
IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 1

Mobility and Dependence-aware QoS Monitoring
in Mobile Edge Computing

Pengcheng Zhang, Member, IEEE, Yaling Zhang, Hai Dong, Senior Member, IEEE and Huiying Jin

Abstract—Mobile edge computing is a new computing paradigm that performs computing on the edge of a network. It provides
services to users by deploying edge servers near mobile devices. Services may be unavailable or do not satisfy the needs of users due
to changing edge environments. Quality of service (QoS) is commonly employed as a critical means to indicate qualitative status of
services. It is particularly important to monitor QoS of services timely and effectively in the mobile edge environment. However, user
mobility and dependencies among QoS values often cause the monitoring results to deviate from the real results in the mobile edge
environment. Existing QoS monitoring approaches have not taken into account these problems. To address the problems, this paper
proposes ghBSRM-MEC (Gaussian hidden BayeSian Runtime Monitoring for Mobile Edge Computing), a novel mobility and
dependence-aware QoS monitoring approach for the mobile edge environment. This approach assumes that the QoS attribute values
of edge servers obey Gaussian distribution. It constructs a parent property for each property, thus reducing the dependence between
properties. During the training stage, a Gaussian Hidden Bayesian classifier is constructed for each edge server. During the monitoring
stage, combining with a KNN algorithm, the classifier is changed dynamically based on user mobility to realize QoS monitoring in the
mobile edge environment. The experimental results validate the feasibility, effectiveness, and efficiency of ghBSRM-MEC.

Index Terms—Cloud computing; mobile edge computing; QoS; monitoring; Bayesian classifier; K-nearest neighbor.

F

1 INTRODUCTION

MObile edge computing (MEC) [1] is an emerging
technology, which provides services by deploying an

edge server (e.g., firewall, router, or similar devices) near
mobile clients (e.g., smartphones, sensors, or similar edge
ends), and between mobile clients and cloud servers. It
features short response time and fast processing speed [2].
With the continuous development of various novel tech-
nologies, Web services are increasingly being applied in
many fields of people’s lives, including business, manu-
facturing, healthcare, entertainment, etc [3]. On the one
hand, the number of Web services deployed in cloud servers
is growing rapidly. On the other hand, these services are
gradually moved to edge servers, i.e., mobile edge services,
which reside in nearby edge servers to serve users. Dif-
ferent service providers may provide services with similar
functions, and the performance of the same services may
vary in different edge servers. How to select an appropriate
service that meets the needs of users has therefore drawn
many researchers’ attention [4]. Thus, the concept of QoS
(Quality of Service) is introduced. QoS represents the a set
of non-functional attributes of services, including response
time, throughput, reliability and availability, etc [5].

Users expect to select mobile edge services with guar-
anteed QoS. The QoS information of a service is usually

• P. Zhang, Y. Zhang and H. Jin are with the College of Computer and
Information, Hohai University, Nanjing, China & State key Laboratory of
Networking and Switching Technology, Beijing, China
E-mail: pchzhang@hhu.edu.cn; 2460154274@qq.com; 367046895@qq.com

• H. Dong is with the School of Computing Technologies, RMIT University,
Melbourne, VIC 3001, Australia
Email: hai.dong@rmit.edu.au

Manuscript received XXXX XX, XXXX; revised XXXX XX, XXXX.

disclosed by its service provider. Some providers may pro-
vide false QoS information to mislead users. This false
information cannot be employed to objectively evaluate
services. Therefore, to objectively and correctly evaluate the
operation of services, it is particularly important to monitor
QoS attributes timely and effectively at runtime [6], [7], [8].

Monitoring is one of the most effective ways to ver-
ify whether a service is valid at runtime [9]. In general,
QoS attributes can be expressed by probabilistic quality
attributes [10]. For example, response time can be described
as “the probability that a service’s response time for a cus-
tomer’s request is less than 3.6 seconds is more than 80%”.
The problem of QoS monitoring is therefore transformed
into the probabilistic calculation and analysis whether the
collected runtime information satisfies pre-defined QoS re-
quirements. Based on the probabilistic quality attributes, re-
searchers have proposed many QoS monitoring approaches
in traditional network environments, respectively from the
perspectives of probability calculation [11], traditional hy-
pothesis testing theory [12], [13], [14], and Bayesian the-
ory [15], [16], [17]. However, the existing approaches are
infeasible in mobile edge environments due to the following
two major problems.

The first problem is user mobility and edge server differ-
ences challenge the applicability of traditional QoS monitoring
approaches in distributed mobile edge environments. The edge
servers served for same mobile clients may vary in mobile
edge environments due to changes of user positions [18].
The quality of the same services located in different edge
servers may vary due to changes of server conditions and
network environments. During the process of QoS moni-
toring, when users move to new edge servers, the historical
QoS data on old edge servers may become invalid references
for same services. In contrast, the traditional monitoring

© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works. P. Zhang, Y. Zhang, H. Dong and H. Jin, "Mobility and Dependence-Aware QoS Monitoring in Mobile Edge Computing," in
IEEE Transactions on Cloud Computing, vol. 9, no. 3, pp. 1143-1157, 1 July-Sept. 2021, doi: 10.1109/TCC.2021.3063050.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 2

Fig. 1. Service invocation scenario in mobile edge computing

approaches do not need to consider changes of edge servers
since services are all stored and provisioned in centralized
environments. Traditional approaches that only make de-
cisions based on the centralized historical QoS data may
cause false monitoring results. For example, let us assume
that a user Bob is driving from his home to a small town
for a vacation. He departs from his home and uses Google
Maps to navigate by calling the edge server S1, as shown
in Figure 1. When Bob arrives at the small town, Google
Maps is invoked through a new edge server (i.e., S2) with
different server conditions and network environments. Now
the question is how to monitor whether the QoS of Google
Maps provisioned by this edge server meets Bob’s require-
ments. For example, Bob expects the response time of Google
Maps to be within 3.6s for most of this journey. We can
translate this requirement into a probabilistic description:
the probability that response time is less than 3.6s is more
than 80%. Traditional QoS monitoring approaches would
use the historical data of S1. For the monitoring results of S2,
the historical data in S1 becomes invalid due to the server
variation. Consequently, we need to use the historical data
of the current edge server (i.e., S2) or peripheral edge servers
during the monitoring process.

The second problem is dependence among QoS values re-
sults in the deviation of monitoring results. One of the most cru-
cial factors affecting QoS values is the context information.
On the user side, proximate users tend to employ similar
IT infrastructure. Hence the QoS values from same services
are likely to be dependent for these proximate users [19].
On the service side, the performance of a service relies on
its running environment. The QoS values of MEC services
are probably dependent in same running environments [20].
In MEC, edge servers are used to perform service execution
and data storage, which can be viewed as the running envi-
ronments. Therefore, there might exist dependence among
the QoS values of same services from same edge servers
invoked by proximate users. Existing QoS monitoring ap-
proaches neglect the influence among QoS values. They
assume the QoS values are independent of each other, which
may cause judgement delays on service monitoring results.
In the sample scenario, when Bob arrives at the small town,
Google Maps can be invoked through S2. Assume that S2
contains the historical samples of response time of Google
Maps invoked by other users. Now a relatively larger por-
tion of the historical samples meet Bob’s requirement. The
existing QoS monitoring approaches assume that the current

monitored QoS is irrelevant to the historical samples in S2.
This would greatly reduce the monitoring probability that
Bob’s requirement is met, and thus might lead to the delay
or deviation of the monitoring results.

To solve the above two main problems, this paper pro-
poses ghBSRM-MEC (Gaussian hidden BayeSian Runtime
Monitoring for Mobile Edge Computing), a novel mobility
and dependence-aware QoS monitoring approach under
mobile edge computing. In general, the approach is divided
into two stages: training and monitoring stages. During the
training stage, to reduce the dependence between attribute
values, we construct parent attributes for QoS attributes,
which represent the influence of the other attributes on an
attribute. In the Bob’s sample scenario, when Bob arrives
at the small town, Google Maps can be invoked through
S2. The current monitoring sample is more dependent on
the historical data of S2. Constructing parent attributes
is an effective method to reflect this dependence. Based
on the parent attributes, a corresponding Gaussian hidden
Bayesian classifier is constructed for each edge server. Dur-
ing the monitoring stage, the following three situations are
considered based on user mobility: i) The user does not
invoke a new edge server. We monitor the service based
on the Bayesian classifier constructed upon the historical
QoS data of the current edge server. ii) The user moves
to a new edge server which contains a classifier trained
upon its historical data. In this case, the classifier on the
new edge server is employed for monitoring. iii) The user
moves to an edge server without historical data. In this
case, the KNN algorithm is adopted to select the adjacent
edge servers to obtain monitoring results. Finally, ghBSRM-
MEC is validated by experiments on both real data sets and
simulated data sets.

