based on several existing
data sets; (2) We conduct real world experiments at the
campus of Hohai University.

5.1 Simulation Experiment

5.1.1 Data Set Description
We use three data sets – a time series QoS data set and
two edge server location data sets. These data sets can be
downloaded from the data sources used in [48], [49], [50].

The first data set 2 describes the real-world QoS evalua-
tion results from 142 users (IDs: 0-141) on 4500 Web services
over 64 consecutive time slices (with a 15-minute interval
between each two slices). The QoS attributes mainly include
Response Time (RT) and Throughput (TP). The second data
set 3 is provided by Shanghai Telecom. It contains more than
7.2 million Internet accessing records of 9481 mobile phones
collected from 3,233 base stations during 6 months. We use
the latitude and longitude information of the base stations
as the edge server positions. The third data set 4 is the
radio-comms license dataset that contains the geographical
locations of all the cellular base stations in Australia pub-
lished by Australian Communications and Media Authority
(ACMA). We use them as the locations of the edge servers.

5.1.2 Experimental Procedure
It is expected that the experiments can prove that the
proposed privacy-aware edge QoS forecasting approach can
achieve real-time and accurate prediction while protecting
user data privacy.

First, we try to find the optimal k value for dividing
the edge regions. Second, we adjust the learning rate and
the number of training iterations to determine their best
combination for the public model training in the subsequent
experiments. Next, we analyze the variation of the error
with the increased number of training iterations. We attempt
to select the best initial weight parameters of a public model
passing to private users to make real-time personalized
forecasting. The experimental steps are described as follows:

2. https://github.com/wsdream/wsdream-dataset
3. http://sguangwang.com/TelecomDataset.html
4. https://github.com/swinedge/eua-dataset
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(1) We randomly select 71 base station locations respec-
tively from the Shanghai Telecom data set and the Australian
cellular base station data set. The distribution of the cellular
base stations in Australia is more sparse than it in Shang-
hai. Therefore, our selection is mainly concentrated in the
Melbourne area to ensure the density of the base station
locations in the experiment. Next, we label the 142 base
stations with IDs from 0 to 141. We use the IDs to identify
the corresponding QoS data set. Thereby, we obtain the
spatio-temporal QoS data set of the two areas. There are
a few null values or outliers far from the average (e.g.,
the RT value is 0s or 20s) in the QoS data set. The data
presents a right skewed distribution (i.e., the RT data is more
concentrated in 0s-5s and less in 5s-20s). It is inconducive
to the network learning and negatively affects the training
effect. We use standardization to stabilize data variance,
thereby improving the convergence speed and learning
efficiency of the network. The converted value is mapped
to [0, 1] through normalization. Finally, the best k value is
determined by elbow method (or contour coefficient). K-
means is then used to realize the edge region division. The
spatio-temporal QoS data set of each edge region is obtained
correspondingly.

(2) We independently train a public model based on the
public data set for each edge region (refer to Section 4.5.1
for the extraction process of the public data set). In this
experiment, we extract the public data sets of RT-time slice
and TP-time slice from each edge region. We assign unequal
initial weights ranging from 1-5 to the previous fives time
slices, i.e., wt−5 = 1/(1 + 2 + 3 + 4 + 5). We try a total of
10 combinations between learning rate and number of training
iterations for the public model training. The learning rate
increases from 1 to 10 with an increment of 1 each time. The
number of training iterations decreases from 1000 to 100
with a decrement of 100 each time. The best combination
for the public model training is obtained according to the
lowest error value. We train LSTM and attention mechanism
with the best combination based on the public data set.

(3) We use the weight parameters provided by the public
models as the initial values of the private models. We then
make personalized forecasting based on the trained private
models. In theory, the smaller the training interval and the
higher the training frequency, the higher the accuracy of the
model. However, we need to balance between training cost
and training performance. Thereby, our training frequency
is set to 4 time slices (i.e., 1 hour) per cycle. The private
model is periodically updated based on the private data
generated by a user in real time to ensure the timeliness
and accuracy of the prediction.

5.1.3 Experimental Results
(1) The optimal k value for edge region division
We first convert the latitude and longitude values into plane
coordinates by Miller Projection. Then we respectively use
elbow method and contour coefficient to determine the
optimal k values. These two methods have same functions.
Therefore, we can use them alternatively. If the highest point
of the curvature in elbow method is not obvious, then we
use contour coefficient instead.

