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Abstract—With the rapid development of 5G technologies, the demand of quality of service (QoS) from edge users, including high
bandwidth and low latency, has increased dramatically. QoS within a mobile edge network is highly dependent on the allocation of
edge users. However, the complexity of user movement greatly challenges edge user allocation, leading to privacy leakage. In addition,
updating massive data constantly in a dynamic mobile edge network also crucial to ensure efficiency. To address these challenges, this
paper proposes a dynamic QoS optimization strategy (MENIFLD QoS) in mobile edge networks based on incremental learning and
federated learning. MENIFLD QoS optimizes service cache in edge regions and allocates edge servers to edge users according to the
locations of edge servers accessed by edge users in mobile scenarios. While optimizing regional service quality, the system can
effectively protect user privacy. In addition, for dynamic incremental data, MENIFLD QoS trains updated data based on the strategy of
incremental learning hence significantly improves optimization speed. Experimental results on an edge QoS dataset show that the
proposed strategy achieves global optimization in both multi-variable and multi-peak user allocation scenarios and notably enhances
the training efficiency of the regional invocation model.

Index Terms—Mobile edge, Quality of Service, Incremental Learning, Federated Learning, Mobility Aware, Edge User Allocation.
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1 INTRODUCTION

W EB services are loosely-coupled, self-contained and
platform-independent applications to implement

Service-Oriented Architecture [1]. Web services abstract di-
verse functional components of applications or programs
into reusable services and enables interoperability and com-
posability through provisioning standard interfaces. With
the dawning of the Internet of Everything (IoE) era, Internet
users produce a huge volume of data in the network, where
hundreds of different web services (e.g., webpages visiting,
video watching, file uploading and downloading, etc.) are
deployed at the edge to consume these data [2]. Given that
many web services possess similar or same functions, ser-
vice users need to select appropriate services to meet their
demands [3]. For example, when edge service providers
provide video services in exactly same themes, users may be
inclined to choose the one with higher resolution. Web ser-
vice selection highly relies on the non-functional properties
of web services, including response time, and throughput
which are termed quality of services (QoS).

Nowadays 5G technologies have been involved in many
countries’ future strategic development plans [4]. 5G sta-
tions are the central of 5G network, they enable signal
transmission between wired communication networks and
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wireless terminals, which are predicted to be deployed in
high densities [5]. As one of the core technologies of 5G,
edge computing sinks high-bandwidth, low-latency, and lo-
calized services to the edge of network [2], [6]. It essentially
addresses the problems of network congestion and service
response delay. It also supports real-time and bandwidth-
intensive services in 5G networks. However, data privacy
and security gradually become users’ top concern while
users enjoy the convenience brought by 5G technologies [7].
For example, in 22 September 2022, Optus, the second
largest telecommunications company in Australia, suffered
from a significant cyberattack, resulting in a leakage of
over 2.1 million customers’ private information, such as
passports, driver licenses, etc [8]. This has been the eleventh
data breach occurred in Australia in 2022, each of which
affects at least 10,000 customers [9]. Therefore, it is critical
to protect privacy and security while providing intelligent
services and guaranteeing QoS.

In the process of service sinking, a user needs to be
allocated to one of his/her accessible edge servers to be
able to access these sunk services considering the resource
capacity of these servers [10]. The distance and the capacity
of the allocated server may influence quality of services.
For example, when computing tasks of web services are
allocated to edge servers, the speed of data transfer fluc-
tuates with the varied distance between users and servers,
and the computing time is shifted with different capacity
of servers [11]. Therefore, the differences in computing
capacity of edge servers and the dynamic locations of user
devices lead to different QoS according to different user allo-
cation strategies. Many QoS optimization studies have been
carried out in the domain of edge computing. Researchers
consider various constraints such as edge servers’ resource
consumption, service business logic and user mobility to
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formulate task scheduling strategies. In addition, multiple
QoS attributes such as response time and throughput are
taken into account to find optimal scheduling strategies.
Contemporary studies mainly focus on task acceptance rate
optimization [12], strategy cost optimization [13], [14], task
offloading optimization [11], [15] and resource allocation op-
timization [16], [17]. The existing studies focus on relatively
static scenarios [11], [16], [18]. In contrast, realistic user
movement scenarios are inconstant, where more dynamic
factors such as user trajectories and network conditions
need to be considered. The existing studies are thus unsuit-
able for these realistic scenarios.