In summary, the main contributions of this paper are
described as follows:

• We devise a novel QoS monitoring approach considering
user mobility and edge server differences in mobile edge
environments. A Bayesian classifier is constructed for
performing monitoring in each edge server. The clas-
sifiers can be switched dynamically adapting to user
mobility. The classifiers reference QoS information
from peripheral servers based on the KNN algorithm
for monitoring.

• We design an effective method to lessen the impact of
QoS attribute value dependence on monitoring results. A
parent attribute is established for each QoS attribute
to construct a hidden Bayesian classifier to reduce the
dependence among QoS attribute values. It is also
able to address the problem of service failure detec-
tion delays caused by traditional Bayesian classifiers.

• We design a series of experiments to comprehensively
validate ghBSRM-MEC. By fusing a Shanghai Tele-
com data set 1 and a traditional QoS data set 2,
we obtain a mobile edge dataset applicable for
edge QoS monitoring evaluation. The experimental
results show the feasibility, effectiveness, and effi-
ciency of the ghBSRM-MEC approach. It also proves

1 http://sguangwang.com/TelecomDataset.html
2 http://wsdream.github.io/dataset/wsdreamdataset1.html

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 3

that ghBSRM-MEC outperforms state-of-the-art ap-
proaches.”

The remaining parts of the paper are organized as fol-
lows. Section 2 summarizes the related QoS monitoring
approaches in recent years and points out the problems in
mobile edge environments. Section 3 introduces the relevant
concepts used in our approach. Section 4 gives a detailed
description of the ghBSRM-MEC approach. We validate
ghBSRM-MEC based on real-world and simulated datasets
in Section 5. Finally, Section 6 summarizes the paper and
gives prospects in the future.

2 RELATED WORK

2.1 Traditional QoS Monitoring

Traditional monitoring approaches aim at employing moni-
toring tools to obtain real-time data or timely user feedback.

Zeng et al. [21] monitored QoS by designing a QoS ob-
servation model. The monitoring system can systematically
detect QoS and route service operation events. However,
because of defining enterprise-level metrics and evaluation
formulas, this approach does not consider user requirements
and has poor scalability. Radovanovic et al. [22] deployed
a monitoring system in the cloud environment based on
TR-069, also known as CWMP (CPE WAN Management
Protocol) [23], which is a remote management protocol. Its
cloud based access interface provides necessary information
for mobile applications, making acquired QoS parameters
visualized. This monitoring system is based on individual
requirements of end-devices, which are feasible in most
cases. Michlmayr et al. [24] proposed a QoS monitoring
framework that combines both client-side and server-side
monitoring. It is based on event handling and informs
interested users of current QoS values and violated service-
level protocols. If the QoS does not meet the requirements,
it may trigger adaptive actions. However, the performance
overhead of the proposed framework is too large. Coppolino
et al. [25] integrated two frameworks, SocIoS and QoS-
MONaaS (QoSMONitoring as a Service). The SocIoS frame-
work utilizes the QoS monitoring component developed in
the SRT-15 project. QoS-MONaaS is used for monitoring
the SocIoS application. Raimond et al. [26] proposed a
non-intrusive online monitoring approach based on SLA
(Service Level Agreement). The agreement violation can be
discovered by inferring the type of exchanged message and
the timestamp. However, the extensibility of this approach
needs to be further investigated. This approach only con-
siders time-related attributes, ignoring the fact that SLA
may impose requirements on non-time attributes. These
approaches rely on the instrumental capacity to acquire
real-time data and timely user feedback, which is costly
and lacks flexibility. In addition, they cannot meet fuzzy
requirements of users.

2.2 Probabilistic QoS Monitoring

Probabilistic monitoring approaches have emerged in recent
years. These approaches transform users’ fuzzy require-
ments into probabilistic descriptions, and make monitoring
decisions by using historical data for statistical analysis. At

present, there are three primary types of QoS monitoring
approaches according to the underlying theories.

The first type is based on the traditional probability
calculation. Chan et al. [11] first proposed a probabilistic
monitoring approach. PCTL (probabilistic computation tree
logic) language was used to define the probabilistic quality
standard of non-functional attributes. Then they calculated
the ratio of the number of successful samples to the total
number of monitoring samples and compared it with the
pre-defined probability standard. If it meets the pre-defined
standard, the service will be considered as normal. Other-
wise, the service is regarded as abnormal. The approach
has not been analyzed and validated using statistics, and
it always brings larger errors.

The second type of probabilistic monitoring approach
is based on the hypothesis testing theory. Sammapun et
al. [12] first calculated the probability that the number
of successful samples accounted for the total number of
samples and then used a hypothesis test to determine
whether the system meets the probabilistic quality attribute
criteria at a given confidence level. Grunske et al. [13]
proposed a probabilistic monitoring method called ProMo
based on acceptance sampling and continuous hypothesis
testing. This approach extends the existing statistical model
testing technology at runtime and defines the probabilistic
logic CSLmon for monitoring. CSLmon is a subset of CSL
(continuous stochastic logic). In their approach, SPRT (Se-
quential Probabilistic Ratio Test) [27] is used to validate the
correctness of the CSLmon formula at level α and 1-β. In
their further work, Grunske et al. [14] improved SPRT with
continuous monitoring by regressing statistical analysis and
reusing the previous hypothesis test results. However, when
the actual probability of the system is in the undecided area,
the approach still fails to make a conclusion.

The third type is based on the Bayesian theory. The
characteristic of the Bayesian approaches is to add histor-
ical empirical data to present prediction judgment, which
combines prior probability and likelihood probability to
express uncertainty. Zhu et al. [15] first proposed a Bayesian
probabilistic QoS monitoring approach, namely BaProMon.
By calculating Bayesian factors, it checks the runtime in-
formation to estimate whether the monitoring results sup-
port the original hypothesis or alternative hypothesis. The
differences are increased and the model equivalence is
maintained by reusing the previous monitoring results.
However, the prior distribution has a great impact on the
validity of this approach. A major problem is that it is
very difficult to choose a proper prior distribution. Zhang
et al. [16] proposed a weighted naive Bayesian probabilistic
monitoring approach, namely wBSRM. It considers the in-
fluence of environmental factors and makes the monitoring
more practical for QoS. The TF-IDF algorithm is used to
quantify the impact of environmental factors on monitor-
ing, where the quantitative value is used as the weight
of environmental factors to weigh each sample. In their
further work [17], they proposed an improved approach,
called lgS-wBSRM. This approach makes use of a sliding
window mechanism to discard early redundant samples in
time. Then it is combined with the information gain theory
to update weights dynamically. In addition, to fully consider
the multiple QoS requirements of users, they proposed M-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 4

BSRM (Multivariate BayeSian Runtime Monitoring) [28],
which calculates multivariate QoS values by assigning their
attribute weights.

With the prosperity of mobile edge computing, service
migration in mobile edge computing also becomes a re-
search hotspot. Wang et al. [29] described the service mi-
gration problem as a Markov Decision Process (MDP) and
proposed a mathematical framework to design the optimal
service migration strategy. Zhang et al. [30] proposed a
service migration strategy based on multi-attribute decision
making, which can effectively migrate services to appro-
priate servers. In addition, many researchers have carried
out studies in the areas related to QoS evaluation in mobile
edge computing, such as QoS prediction and monitoring.
Yin et al. [31] employed CNN to perform neighbor selection
by learning deep features of complex edge devices and
achieved accurate QoS prediction results in mobile edge
computing. Liu et al. [20] proposed an improved artificial
bee colony (ABC) algorithm to optimize the support vec-
tor machine (SVM). They improved Case-Based Reasoning
(CBR) to predict multiple QoS attribute values according
to the predicted workload and other task-related contextual
factors. In contrast, the research on QoS monitoring in mo-
bile edge environments is still underway. Zhang et al. [32]
proposed a monitoring approach named Rs-mBSRM (mul-
tivariate BayeSian Runtime Monitoring using Rough set)
for mobile edge computing, which calculates the weights of
different QoS attributes based on rough set theory and his-
torical samples. Then the comprehensive value is calculated
for monitoring.

Nevertheless, these monitoring approaches including
traditional QoS monitoring approaches are less applicable
to mobile edge environments due to their ignorance of user
mobility and the dependence among QoS values.

To address the monitoring result deviation problem
caused by user mobility and dependence among QoS val-
ues, this paper proposes a novel QoS monitoring approach
using a Gaussian hidden Bayesian classifier combined with
a KNN algorithm in mobile edge environments.

3 PRELIMINARIES

The principles of mobile edge computing, services, edge
services, hidden naive Bayes and KNN are introduced in
Section 3.2, Section 3.1, Section 3.3 and Section 3.4, respec-
tively.