The process of the optimal k-value determination in
Shanghai and Melbourne is shown in Fig. 6(a) and Fig. 6(b). It

can be seen that, the curvature is the highest, and the degree
of distortion is greatly improved, when k=3 in Fig. 6(a).
Thus, the optimal number of clusters is 3 for the Shanghai
data set. The coefficient is the largest when k=2 in Fig. 6(b).
This means that the clustering at this value is most effective.
Hence, the optimal number of clusters for the Melbourne
data set is 2. The server clustering results of the two areas
are shown in Fig. 7(a) and Fig. 7(b). Here different legends
represent different clusters. The black hollow circle is the
center point of each cluster. It can be clearly seen that the
servers in Shanghai are clustered based on three regions. The
servers in Melbourne are clustered based on two regions.
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Fig. 6: Determination of the k value: (a) Shanghai area, (b)
Melbourne area.
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Fig. 7: K-means clustering results: (a) Shanghai area, (b)
Melbourne area.

The distribution of edge servers and the division of
edge regions in Shanghai are shown in Fig. 8. We label the
three regions as Shanghai region SH a, SH b, and SH c. The
server distribution and edge region division in Melbourne
are shown in Fig. 9. We label them as Mel a and Mel b.
(2) Impact of weight parameters of public model
Our next experiment is to assess how different weight
parameters of the public models impact training results.
The default experimental learning rate is 0.001. Table 1 and
Table 2 show the training errors of the two public data sets
based on the weighted sum of the cell states at different his-
torical moments. It can be seen that the minimum training
errors are diverse for different QoS parameters and edge
regions. For instance, the training error of the RT public
data set of the SH a region is lowest when it is based on
the weighted sum of the cell states at 3 historical moments.
The minimum error appears when 4 historical moments are
used in the TP public data set of the Mel b region. It can be
found that the minimum errors all appear within 5 historical
moments. This is because the earlier the historical moment
in the time series data, the lower the influence of the data at
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Fig. 8: The edge server distribution and edge region division of Shanghai area.

Fig. 9: The edge server distribution and edge region division of Melbourne area.

(a) (b)

Fig. 10: Training errors of parameter combinations in Shanghai: (a) RT public data set, (b) TP public data set.

(a) (b)

Fig. 11: Training errors of parameter combinations in Melbourne: (a) RT public data set, (b) TP public data set.
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that moment on the prediction result. We use the moments
with the smallest error for the public model training.

TABLE 1: Training errors in Shanghai

Region

Moments
2 3 4 5

SH a
RT 16.549 16.532 16.538 16.556

TP 10.341 10.317 10.312 10.321

SH b
RT 14.328 14.340 14.366 14.399

TP 10.215 10.199 10.201 10.216

SH c
RT 12.879 12.872 12.880 12.897

TP 9.458 9.438 9.433 9.443

TABLE 2: Training errors in Melbourne

Region

Moments
2 3 4 5

Mel a
RT 15.292 15.300 15.325 15.358

TP 10.056 10.040 10.043 10.058

Mel b
RT 14.215 14.219 14.238 14.267

TP 9.447 9.428 9.425 9.436

Fig. 10 and Fig. 11 are respectively the results of the pub-
lic model training under different parameter combinations
in the Shanghai and Melbourne data sets. It can be seen that,
the trend of the training errors of the RT and TP public data
sets in both of the areas is all shown as a u-shaped curve
with the increased learning rate and the decreased number
of training iterations. The error value reaches the minimum,
when the learning rate is 0.005 and the number of training it-
erations is 600. At this moment, the two parameters achieve
the most balanced trade-off. Therefore, the point (0.005, 600)
is used as the optimal parameter combination for the public
model training. The model size is 13.3MB and the training
time is about 6 hours.
(3) The initial values for private model
The next experiment is to explore the optimal initial values
that each region’s public model should provide to private
users for personalized forecasting.

We perform training on both of the RT and TP data sets
of each region. Fig. 12 and Fig. 13 show the loss function
value variation of the public model training in the Shanghai
and Melbourne data sets with the increasing number of
iterations. The public models are trained on the optimal
weight parameters (i.e., 0.005 and 600) obtained in Section
5.1.3 (2). It can be seen from Fig. 12(a) that the initial RT
public data set training in the SH a region is slightly slower.
The error gradually decreases and tends to be flat, as the
number of iterations increases. In Fig. 13, the training error
in the TP data set of Melbourne incurs a small increase
after reaching the minimum. It eventually tends to be flat.
The RT and TP training errors in the other regions first
show a smooth downward trend, followed by a relatively
plain and stable trend in the iteration range of 300-600.
There is no gradient explosion or gradient disappearance
during the model training process. The training errors for
the RT and TP data sets decrease from nearly 20 or 30 to 5
approximately. We accordingly use the model weight values
obtained at 600 iterations as the initial parameters of the
public model for users’ personalized forecasting.
(4) Personalized forecasting performance

(a) (b)

Fig. 12: Loss function values with different training itera-
tions in Shanghai: (a) RT data set, (b) TP data set model.