As shown in Fig. 1, a mobile edge network (MEN)
comprises multiple layers, including the layers of mobile
devices, mobile edge computing and Internet cloud from
bottom to top [19]. Cloud servers sit on the Internet cloud
layer. Edge servers such as base stations and edge servers
sit on the mobile edge computing layer. The mobile devices
layer has a collection of mobile devices such as smart-
phones, laptops, and wearable devices. MEN integrates
the computing capabilities of the edge network into the
mobile network architecture. In a MEN, base stations are
the communication nodes of network, and edge servers
are the computing nodes of network. Since edge servers
are commonly deployed in based stations [20], we assume
that a base station and an edge server are in the same
location. In a MEN, mobile devices face the risk of private
data leakage in the process of edge service invoking [21].
The privacy data of mobile devices mainly include user
locations and user features (i.e., users’ favorite services, QoS
values, and historically invoked service records, etc.). When
optimizing edge service quality, user locations are needed to
predict trajectories of mobile devices [13]. This breaches user
location privacy. When optimizing edge caching, a user’s
feature information needs to be adopted to train the user’s
private models [17]. This causes user feature data leakage.
Therefore, privacy protection is vital to edge optimization.

Internet CloudEdge ServerMobile devices

Fig. 1: Architecture of MEN

We illustrate the aforementioned problems using the
following scenario. Assume that user Vae and Lee are in
a real-time communication via a MEN. As illustrated in
Fig. 2, Vae and Lee are both moving from region 1 to
region 3. In region 1, Vae and Lee maintain communication
by respectively accessing edge servers S1 and S2. They
both head west through region 2 while maintaining the
communication service provisioned by edge servers S3 and
S4, respectively. Now the question is how to allocate edge
servers to Vae and Lee to ensure communication quality
and acquire higher quality of communication in region 3.

It needs to forecast their trajectories, allocate edge servers,
and deploy communication service in advance.
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S3S3
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VaeVaeLeeLeeWireless linkWireless linkUser trajectoryUser trajectoryRegion borderRegion border
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Fig. 2: Scenario of service invocation in a MEN

Existing optimization works deploy and schedule com-
munication services by directly adopting the moving paths
of users to enhance the quality of communication services
without considering privacy preservation in optimization.
When forecasting the trajectory of Vae, his current location
will be analysed to predict his future location. It leads to lo-
cation privacy leakage. To optimize edge server cache, each
server needs to analyse users’ demanded services and QoS
according to user features. Therefore, these user features are
required for training regional service invocation models in
edge servers. However, the adoption of user features causes
privacy leakage.

Several challenges exist in MEN based Web service QoS
optimization.

i). Ignorance of user information leakage during QoS opti-
mization. As a large number of users invoking edge services,
more user information will be used to train user invocation
models (i.e., indicating users’ service preferences) and user
mobility models (i.e., reflecting users’ historical trajectories)
for user allocation. Hence, it is necessary to adopt users’
historical behavior features to analyse users’ service invoca-
tion and predict location information in a MEN. This process
leads to the leakage of user feature and location information.
Therefore, privacy protection is of great significance in QoS
optimization.

ii). Explosive training cost caused by dynamic training of
incremental data. Continuously invoking edge services by
mobile users quickly increase the amount of invoking data.
This dramatically boosts the training cost of edge region
caching models. The increased training time exceeds the
time constraint of an optimization model for processing
a batch of data, which triggers deadlock once new data
arrives. It paralyses optimization algorithm in late stages
of optimization. Therefore, reducing the cost of incremental
data based model training is crucial to the effectiveness of
optimization.

iii). Designing a comprehensive and multi-faceted QoS op-
timization solution is significant but neglected. During the
process of QoS optimization, the main optimization aspects
include: user allocation, service task scheduling and edge
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caching, etc. All the factors have been proven to be effica-
cious and critical in edge QoS optimization. Nevertheless,
no effort has been attempted to effectively integrate these
factors. Therefore, it is of significant value to propose a
comprehensive and multi-faceted QoS optimization strategy
in MENs.