3.1 Mobile Edge Computing

With the development of the IoT (Internet of Things)
technology, data over networks experiences an explosive
growth. The cloud computing model based on centralized
management cannot meet the needs of big data processing,
on account of the following reasons: 1) Real time. The mas-
sive amount of real-time data generated by edge devices
makes the performance of cloud computing gradually reach
its bottleneck [33]. How to meet the requirements of low
response time for emerging interconnected applications is
the main direction of future research [34]. 2) Privacy protec-
tion. In the cloud computing model, various user privacy
data is uploaded to cloud centers, which increases the risk

Fig. 2. Component distribution for MEC

of user privacy data leakage [35]. 3) Energy consumption. The
explosive growth of data dramatically increases the energy
consumption of cloud centers [36]. Computing performed
on edge devices emerges as a new computing model to
satisfy the needs of IoT applications, resulting in the concept
of mobile edge computing.

Mobile edge computing (MEC) refers to a new comput-
ing model that performs computing on the network edge by
deploying MEC servers between cloud centers and mobile
devices. Its infrastructure can be divided into two parts:
computing units and communication units. Most computing
tasks and data of cloud centers are migrated to distributed
edge servers for execution and storage. Since edge servers
are deployed near data sources, edges can process and ana-
lyze data in real time to reduce latency [36]. For example, in
online shopping platforms, it will improve user experience,
if the operation of shopping cart updating is migrated from
cloud centers to edge servers. As shown in Fig. 2, due
to the geographical proximity of MEC servers to users,
the response time to user requests is greatly reduced [37].
Directly uploading private data from home computers to
cloud centers would increase the risk of user privacy breach.
In MEC, edge servers can be used to process and protect the
privacy data before being sent to cloud centers, which can
reduce privacy disclosure risks. Shifting computing capa-
bilities from cloud centers to edge nodes not only reduces
energy consumption of cloud centers, but also optimizes the
energy consumption of data transmission. For devices with
limited power, such as drones, it is especially important to
reduce the transmission power consumption.

3.2 Services and Edge Services

Traditional services provision communication media be-
tween applications in clouds enabling software inter-
operations over the Internet [38]. A traditional service
usually contains functional attributes and non-functional
attributes [39]. The functional attributes usually include
service inputs (I), service outputs (O), precondition weights
(PRW), post condition weights (PCW), service descriptions
(D), etc. The non-functional attributes mainly contain Qual-
ity of Service (QoS), such as response time, reliability, cred-
ibility, etc. Edge services are a new generation of services,

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 5

which facilitate software inter-operations sunk to edge net-
works [40]. The functional and non-functional attributes
of edge services are generally indifferent from traditional
services. However, since edge services are sunk to edges of
networks, they are highly mobile and dynamic in compari-
son to traditional services. The non-functional attributes of
edge services are sensitive to user mobility and variations of
server conditions and network environments [20].

3.3 Hidden Naive Bayes
Bayesian theorem is defined as the probability of event B
occurring when event A occurs, and the probability of event
A occurring when event B occurs is obtained. The formula
can be expressed as follows:

P (A|B) =
P (B|A)P (A)

P (B)
(1)

A Bayesian classifier bases on the Bayesian theorem,
which combines between prior probability and class condi-
tional density. Because of its high efficiency and simplicity,
it is widely used in the classification problems of data
mining. Its process is as follows: 1) for a specified sample to
be classified, we calculate the probability of each category
under the sample; 2) the sample belongs to the category
with the maximum probability [41]. Let C = {c0, c1, ...cj}
be a predefined set of categories and X = {x1, x2, ...xn} be
a sample vector, P (cj |X) is the probability that X belongs
to cj , according to the Bayesian formula:

P (cj |X) =
P (cj)P (X|cj)

P (X)
(2)

Assume that the attributes xk and xl of X are independent
between each other, and P (X) is same for all the categories,
when X belongs to cj . The Bayesian classifier formula can
be simplified as follows:

C(X) = argmax
cj∈C

{P (cj)
n∏
i=1

P (xi|cj)} (3)

where C(X) is the category of X . It assumes that attributes
are independent of each other in the Bayesian classifier,
which ignores the dependency between the attribute val-
ues [42]. One way to improve the Bayesian classifier is to
weaken the independence between attributes and to create a
hidden parent attribute for each attribute, which represents
the influence of the other attributes on an attribute. The
improved Bayesian classifier structure is shown in Fig. 3.
π(xi) is the hidden parent attribute of xi, which represents
the effect of the other attributes on xi. The formula can be
expressed as follows:

C(X) = argmax
cj∈C

{P (cj)
n∏
i=1

P (xi|π(xi), cj)} (4)

3.4 KNN
K-nearest neighbor (KNN) is a basic method for classifi-
cation and regression [43], which has been used in many
application areas of data mining, such as data classification
and predictive analysis [44], [45], [46]. Its primary principle
is, for a given instance, finding out the k nearest neighbors in

Fig. 3. Structural diagram of Hidden Naive Bayes

Fig. 4. The sample graph of KNN

the training set based on distance measurement and making
predictions based on the information of the k nearest neigh-
bors. Euclidean distance, Manhattan distance, and cosine
distance can be used to measure the distance.

Generally, a“voting” mechanism can be used for the
classification purpose. The labelled category which appears
most frequently in the k nearest neighbors can be selected
for prediction. For example, there are two categories of
sample data in Fig. 4. One is square, and the other is
triangle. The circular is the sample to be classified. If k = 3,
there are two triangles and one square near the unlabelled
sample. The unlabelled sample thus belongs to the category
of triangle according to the “voting” result of the k nearest
neighbors. When k = 9, the unlabelled sample belongs to
the category of square. The regression usually results from
averaging the values of the k nearest neighbours, with the
purpose of numerical prediction of unlabelled samples. An
improvement of these methods is weighted “voting” and
average, where the weight measures the distance between a
neighbor and the unlabelled sample. The closer a neighbor,
the greater its weight.

4 THE GHBSRM-MEC APPROACH

Section 4.1 provides an overview of ghBSRM-MEC. The
detailed theoretical description of ghBSRM-MEC is given

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 6

in Section 4.2. The algorithmic description of ghBSRM-MEC
is introduced in Section 4.3.

4.1 Overview of ghBSRM-MEC

In MEC, due to the dynamic changes of user locations,
monitoring results based on the historical data of old edge
servers might become invalid for services in new edge
servers. Inspired by the scenario that Bob navigated with
Google Maps while driving, the ghBSRM-MEC approach
is proposed for QoS monitoring in MEC. It can reduce
monitoring errors caused by the dependence between QoS
attributes, via constructing parent attributes among the QoS
attributes. It is also capable of dynamically switching edge
servers, and monitoring edge servers without historical data
by employing the data of peripheral edge servers and the
KNN algorithm. The main framework of ghBSRM-MEC is
shown in Fig. 5. It primarily comprises the following three
steps:

Step 1: Data collection and preprocessing. Data collec-
tion includes obtaining locations of edge servers and QoS
data in each edge server. The locations of edge servers are
used to determine the geographical distribution of edge
servers. The QoS data of edge servers is used to construct
corresponding classifiers for each edge server. Data prepro-
cessing is mainly responsible for filtering invalid samples of
edge servers. In addition, in our approach, synthetic sample
data according to QoS requirements is generated as the
validation samples in the experiment. In Bob’s example, the
data we need to collect is the locations of the edge servers
(e.g. S1, S2 and so on.) invoked by Bob, and the historical
QoS data(i.e. response times) of the Google Maps accessed
by Bob and other users in those edge servers.

Step 2: Classifier construction. First, a probabilistic
QoS requirement is defined according to a user’s actual
requirement (e.g. the probability that the service’s response
time is less than 3.6s is greater than 80%). Based on the
historical data in each edge server, when a new QoS sample
is added, whether the QoS sample meets the probabilistic
QoS requirement is checked. By calculating the value of the
parent attribute of the QoS attribute, the parameters of the
model are obtained. Finally, the corresponding classifier is
constructed. In Bob’ example, the QoS standards are defined
according to Bob’s requirements. Next, a Bayesian classifier
is constructed by using the historical sample data of the
edge servers near Bob’s home and the small town, where
the sample data records the response time of Google Maps
accessed by Bob and other users on the same servers.

Step 3: Edge QoS monitoring. The ghBSRM-MEC ap-
proach performs QoS monitoring by judging whether the
user moves to a new edge server and the condition of the
server. If the user does not move out of the service range
of the current server, this approach obtains the monitoring
results by the classifier in the current edge server. If the
user moves to a new edge server where there is historical
data, the monitoring results are obtained according to the
historical data of the new edge server. If the new edge
server does not contain the historical data, the k nearest edge
servers are selected to calculate the posterior probabilities,
which are weighted by their distance away the new edge
server, to obtain the monitoring results. In Bob’s example,

when Bob departs from his home and calls the edge server
S1, the monitoring results are derived from the historical
data of S1. When Bob arrives at the edge server S2 near
the small town, if the edge server contains historical data,
the monitoring results are derived from the historical data
of S2. If S2 does not contain historical data, this approach
will employ the edge servers around S2 to perform the
monitoring.