(a) (b)

Fig. 13: Loss function values with different training itera-
tions in Melbourne: (a) RT data set, (b) TP data set.

Users access different edge servers when they move into
different edge regions. Hereby, each edge server contains
user access records. We choose 6 random users to access
6 edge servers in the regions of Shanghai and Melbourne
respectively. Each of the 3 regions in Shanghai is accessed by
2 users. Each of the 2 regions in Melbourne is accessed by 3
users. The duration of each user’s access lasts 64 time slices.
The user QoS data is obtained from the accessed servers or
trusted third parties. We perform two parallel experiments
on the data sets of RT and TP in Shanghai and Melbourne.

The most common neural networks include Convolu-
tional Neural Network (CNN), Recurrent Neural Network
(RNN) and Deep Neural Network (DNN). Our forecasting
model aims to predict future QoS attribute values based
on their historical values. The experimental data sets are
in the form of time series. There is no correlation between
different services. The RNN is the most applicable network
based on such data characteristics. Thereby, we set the
comparative models as follows: 1) a pure LSTM model
and 2) the proposed model with different combinations of
the devised strategies. The detailed descriptions of these
candidate models are shown in Table 3.

TABLE 3: The four candidate models

Models Attributes Descriptions

LSTM \ An RNN for learning long-term
dependence on information

With-PM 1 No edge region division

Edge QoS Per-PM 1,2 Our previous model [17]

Edge-PMAM 1,2,3 The proposed model

1.Public model 2.Edge region division 3.Attention mechanism
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Table 4 and Table 5 5 are respectively the average predic-
tion errors of the RT data set in Shanghai and the TP data
set in Melbourne. Each user’s private model is updated 16
times (i.e., 4 slices per training cycle). It can be seen that
1) the prediction accuracy of With-PM is far better than
LSTM, proving that the public model strategy can greatly
improve the prediction effect; 2) Edge QoS Per-PM and
Edge-PMAM with edge region division perform better than
With-PM, since each region can obtain a relatively more
accurate public model; 3) the average errors of Edge-PMAM
with attention mechanism is the lowest among all the candi-
date models, as the attention mechanism comprehensively
considers the impact of several previous moments. Our
experiments validate the QoS forecasting performance of
Edge-PMAM.

TABLE 4: The RT forecasting accuracy in Shanghai

SH a SH b SH c

Server ID a-03 a-08 b-27 b-46 c-03 c-13

LSTM 112.418 92.762 97.615 72.707 85.567 77.215

With-PM 29.329 21.339 25.960 18.975 23.474 19.841

Edge QoS Per-PM 18.191 14.382 24.836 18.344 21.795 17.589

Edge-PMAM 18.179 14.352 24.291 18.083 21.341 17.245

TABLE 5: The TP forecasting accuracy in Melbourne

Mel a Mel b

Server ID a-03 a-29 a-47 b-02 b-16 b-19

LSTM 112.175 108.043 105.274 87.974 110.242 103.025

With-PM 21.522 19.714 20.047 14.829 21.301 19.337

Edge QoS Per-PM 18.644 17.105 17.389 12.450 17.979 16.483

Edge-PMAM 18.568 17.027 17.300 12.303 17.733 16.209

Table 6 and Table 7 show the forecasting time required
for the four models to achieve the same forecasting per-
formance (e.g., the average forecasting error is less than
20). The online QoS forecasting requires both training and
forecasting to be conducted online. The training of Edge-
PMAM private model is relatively lightweight due to the
adoption of the public model. In contrast, the training of
LSTM needs to start from scratch. In addition, the public
models in Edge-PMAM are better trained with edge region
division and attention mechanism. Therefore, the private
models on top of the public models can quickly converge
in comparison to those of With-PM and Edge QoS Per-PM.
Thus, the time required for Edge-PMAM is less than the
other three models.

In summary, our proposed Edge-PMAM forecasting ap-
proach is proved to be privacy-aware, accurate and efficient
via the experiments.