4.2 Theoretical Description
The first and second steps of ghBSRM-MEC are described in
Section 4.2.1. The third step of ghBSRM-MEC is presented
in Section 4.2.2.

4.2.1 Data collection, preprocessing and classifier con-
struction
The data collection phase aims to collect the location infor-
mation of edge servers and the historical QoS data stored
in edge servers. Edge server locations are used to find
adjacent edge servers when there is no historical QoS data
in the server accessed by a user. The historical data in
edge servers is used to construct the Bayesian classifiers
to make monitoring decisions when users invoke services
from the edge servers. The data preprocessing intends to
filter out invalid data, such as the response time of -1. In the
experiment, a set of data is randomly generated according to
the QoS requirements to verify the validity of our approach.
For example, if a QoS requirement is the probability that a
service’s response time is less than 3.6s is greater than 80%,
we will inject unsatisfied QoS monitoring samples into some
sample sequences, the response time of which is out of the
required range, e.g. [3.6,500].

We begin to construct the Bayesian classifier for each
monitored service in each edge server with historical data.
We define X = {x1, x2, · · ·xn} as a QoS sample vector for a
service, where xk(k ∈ [1, n]) is the value of the k-th QoS at-
tribute of the service, such as response time. C = {c0, c1} is
a predefined set of categories, where the samples that satisfy
the probabilistic QoS requirement belong to c0; otherwise
they belong to c1.

When a Bayesian classifier is used to classify the con-
tinuous QoS values, it usually assumes that the continuous
variables obey certain probabilistic distribution. The train-
ing data is used to estimate the parameters of the distribu-
tion. Gaussian distribution is commonly used to represent
the class conditional probability distribution of continuous
variables [47].

For formula 4, the value of P (cj) usually bases on the
maximum likelihood estimate of the sample, i.e., P (cj) =
ncj/n, where ncj indicates the number of samples belong-
ing to cj in the sample set of a QoS requirement, and n
represents the total number of samples in the sample set.
When a new service is monitored, the classifier needs to
check whether or not it meets the probabilistic QoS require-
ment. Under the assumption of Gaussian distribution [48],
the measurement of the probability can be realized by the
probability density integral formula: P (X<QoS V alue) =∫QoS V alue
−∞

1√
2πσ

e−
(x−u)2

2σ2 . For example, a QoS requirement
can be defined as: “the probability that a service’s response
time is less than 3.7s is greater than 85%”. The QoS Value

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 7

Step 1: Data collection

and preprocessing
Step 2: Classifier construction

Getting

distribution of

edge servers

Y

N

Y

N

Dynamic data

flow

Monitoring results

Whether

move to the new edge

server

Whether has

historical data

Classifier under

current edge server

 K classifiers by KNN

Classifier under

new edge server

Step 3: Edge

QoS monitoring

Edge location

and QoS datasets
collect Defining QoS

standards

QoS standard

testing

Getting history

QoS data of edge

servers

Filtering

 invalid data

Computing

parent

attributes

 Gaussian hidden

Bayesian

classifier

Fig. 5. Overall structure diagram of ghBSRM-MEC

is 3.7, u represents the sample mean, and σ represents the
sample standard deviation. Given a sample response time
attribute xk (k ∈ [1, n]), the value of its parent attribute is
the mean of x1 ∼ xk−1. The prior conditional probability is
derived from formula 5, where Ncj () denotes the Gaussian
distribution under the constraints of the class cj , uxi and σ2

xi
are the mean and variance of the sample attribute xi in the
class cj , and uπ(xi) and σ2

π(xi)
are the mean and variance of

the parent attribute of xi, i.e. π(xi), and ρ = COV (xi,π(xi))
σxiσπ(xi)

is the correlation coefficient between xi and π(xi).

4.2.2 Edge QoS monitoring
As shown in Fig. 6, it is assumed that there is a set of edge
servers that provide services to active users in their service
ranges. When a service in a server invoked by a user is
monitored, the locations of the server and the user and the
existence of the historical data must be taken into account.
Considering the mobility of users, the monitoring is based
on the three situations defined previously.

• Case 1: The user stays in the service range of the same
edge server when the service is invoked, such as User
1 and User 2 in Fig. 6. Here the monitoring result is
obtained by the classifier of the current server (Edge
1).

• Case 2: The user moves from the service range of one
edge server to another, where the new edge server
contains relevant historical QoS data, such as User 4
in Fig. 6. In this situation, we monitor the QoS value
according to the data in the new edge server.

• Case 3: The user moves from the service range of
one edge server to another, where the new edge
server does not retain relevant historical QoS data,
such as User 5 in Fig. 6. Under this circumstance, we
rely on the KNN algorithm. First, we find k nearest
edge servers around the invoked edge server. The
distances between these edge servers are represented
as d = {d1, d2, ...dk}. The posterior probability of
the currently monitored sample in the k edge servers

is represented as pro = {p1, p2, ...pk}. The posterior
probability of the invoked edge server is calculated
as: afterpro = w1 ∗ p2 + w2 ∗ p2 + ...wk ∗ pk, where
w1 + w2 + ...wk = 1 and wk = x/dk, where x is
the scale factor of wk and dk. The closer the dis-
tance, the greater the weight. The monitoring results
can therefore be obtained according to the posterior
probability.

4.3 Algorithmic Description

The detailed algorithms of the ghBSRM-MEC approach are
described in this section. Algorithm 1 is a general descrip-
tion of ghBSRM-MEC, which is divided into a training
stage and a monitoring stage. During the training stage, a
Gaussian hidden Bayesian classifier is constructed for each
edge server by using historical data (lines 1-4). During the
monitoring stage, three situations are considered to calculate
the posterior probability to obtain the monitoring results.

• Case 1: The posterior probability is calculated by the
classifier in the current edge server (lines 6-7).

• Case 2: The posterior probability is calculated by the
classifier in the new edge server (lines 8-10).

• Case 3: The k nearest peripheral edge servers are first
selected (line 12). The posterior probability is calcu-
lated separately (line 13). The corresponding weight
is calculated (line 14). The posterior probability is
computed (line 15).

Finally, according to the posterior probability ratio, the mon-
itoring result is obtained. A ratio greater than 1 indicates the
probabilistic QoS criterion being satisfied, i.e., the monitor-
ing result belongs to c0 (lines 19-20). A ratio less than 1
indicates the criterion being unsatisfied, i.e., the monitoring
result belongs to c1 (lines 21-22). A ratio equivalent to 1
means in-decisive (lines 23-24).

Algorithm 2 and Algorithm 3 realize two parts of Al-
gorithm 1. Algorithm 2 calculates the parameters of the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 8

P (xi|π(xi), cj) =
P (xi, π(xi)|cj)
P (π(xi)|cj)

=

1

2πσxiσπ(xi)

√
1−ρ2

exp{− 1
2(1−ρ2) [

(xi−uxi)
2

σ2
xi

− 2ρ
(xi−uxi)(π(xi)−uπ(xi)

)

σxiσπ(xi)
+

(π(xi)−uπ(xi)
)2

σ2
π(xi)

]}

1√
2πσπ(xi)

exp{− (π(xi)−uπ(xi)
)2

2σ2
π(xi)

}

=
1√

2πσxi
√
1− ρ2

exp{− 1

2(1− ρ2)
(
xi − uxi
σxi

− ρ
π(xi)− uπ(xi)

σπ(xi)
)2}

=
1√

2πσxi
√
1− ρ2

exp{− 1

2σ2
xi(1− ρ2)

[x− (uxi + ρ
σxi
σπ(xi)

(π(xi)− uπ(xi)))]
2}

= Ncj (uxi + ρ
σxi
σπ(xi)

(π(xi)− uπ(xi)), σ
2
xi(1− ρ

2))

(5)

User3

Edge3

User4

User5 User5

User1

User2

User4

User6

Edge1

Edge2

Edge4 Edge5

case 1 case 2

case 3

Fig. 6. A case of mobile edge monitoring

Bayesian classifier during the training stage. The new train-
ing samples are added in line 2. The value of the parent
attribute is calculated in line 3. The probabilistic require-
ment test is carried out in lines 4-13. The prior probability is
calculated in lines 14-15. The other parameters are calculated
in line 16. Algorithm 3 calculates the posterior probability
during the monitoring stage. The two types of conditional
probability, condition proc0 and condition proc1 are cal-
culated in lines 2-3. The two types of posterior probability,
afterProc0 and afterProc1 are calculated in lines 4-5 and
the posterior probability is calculated in line 6. Algorithm 4
describes the test of the current samples over the proba-
bilistic requirement. The mean and variance are calculated
in lines 1-2. The probability that the current samples satisfy
the threshold is measured in line 3. It is compared with the
predefined probability to obtain the category of the current
samples (lines 4-7).

5 EXPERIMENTS

This section validates ghBSRM-MEC through a mixture of
simulated and real-world QoS data sets in mobile edge
computing environments. The experiments are conducted
upon the Geany 3 development platform. Python is utilized

3 https://www.geany.org/

Algorithm 1 edgeMonitoring
Require: The sample stream of each edge server S; QoS

probabilistic standard β; QoS threshold QoS V alue;
Ensure: Monitoring result cj ;

1: if training stage then
2: for each edge do
3: ghBayesian(S, β, QoS Value)
4: end for
5: else
6: if isMove==False then
7: afterpro=computerAftPro(xk, oldedge)
8: else
9: if isEmpty==False then

10: afterpro =computerAftPro(xk, newedge)
11: else
12: Topk(nearestedge)
13: pro[k]=computerAftPro(xk, edge[k])
14: w[k]=computerWi(d[k])
15: afterpro=w[1]*pro[1]+ w[2]*pro[2]+...w[k]*pro[k]
16: end if
17: end if
18: end if
19: if afterpro> 1 then
20: return c0
21: else if afterpro<1 then
22: return c1
23: else
24: return indecisive
25: end if

to design and implement ghBSRM-MEC. All the other envi-
ronmental parameters are described in Table 1. Section 5.1
outlines our research questions. Section 5.2 describes the
detailed data sets we used. Section 5.3 introduces the pro-
cess of data set fusion in detail. Section 5.4 provides a brief
introduction of the existing QoS monitoring approaches to
compare with ghBSRM-MEC. Finally, Section 5.5 discusses
the experimental results.

5.1 Research Questions
Our experiments attempt to answer the following research
questions:

• RQ1: Is ghBSRM-MEC feasible for QoS monitoring
in mobile edge computing?

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 9

Algorithm 2 ghBayesian
Require: The training samples T = {x1, x2, ...xn}; QoS

probabilistic requirement β; QoS threshold QoS V alue;
Ensure: Prior probability;

1: while xk ∈ T do
2: n++
3: PIxk=computeParent(xk)
4: if requirementDecision(xk)==c0 then
5: nc0++
6: c0.append(xk)
7: PIc0.append(PIxk)
8: else
9: nc1++

10: c1.append(xk)
11: PIc1.append(PIxk)
12: end if
13: end while
14: pro c0 = nc0/n
15: pro c1 = nc1/n
16: compute(ucjx, σcjx, ucjPIx, σcjPIx, ρ)

Algorithm 3 computeAftPro
Require: The monitoring samples S = {x1, x2, ...xn};
Ensure: Posterior probability;

1: while xk ∈ S do
2: condition proc0+ = computeConProc0

(xk, uc0x, σc0x, uc0PIx, σc0PIx, ρ)
3: condition proc1+ = computeConProc1

(xk, uc1x, σc1x, uc1PIx, σc1PIx, ρ)
4: afterProc0 = log(pro c0) + condition proc0
5: afterProc1 = log(pro c1) + condition proc1
6: pro=afterProc0/afterProc1
7: return pro
8: end while

TABLE 1
Experimental environment parameter

Configuration item Experimental environment parameter

RAM 4GB
CPU Intel Core i5-4200M 2.5GHz

Hard disk 5400 rpm HD
System Windows 10

Algorithm 4 requirementDecision
Require: The sample stream of each edge server S; QoS

probabilistic standard β; QoS threshold QoS V alue;
Ensure: classification result cj ;

1: u=mean(S)
2: σ=std(S)

3: c =
∫QoS V alue
−∞

1√
2πσ

e−
(x−u)2

2σ2

4: if c>=β then
5: return c0
6: else
7: return c1
8: end if

• RQ2: Is ghBSRM-MEC more effective and efficient
than the state-of-the-art QoS monitoring approaches?

• RQ3: Is ghBSRM-MEC capable of handling the chal-
lenge of user mobility in mobile edge computing?

• RQ4: How does Top-k edge servers affect the moni-
toring results?

We designed RQ1 to validate the feasibility of ghBSRM-
MEC. RQ2 is used to analyze whether ghBSRM-MEC is
more effective and efficient than traditional QoS moni-
toring approaches. RQ3 is used to validate the capability
of ghBSRM-MEC on handling user mobility. We execute
ghBSRM-MEC in two different environments. RQ4 is used
to test the impact of k on monitoring performance.

5.2 Data Set Description
As shown in Table 2, three data sets are used. The first
data set 1 is Shanghai Telecom data set [18] [49]. This data
set includes the locations of 3233 base stations and IDs of
users who called services from the base stations. We select
some base stations to simulate the mobile edge monitoring
environment. The second data set 2 uses the real-world Web
QoS data set published by the Chinese University of Hong
Kong (CUHK). This data set records the response time,
throughput and locations of 5825 real-world services called
by 339 users. The third data set is a data set that injects
randomly generated unsatisfied QoS monitoring samples
into the fused Shanghai Telecom CUHK data sets (The details
of data fusion can be found in Section 5.3). This data set can
be employed to validate ghBSRM-MEC.

5.3 Data Set Fusion
We use the idea of data fusion to construct the edge envi-
ronment and validate the proposed approach. QoS data sets
in mobile edge environments are stored in geographically
distributed repositories. In contrast, the existing QoS data
sets are mostly obtained from centralized repositories. Thus
we need to create a new QoS data set for mobile edge envi-
ronments. We respectively employ the base station locations
from the Shanghai Telecom data set and QoS data published
by CUHK. We merge the two data sets to generate a data set
that satisfies the edge characteristics.

First, services from the QoS data set in the same locations
are considered to be in the same groups and the collected
QoS data is grouped accordingly. Second, some base stations
are randomly selected to form the geographical distribution
of edge servers, Finally, an edge environment is constructed
by determining edge locations and assigning the grouped
sample QoS data to corresponding edge servers. The de-
tailed steps are:

• Step 1: QoS data grouping. The QoS data is grouped
according to the locations of their corresponding
services. The services with the same latitude and
longitude values are viewed to be in the same edge
server. In this way, we can get a set of grouped QoS
data. For example, a service set from the CUHK data
set is formed according to the following latitude and
longitude coordinates: (-10.0, -55.0). This service set
contains 21 services. That is to say, these services re-
side in the same edge server. Here shows an example

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 10

TABLE 2
Information of data sets

Date sets Type Description

1 Public 3233 locations of base stations and user ID
2 Public 5825 real-world Web services used by 339 distributed users
3 Private Synthetic data set that injects unsatisfied QoS monitoring samples according to QoS requirements

Fig. 7. Edge Server Distribution Map

how QoS data of the services is grouped. The original
CUHK QoS data set can be represented as:

RespT ime Serv1 Serv2 Serv3 ... Servn
User1 5.982 0.228 0.237 ... 6.777
User2 2.13 0.262 0.273 ... 0.263
User3 0.854 0.366 0.376 ... 0.173
User4 0.693 0.226 0.233 ... 0.095
...

Userm 1.285 0.222 0.232 ... 0.13

If Serv1 and Servn have the same latitude and lon-
gitude, these two services can be assumed to reside
in the same edge server, e.g. S1. We group the QoS
values of these two services into a sample vector
x1, x2, · · ·x2m.

RespT ime x1 ... xm xm+1 ... x2m
S1 5.982 ... 1.285 6.777 ... 0.13

• Step 2: Edge location selection. 60 base station
locations are randomly selected from the Shanghai
Telecom data set. Their geographical distribution is
shown in Fig. 7.

• Step 3: Edge data set formation. We randomly assign
the QoS data groups obtained from step 1 to the edge
server locations collected in step 2. Therefore, a mo-
bile edge environment is constructed. Fig. 8 shows
the response time of edge server IDs of 1, 20 and
36, respectively. We can see that the response time
attribute data in the edge servers is all continuous
data, which satisfies the premise that the ghBSRM-
MEC approach is built on the assumption that the
QoS data follows Gaussian distribution.

5.4 Compared Approaches
We introduce the following approaches to compare with
ghBSRM-MEC. They are the most effective QoS monitoring

(a)

(b)

(c)

Fig. 8. Some QoS data of different edge servers: (a) edge1, (b) edge20,
and (c) edge36.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 11

approaches in recent years.

- iBSRM [15]: The first probabilistic QoS monitoring
approach based on Bayesian statistics. By calculat-
ing the Bayesian factor, monitoring decisions can be
made based on hypothesis testing. Previous moni-
toring results can be reused to achieve continuous
monitoring.

- wBSRM [16]: A probabilistic monitoring approach
considering the impact of environmental factors on
QoS. TF-IDF (term frequency-inverse document fre-
quency) is used to quantify the impact of the envi-
ronmental factors. The quantitative value is used to
weigh the samples. Historical data can be trained to
construct a weighted Bayesian classifier for monitor-
ing and decision-making.