5.2 Real-world Experiment
5.2.1 Scene and Data Set Description
21 students repeatedly invoked a few services from a bucket
of 510 services (i.e., these services are pre-installed into
the edge servers so that each student can invoke arbitrary
services from them) in 6 locations of the Hohai University
campus during a specific time period. Each location shares

5. With-PM only distinguishes Server IDs rather than edge regions in
Table 4, 5, 6 and 7

TABLE 6: The RT forecasting time cost in Shanghai

SH a SH b SH c

Server ID a-03 a-08 b-27 b-46 c-03 c-13

LSTM 9.517s 6.710s 6.884s 3.807s 5.494s 4.441s

With-PM 2.574s 1.835s 1.841s 1.026s 1.535s 1.192s

Edge QoS Per-PM 1.824s 1.528s 1.665s 0.752s 1.442s 0.708s

Edge-PMAM 1.769s 1.519s 1.596s 0.717s 1.288s 0.701s

TABLE 7: The TP forecasting time cost in Melbourne

Mel a Mel b

Server ID a-03 a-29 a-47 b-02 b-16 b-19

LSTM 9.688s 8.390s 8.186s 5.879s 9.227s 7.961s

With-PM 2.653s 2.404s 2.272s 1.708s 2.756s 2.342s

Edge QoS Per-PM 2.097s 1.833s 1.651s 1.028s 2.122s 1.905s

Edge-PMAM 1.970s 1.638s 1.536s 0.946s 2.026s 1.861s

an edge server. The scenario is shown in Fig. 14. It assumes
that students access services from nearby edge servers and
then switch to other nearby edge servers during their move-
ment. Most of the mobile users in the real world are believed
to follow the similar pattern. We record user access time,
service transmission bytes, and response time. The data set
can be accessed from 6.

ES1

ES2

ES3

ES4

ES5

ES6

Fig. 14: The real-world experimental scenario

5.2.2 Experimental Process and Results
All the servers are clustered into a single edge region (i.e.
k = 1) based on our experiment. We then extract the RT
public data set and train a public model for all the students.
Finally, we make personalized forecasting for each student.
The experimental results are as follows.
(1) Impact of weight parameters of public model
Fig. 15(a) is the result of the public model training under
different parameter combinations in the HHU-RT data set.
The error value reaches the minimum, when the learning
rate is 0.005 and the number of training iterations is 600.
Therefore, the point (0.005, 600) is used as the optimal
parameter combination for the public model training. The
model size is 0.4MB and the training time is about 5 minutes.
(2) The initial values for private model
Fig. 15(b) shows the loss function value variation of the
HHU-RT public model training with the increasing number

6. https://github.com/hyjin1996/Hohai-University-Data-set
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of iterations. We accordingly use the model weight values
obtained at 600 iterations as the initial parameters of the
public model for students’ personalized forecasting.

(a) (b)

Fig. 15: HHU RT: (a) Training errors, (b) Loss and iterations.

(3) Personalized forecasting performance

Table 8 and Table 9 show the average prediction error and
the forecasting time of the HHU-RT data set for the three
models (the number of edge region division is 1). Each
student’s private model is updated 6 times, with an interval
of about 8 minutes.

TABLE 8: The HHU-RT forecasting accuracy

Server ID ES1 ES2 ES3 ES4 ES5 ES6

LSTM 16.271 15.730 14.986 15.948 16.312 14.985

Edge QoS Per-PM 1.747 1.680 1.874 1.786 1.748 1.891

Edge-PMAM 1.744 1.671 1.864 1.784 1.744 1.886

TABLE 9: The HHU-RT forecasting time cost

Server ID ES1 ES2 ES3 ES4 ES5 ES6

LSTM (ms) 5.205 5.118 4.966 6.120 5.428 5.222

Edge QoS Per-PM (ms) 3.859 2.396 3.485 5.569 3.129 2.830

Edge-PMAM (ms) 2.530 2.309 2.510 3.956 3.049 2.285

In summary, it can be seen that the usability and effec-
tiveness of our proposed method in the real environment.

6 CONCLUSIONS AND FUTURE WORK

Existing privacy preserving QoS forecasting approaches
cannot meet the demand of the edge environment on secure
and accurate QoS forecasting. We propose a novel edge
QoS forecasting approach with privacy-aware named Edge-
PMAM. It is based on LSTM and attention mechanism. It
combines public and private model training to achieve the
goal of secure, accurate and efficient forecasting.

We will work on the following directions in the fu-
ture. First, the current approach only achieves a trade-off
between learning rate and training iterations. Therefore,
we will further optimize the public model to improve its
forecasting performance. Second, we will study multivariate
QoS forecasting in the edge environment. Finally, we will
perform large-scale real-world experiments and release the
experimental data to the public.
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