- IgS-wBSRM [17]: An approach extended from wB-
SRM. This approach can dynamically update the
early initialized weight by calculating information
gain and combining it with a sliding window mech-
anism.

5.5 Experimental Results
We conduct a series of experiments on all the data sets to
investigate the capability of ghBSRM-MEC on feasibility,
effectiveness, efficiency, and user mobility handling, as well
as the impact of k on the performance of ghBSRM-MEC.
Since all the edge servers share similar features, in each part
of the experiment, we show the results on some randomly
selected edge servers.

5.5.1 Feasibility
The first group of experiments is designed to validate the
feasibility (RQ1) of ghBSRM-MEC. We use the real data
sets (i.e. fused data sets 1 and 2) to test the monitoring
performance under different QoS requirements in different
edge servers.

Three edge servers with IDs of 1, 10 and 20 from the
60 edge servers are selected to demonstrate the feasibility.
First, the first 2,000 QoS samples in each server are used to
train a Gaussian hidden Bayesian classifier. The remaining
3,000 QoS samples are employed for monitoring validation.
The posterior probability greater than 1 represents that the
monitoring results is in c0, i.e. meeting the QoS requirement.
If the posterior probability is less than 1, the monitoring
results fall into c1, which do not meet the QoS requirement.

Fig. 9 shows the simultaneous monitoring results of
the three edge servers. They subsequently correspond to
the following three QoS requirements, “the probability of
response time less than 2.5 is greater than 85%”, “the
probability of response time less than 2.5 is greater than
80%” and “the probability of response time less than 1.9 is
greater than 85%”. If the monitoring result satisfies the QoS
requirement, the monitoring result is “1”; otherwise it is “-
1”. If the results cannot be judged, it is “0”. The vertical lines
indicate changes in the monitoring status. As can be seen
from the figure, service failure is detected at 4-388 samples
in edge server 1, service failure is detected at 35-1268 in
edge server 10, and more frequent service failure is detected
in edge server 20. In mobile edge environments, the data
among edge servers is independent. Services from different

-1.5

-1

-0.5

0

0.5

1

1.5

1
1

1
8

2
3

5
3

5
2

4
6

9
5

8
6

7
0

3
8

2
0

9
3

7
1

0
5

4
1

1
7

1
1

2
8

8
1

4
0

5
1

5
2

2
1

6
3

9
1

7
5

6
1

8
7

3
1

9
9

0
2

1
0

7
2

2
2

4
2

3
4

1
2

4
5

8
2

5
7

5
2

6
9

2
2

8
0

9

M
o

n
it

o
ri

n
g

re
su

lt

Sample set

edge ID=1(4,388,2624) edge ID=10(35,1268)
edgeID=20(3,9,21...)

edge ID=1 edge ID=10 edge ID=20

Fig. 9. Monitoring results for different edge servers

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1
1

1
8

2
3

5
3

5
2

4
6

9
5

8
6

7
0

3
8

2
0

9
3

7
1

0
5

4
1

1
7

1
1

2
8

8
1

4
0

5
1

5
2

2
1

6
3

9
1

7
5

6
1

8
7

3
1

9
9

0
2

1
0

7
2

2
2

4
2

3
4

1
2

4
5

8
2

5
7

5
2

6
9

2
2

8
0

9

P
o

st
er

io
r

p
ro

b
ab

ili
ty

 r
at

io

Sample set

egde ID=1 edge ID=10 edge ID=20

Fig. 10. Posterior probability of different edge servers

edge servers can be independently monitored under their
corresponding probabilistic criteria. Fig. 10 shows the ratios
of the posterior probability that satisfy the probabilistic QoS
criteria and the ones that do not meet the probabilistic
criteria. A ratio greater than 1 indicates the probabilistic
QoS criteria being satisfied. A ratio less than 1 indicates the
criteria being unsatisfied. A ratio equivalent to 1 means in-
decisive. Because the probability is continuously changing,
the monitoring results can be observed more intuitively.

5.5.2 Effectiveness and Efficiency

We conduct the second group of experiments to validate
the effectiveness and efficiency (RQ2) of ghBSRM-MEC. We
use the synthetic data sets to compare the performance of
ghBSRM-MEC with the existing approaches: IgS-wBSRM,
wBSRM, and iBSRM, under the same QoS requirement and
in the same edge server.

The edge server with ID 1 is randomly selected to run
these approaches, where the QoS requirement is described
as ”the probability of response time less than 3.6s is greater
than 85%”. The first 2,000 QoS samples from the real data
set are utilized for training. Among the 3,000 monitoring
samples, a number of unsatisfied samples with response
time greater than 3.6s are injected in the samples numbered
between 1 and 500 and between 1,000 and 2,000 with the
probability of more than 15%. The monitoring results are
shown in Fig. 11. ghBSRM-MEC first detects the injected
service failure when the sample number reaches 106. IgS-
wBSRM is the 2nd fastest. wBSRM and iBSRM cannot detect
the service failure at this time. In the second phase (i.e.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 12

-1.5

-1

-0.5

0

0.5

1

1.5

1
1

2
8

2
5

5
3

8
2

5
0

9
6

3
6

7
6

3
8

9
0

1
0

1
7

1
1

4
4

1
2

7
1

1
3

9
8

1
5

2
5

1
6

5
2

1
7

7
9

1
9

0
6

2
0

3
3

2
1

6
0

2
2

8
7

2
4

1
4

2
5

4
1

2
6

6
8

2
7

9
5

M
o

n
it

o
ri

n
g

re
su

lt

Sample set

ghBSRM-MEC(106,783...)

IgS-wBSRM(172,764...)wBSRM(1128,2071)

ghBSRM-MEC IgS-wBSRM wBSRM iBSRM

Fig. 11. Monitoring results of compared approaches

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55

A
ve

ra
ge

 m
o

n
it

o
ri

n
g

ti
m

e/
m

s

QoS threshold

ghBSRM-MEC IgS-wBSRM wBSRM iBSRM

Fig. 12. Average monitoring time of compared approaches

1,000-2,000), ghBSRM-MEC still detects the service failure
faster than IgS-wBSRM. wBSRM cannot detect the previous
service failure until this phase. iBSRM still maintains the
misjudgment. In general, we can see that ghBSRM-MEC’s
monitoring results are generally consistent with the injected
unsatisfied samples. During the process of Bayesian classi-
fier construction, parent attributes are taken into account to
reduce the dependence between attribute values, which can
be used to make more effective decision-making.

We analyze the efficiency of these approaches in terms
of their training time and monitoring time. Based on the
aforementioned probabilistic requirements, ghBSRM-MEC
spends about 2.17s on training the 2,000 samples, which
is slightly longer than wBSRM. This is because integral
calculation needs to be performed many times when pa-
rameters are calculated during the training stage. During
the monitoring stage, the time required for each monitor-
ing approach to complete 3,000 monitoring samples under
different QoS requirements is recorded, and the average
monitoring time per sample is obtained. The execution time
of the monitoring approaches under the same QoS require-
ment can effectively reflect their efficiency. This experiment
is run in the environment described in Table 1, and the
experimental results only represent their performance in this
specific experimental environment. However, the relative
operating efficiency among these approaches is believed
to keep unchanged. We obtain the execution time of the
monitoring algorithms under the same QoS requirements
as shown in Fig. 12. In general, the average monitoring time
of ghBSRM-MEC is no better than iBSRM, which is close to
wBSRM and better than IgS-wBSRM.

-1.5

-1

-0.5

0

0.5

1

1.5

1

1
2

3

2
4

5

3
6

7

4
8

9

6
1

1

7
3

3

8
5

5

9
7

7

1
0

9
9

1
2

2
1

1
3

4
3

1
4

6
5

1
5

8
7

1
7

0
9

1
8

3
1

1
9

5
3

2
0

7
5

2
1

9
7

2
3

1
9

2
4

4
1

2
5

6
3

2
6

8
5

2
8

0
7

M
o

n
it

o
ri

n
g

re
su

lt

Sample set

Edge-User62(1199,2397) Trad-User51(5,993) Edge-User51(5,417...)

Trad-User62 Edge-User62

Trad-User51 Edge-User51

Fig. 13. Response time monitoring results in different environments

5.5.3 User Mobility Handling
To answer RQ3, we compare the monitoring results using
ghBSRM-MEC in both the traditional environment and the
mobile edge environment. Table 3 and Table 4 show the
sequences of the edge servers, from which user 51 and user
62 call a service when they are moving.

Fig. 13 respectively shows the monitoring results of the
two users in the traditional and mobile edge environments.
The QoS requirement is described as ”the probability of
response time less than 3.6s is greater than 85%”. In this
figure, Trad-User62 represents the monitoring results of user
62 in the traditional environment, i.e., the monitoring results
relying on the historical data of edge server 18. Edge-User62
represents the monitoring results of user 62 in the mobile
edge environment, which is, the monitoring results based
on the historical data of a series of edge servers called by
user 62, i.e., edge server 18, edge server 21, edge server 26,
edge server 27 and edge server 55. In the mobile edge envi-
ronment, user 62 detects the service failure when the sample
number reaches 1,199. It can be presumed that the monitor-
ing results vary because the user switches the servers due to
the mobility. However, in the traditional environment, the
monitoring results is maintained in a successful state due
to the fact that only the historical data from the previous
edge servers is used. Similarly, the monitoring results are
also different in the two environments for user 51.

In addition, we monitor the second QoS attribute in the
dataset, i.e. throughput. The QoS requirement is described
as ”the probability of throughput more than 9.8 is greater
than 80%”. The monitoring results of the two users in the
traditional and mobile edge environments are shown in
Fig. 14. Similarly, in the mobile edge environment, user
51 detects the service success when the sample number
reaches 833. However, in the traditional environment, the
monitoring results is maintained in an unsuccessful state.

The experimental results show that edge server switch-
ing caused by user mobility may lead to the misuse of previ-
ous historical data and deviation in the monitoring results.
This effectively proves the capability of the ghBSRM-MEC
approach handling the user mobility challenge in the mobile
edge environment.

5.5.4 Impact of k
The last group of experiments is designed to answer RQ4.
We validate the effect of k in Case 3. When a user moves

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 13

Fig. 14. Throughput monitoring results in different environments

TABLE 3
Edge servers called by user 51

User ID 51

Edge Server ID 9 12 14 16 17 22 55

to an edge server without relevant historical data, the KNN
algorithm is used to select the peripheral edge servers to
perform the monitoring task. The experiments on randomly
selected edge servers 1 and 25 show that the monitoring
based on the k-nearest edge servers is feasible, when local
edge servers do not contain relevant historical data. To
reasonably and effectively obtain the appropriate k, our ex-
periments predefine k in a broader range, and then narrow it
down to an appropriate value according to the performance
of k.

The following experiments are performed over the two
edge servers. This group of experiments still bases on the
synthetic data set. The QoS requirement is described as ”the
probability of response time less than 2.8s is greater than
85%”. Similarly, in the ranges of 1-500 and 1,000-2,000 of the
sample set, we inject more than 15% negative samples, in
which the response time is greater than 2.8s.

Fig. 15 shows the monitoring results of edge server 1 on
different values of k. Because there are only 60 edge servers
in our experiment, we search the appropriate number of k
in the whole range. Fig. 15(a) shows the monitoring results
when k = 1, 19, 39, 59. As can be seen from the figure,
when k > 19, the monitoring result no longer changes
after successfully detecting service failure in the first phase.
Consequently, we can conclude that the appropriate range
of k is 1∼19. Fig. 15(b) shows the monitoring results when
k = 1, 5, 9, 14. We find that when k = 5, the monitoring
result is consistent with the appearance of negative samples
in the first phase. However, the service failure in the second
phase is still not detected. In Fig. 15(c), we test the monitor-
ing results at k = 1, 2, 3, 4, 5, respectively. The results show
that when k = 1 and k = 2 the proposed approach can
detect service failure in both of the phases. When k = 1, the
monitoring result is most accurate.

To further verify the generality of our approach, we se-
lect edge server 25 to perform the monitoring task. Similarly,
the first step is to narrow down the range of k. As shown
in Fig. 16(b), the monitoring results are not satisfied when

TABLE 4
Edge servers called by user 62

User ID 62

Edge Server ID 18 21 26 27 55

(a)

(b)

(c)

Fig. 15. Effect of K for edge server 1 in different ranges: (a) k=1∼59,
(b) k=1∼14 , (c) k=1∼5.

k>19. Then we narrow down the range of k to 1∼19. The
monitoring results are shown in Fig. 16(c). When k > 9,
the monitoring results are still unsatisfied. Finally, we test
the monitoring results on k = 1, 3, 5, 7, 9, and get the best
result when k = 3, as shown in Fig. 16(a). In general, the
experimental results show that the value of k has an impact
on the monitoring results. On the other hand, the optimal k
is also different on different edge servers.

6 CONCLUSIONS AND PROSPECTS

Traditional QoS monitoring approaches do not consider
user mobility and data dependency, which might lead to
deviation in monitoring results. In this paper, we present
ghBSRM-MEC, a novel QoS monitoring based on Gaussian
hidden Bayesian classification in the mobile edge environ-

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 14

(a)

(b)

(c)

Fig. 16. Effect of K for edge server 25 in different ranges: (a) k=1∼59,
(b) k=1∼14, (c) k=1∼9.

ment. The experiments on real and simulated data sets show
that the proposed method is feasible and effective.

For future work, the following directions will be con-
sidered: First, we will further explore the impact of k on
monitoring performance when there is no relevant historical
data in monitored servers. Second, since multivariate QoS
attributes [50] may contain conflicts, we will consider how
to monitor multivariate QoS attributes simultaneously in
mobile edge environments.

7 ACKNOWLEDGEMENTS

The work is supported by the National Natural Science
Foundation of China (61572171,61702159), the Natural Sci-
ence Foundation of Jiangsu Province (BK20191297), the Fun-
damental Research Funds for the Central Universities of
China (B210202075) and the Open Foundation of State key
Laboratory of Networking and Switching Technology (Bei-
jing University of Posts and Telecommunications) (SKLNST-
2020-1-07).

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5G,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[3] M. Urkia Kortabarria, “Web Service Performance on Heteroge-
neous Systems: A performance comparison between J2EE and.
NET on heterogeneous systems,” 2013.

[4] H. Billhardt, R. Hermoso, S. Ossowski, and R. Centeno, “Trust-
based service provider selection in open environments,” in Pro-
ceedings of the 2007 ACM symposium on Applied computing, pp. 1375–
1380, ACM, 2007.

[5] J. El Haddad, M. Manouvrier, and M. Rukoz, “TQoS: Transactional
and QoS-aware selection algorithm for automatic Web service
composition,” IEEE Transactions on Services Computing, no. 1,
pp. 73–85, 2010.

[6] D. Gunter, B. Tierney, K. Jackson, J. Lee, and M. Stoufer, “Dynamic
monitoring of high-performance distributed applications,” in Pro-
ceedings 11th IEEE International Symposium on High Performance
Distributed Computing, pp. 163–170, IEEE, 2002.

[7] A. M. Daniel and T. Menasc, “QoS issues in web services,” IEEE
Internet Computing, vol. 6, no. 6, pp. 72–75, 2002.

[8] L. Baresi and S. Guinea, “Towards dynamic monitoring of WS-
BPEL processes,” in International Conference on Service-Oriented
Computing, pp. 269–282, Springer, 2005.

[9] M. Leucker and C. Schallhart, “A brief account of runtime verifica-
tion,” The Journal of Logic and Algebraic Programming, vol. 78, no. 5,
pp. 293–303, 2009.

[10] L. Grunske, “Specification patterns for probabilistic quality prop-
erties,” in 2008 ACM/IEEE 30th International Conference on Software
Engineering, pp. 31–40, IEEE, 2008.

[11] K. Chan, I. Poernomo, H. Schmidt, and J. Jayaputera, “A model-
oriented framework for runtime monitoring of nonfunctional
properties,” in Quality of Software Architectures and Software Quality,
pp. 38–52, Springer, 2005.

[12] I. Lee, O. Sokolsky, J. Regehr, et al., “Statistical runtime checking
of probabilistic properties,” in International Workshop on Runtime
Verification, pp. 164–175, Springer, 2007.

[13] L. Grunske and P. Zhang, “Monitoring probabilistic properties,”
in Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, pp. 183–192, ACM, 2009.

[14] L. Grunske, “An effective sequential statistical test for probabilistic
monitoring,” Information and Software Technology, vol. 53, no. 3,
pp. 190–199, 2011.

[15] Y. Zhu, M. Xu, P. Zhang, W. Li, and H. Leung, “Bayesian prob-
abilistic monitor: A new and efficient probabilistic monitoring
approach based on bayesian statistics,” in 2013 13th International
Conference on Quality Software, pp. 45–54, IEEE, 2013.

[16] P. Zhang, Y. Zhuang, H. Leung, W. Song, and Y. Zhou, “A novel
QoS monitoring approach sensitive to environmental factors,” in
2015 IEEE International Conference on Web Services, pp. 145–152,
IEEE, 2015.

[17] P. Zhang, H. Jin, Z. He, H. Leung, W. Song, and Y. Jiang, “IgS-
wBSRM: A time-aware Web Service QoS monitoring approach
in dynamic environments,” Information and software technology,
vol. 96, pp. 14–26, 2018.

[18] S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, “Qos prediction
for service recommendations in mobile edge computing,” Journal
of Parallel and Distributed Computing, vol. 127, pp. 134–144, 2019.

[19] Y. Xu, J. Yin, S. Deng, N. N. Xiong, and J. Huang, “Context-aware
QoS prediction for web service recommendation and selection,”
Expert Systems with Applications, vol. 53, pp. 75–86, 2016.

[20] Z. Liu, Q. Sheng, X. Xu, D. Chu, and W. E. Zhang, “Context-
aware and Adaptive QoS Prediction for Mobile Edge Computing
Services,” IEEE Transactions on Services Computing, 2019, DOI:
10.1109/TSC.2019.2944596.

[21] L. Zeng, H. Lei, and H. Chang, “Monitoring the QoS for web
services,” in International Conference on Service-Oriented Computing,
pp. 132–144, Springer, 2007.

[22] S. Radovanović, N. Nemet, M. Ćetković, M. Z. Bjelica, and
N. Teslić, “Cloud-based framework for QoS monitoring and pro-
visioning in consumer devices,” in 2013 IEEE Third International
Conference on Consumer Electronics Berlin (ICCE-Berlin), pp. 1–3,
IEEE, 2013.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. XX, NO. X, XXXX 15

[23] H. Rachidi and A. Karmouch, “A framework for self-configuring
devices using TR-069,” in 2011 International Conference on Multime-
dia Computing and Systems, pp. 1–6, IEEE, 2011.

[24] A. Michlmayr, F. Rosenberg, P. Leitner, and S. Dustdar, “Compre-
hensive QoS monitoring of Web services and event-based SLA
violation detection,” in Proceedings of the 4th international workshop
on middleware for service oriented computing, pp. 1–6, ACM, 2009.

[25] L. Coppolino, S. D’Antonio, L. Romano, F. Aisopos, and K. Tser-
pes, “Effective QoS monitoring in large scale social networks,” in
Intelligent Distributed Computing VII, pp. 249–259, Springer, 2014.

[26] F. Raimondi, J. Skene, and W. Emmerich, “Efficient online mon-
itoring of web-service SLAs,” in Proceedings of the 16th ACM
SIGSOFT International Symposium on Foundations of software engi-
neering, pp. 170–180, ACM, 2008.

[27] A. Wald, “Sequential tests of statistical hypotheses,” The annals of
mathematical statistics, vol. 16, no. 2, pp. 117–186, 1945.

[28] P. Zhang, H. Jin, H. Dong, and W. Song, “M-BSRM: Multivari-
ate BayeSian Runtime QoS Monitoring Using Point Mutual In-
formation,” IEEE Transactions on Services Computing, 2019, DOI:
10.1109/TSC.2019.2952604.

[29] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge computing based on
markov decision process,” IEEE/ACM Transactions on Networking,
vol. 27, no. 3, pp. 1272–1288, 2019.

[30] D. Zhao, T. Yang, Y. Jin, and Y. Xu, “A service migration strategy
based on multiple attribute decision in mobile edge computing,”
in 2017 IEEE 17th International Conference on Communication Tech-
nology (ICCT), pp. 986–990, IEEE, 2017.

[31] Y. Yin, L. Chen, Y. Xu, J. Wan, H. Zhang, and Z. Mai, “QoS pre-
diction for service recommendation with deep feature learning in
edge computing environment,” Mobile Networks and Applications,
pp. 1–11, 2019.

[32] P. Zhang, Y. Zhang, H. Dong, and H. Jin, “Multivariate qos moni-
toring in mobile edge computing based on bayesian classifier and
rough set,” in 2020 IEEE International Conference on Web Services
(ICWS), pp. 189–196, IEEE, 2020.

[33] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: Vision, hype, and
reality for delivering computing as the 5th utility,” Future Genera-
tion computer systems, vol. 25, no. 6, pp. 599–616, 2009.

[34] A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee,
D. Patterson, A. Rabkin, and I. Stoica, “Above the clouds: A berke-
ley view of cloud computing,” Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS, vol. 28,
no. 13, p. 2009, 2009.

[35] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino,
A. Iamnitchi, M. Barcellos, P. Felber, and E. Riviere, “Edge-centric
computing: Vision and challenges,” ACM SIGCOMM Computer
Communication Review, vol. 45, no. 5, pp. 37–42, 2015.

[36] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S.
Nikolopoulos, “Challenges and opportunities in edge comput-
ing,” in 2016 IEEE International Conference on Smart Cloud (Smart-
Cloud), pp. 20–26, IEEE, 2016.

[37] B. I. Ismail, E. M. Goortani, M. B. Ab Karim, W. M. Tat, S. Setapa,
J. Y. Luke, and O. H. Hoe, “Evaluation of docker as edge com-
puting platform,” in 2015 IEEE Conference on Open Systems (ICOS),
pp. 130–135, IEEE, 2015.

[38] A. E. Youssef, “Exploring cloud computing services and appli-
cations,” Journal of Emerging Trends in Computing and Information
Sciences, vol. 3, no. 6, pp. 838–847, 2012.

[39] A. F. Huang, C.-W. Lan, and S. J. Yang, “An optimal qos-based
web service selection scheme,” Information Sciences, vol. 179, no. 19,
pp. 3309–3322, 2009.

[40] X. Zhao, Y. Shi, and S. Chen, “Maesp: Mobility aware edge service
placement in mobile edge networks,” Computer Networks, vol. 182,
p. 107435, 2020.

[41] G. E. Box and G. C. Tiao, Bayesian inference in statistical analysis,
vol. 40. John Wiley & Sons, 2011.

[42] H. Zhang, L. Jiang, and J. Su, “Hidden naive bayes,” in American
Association for Artificial Intelligence(Aaai), pp. 919–924, 2005.

[43] G. Guo, H. Wang, D. Bell, Y. Bi, and K. Greer, “KNN model-based
approach in classification,” in OTM Confederated International Con-
ferences” On the Move to Meaningful Internet Systems”, pp. 986–996,
Springer, 2003.

[44] S. B. Imandoust and M. Bolandraftar, “Application of k-nearest
neighbor (KNN) approach for predicting economic events: The-

oretical background,” International Journal of Engineering Research
and Applications, vol. 3, no. 5, pp. 605–610, 2013.

[45] S. Begum, D. Chakraborty, and R. Sarkar, “Data classification
using feature selection and kNN machine learning approach,”
in 2015 International Conference on Computational Intelligence and
Communication Networks (CICN), pp. 811–814, IEEE, 2015.

[46] S. Thirumuruganathan, “A detailed introduction to K-nearest
neighbor (KNN) algorithm,” Retrieved March, vol. 20, p. 2012, 2010.

[47] G. H. John and P. Langley, “Estimating continuous distributions
in Bayesian classifiers,” in Proceedings of the Eleventh conference on
Uncertainty in artificial intelligence, pp. 338–345, Morgan Kaufmann
Publishers Inc., 1995.

[48] Y. Xu, J. Yin, W. Lo, and Z. Wu, “Personalized location-aware
QoS prediction for web services using probabilistic matrix fac-
torization,” in International Conference on Web Information Systems
Engineering, pp. 229–242, Springer, 2013.

[49] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C.-H. Hsu, “Edge server
placement in mobile edge computing,” Journal of Parallel and
Distributed Computing, vol. 127, pp. 160–168, 2019.

[50] P. Zhang, H. Jin, H. Dong, W. Song, and L. Wang, “LA-LMRBF: on-
line and long-term web service QoS forecasting,” IEEE Transactions
on Services Computing, 2019, DOI: 10.1109/TSC.2019.2901848.

Pengcheng Zhang received the Ph.D. degree in
computer science from Southeast University in
2010. He is currently a full professor in College
of Computer and Information, Hohai University,
Nanjing, China, and was a visiting scholar at
San Jose State University, USA. His research
interests include software engineering, service
computing and data science. He has published
in premiere or famous computer science jour-
nals. He was the co-chair of IEEE AI Testing
2019 conference. He served as technical pro-

gram committee member on various international conferences. He is
a memeber of the IEEE.

Yaling Zhang is a M. S. candidate in the College
of Computer and Information, Hohai University,
Nanjing, China. She received her bachelor de-
gree in computer science and technology from
Anhui Normal University, Wuhu, China in 2018.
Her current research interests include service
computing and data mining.

Hai Dong is a Lecturer at School of Comput-
ing Technologies in RMIT University, Melbourne,
Australia. He received a PhD from Curtin Uni-
versity of Technology, Australia, and a Bachelor
degree from Northeastern University, China. His
research interests include Service Computing,
Distributed Systems, Cyber Security, Machine
Learning and Data Analytics. He has published
over 90 research articles in international journals
and conferences. He is a senior member of the
IEEE.

Huiying Jin is a PHD candidate in the College
of Computer and Information, Hohai University,
Nanjing, China. She received her bachelor de-
gree in Software Engineering from Yangzhou
University, Yangzhou, China in 2017. Her cur-
rent research interests include service comput-
ing and data mining.