To address the aforementioned problems, this paper
proposes a dynamic QoS optimization strategy based on
incremental learning (IL) and federated learning (FL) in
MENs (MENIFLD QoS). We aim to accurately predict users’
movement and analyse service invocation behavior in the
complex and dynamic MEN. The proposed strategy trains
users’ invocation preference models and regional public
models to determine edge service cache through federated
learning [22]. It is able to shorten the response time of
edge services while protecting user feature information.
The strategy preserves users’ location privacy based on
the concept of ”K-Anonymity”. It can also restore users’
mobility information via training a user mobility model
with locations of edge servers accessed by users. The re-
stored mobility information is then adopted to optimize the
allocation of edge servers for edge users. In addition, we
adopt IL to reduce the growing training cost caused by
constantly incremented data. IL can preserve most of the
previously learned knowledge, in addition to learning new
knowledge from incoming data. In this way, training speed
can be greatly improved. Finally, we design an improved
artificial bee colony algorithm to properly allocate users to
edge servers and optimize service quality in edge region.
The major contributions of this paper are summarized as
follows.

• We leverage the idea of FL and ”K-Anonymity”
concept to protect user feature privacy and location
privacy during the optimization process. We adopt a
unified user model delivery paradigm based on FL,
upon which all users employ the invocation models
with same dimensions to interact with edge servers.
It makes each individual model difficult to be distin-
guished and effectively protects user feature privacy.
We generalize user-specific information based on the
concept of ”K-Anonymity”. Lagrangian interpolation
is then applied to locations of edge servers accessed
by users to restore users’ mobility information, while
effectively protecting user location privacy.

• We adopt IL for incremental data based service invo-
cation model training. IL does not need to repeatedly
process historical data and can keep the old effective
knowledge when learning new knowledge from in-
cremental data. The experimental results show that
the training time of our service invocation model is
saved by 75.8% using IL.

• We design an optimization strategy based on IL and
FL to optimize the overall QoS in an edge region
from multiple facets: quality for edge services, ser-
vice caching for edge servers and server allocation
for edge users. The experimental results prove that
our strategy can improve the overall QoS compared
to existing strategies while realizing privacy protec-
tion and enhancing training efficiency.

The structure of the paper is organized as follows. Section 2

surveys state-of-the-art QoS optimization approaches and
mobile edge technologies, and discusses their limitations.
Section 3 introduces the dynamic QoS optimization strategy
based on IL and FL in a MEN. Section 4 analyzes the
experimental results based on several data sets. Section 5
concludes the paper and plans our future work.

2 RELATED WORK
The existing service layer optimization work in a mobile
edge environment mainly includes user allocation optimiza-
tion, task scheduling optimization, and MEN computing
resource and QoS optimization.

2.1 Mobile user allocation
In the mobile edge environment, edge servers can be ac-
cessed by users when the users are under the servers’ cover-
age and the servers’ resources are not full utilized. Since the
storage and computing capacity of users’ mobile devices is
limited, intensive computing tasks need to be shared among
adjacent edge servers to achieve workload balance [23]. The
overall QoS (i.e., quality of all the services provided) in an
edge region is closely related to how edge users are allocated
to that region [10]. Therefore, the overall QoS can be viewed
as an effective indicator to measure the quality of edge user
allocation and edge resource scheduling.

He et al. [23] define this type of problem as an Edge User
Allocation (EUA) problem. They analyze the constraints of
resources and distances in the edge environment to model
such a problem and propose heuristic methods to solve
the EUA problem. They [10] further consider the dynamic
QoS levels of edge service users to find a solution that
can maximize the overall QoE of application users. EUA is
performed based on distance perception and confrontation
perception. Peng et al. [24] make online EUA decisions
based on users’ mobility and time-varying positions. The
above-mentioned EUA problem does not consider the over-
all QoS optimization for an edge region.

2.2 Task offloading and scheduling
A large amount of existing edge computing optimization
work focuses on user offloading decision-making problems.
This type of work first estimates the delay and energy con-
sumption of a computing task. It then develops a scheduling
strategy for deciding deploying the task to the server or
executing it locally. Whether the energy consumption and
delay are optimized after the implementation of the strategy
is then observed.

Deng et al. [16] propose to reduce deployment costs and
improve quality of services like response time by optimizing
application deployment in the mobile edge environment,
when computation resource and storage resource are lim-
ited. Miao et al. [15] propose a computation offloading and
task migration algorithm based on task prediction, which
effectively reduces the total task delay with increasing data
and services. The mobility of users in the edge environment
is also a factor that cannot be ignored. In the medical
monitoring scenario, Xu et al.’s work [11] can reduce energy
consumption and workload by adjusting mobile-aware task
offloading and scheduling strategies to best meet the flexible
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requirements of distributed environments and real-time re-
sponse of various services. Wang et al. [13] also consider task
attributes, user mobility and network constraints to reduce
the delay in task executions caused by task scheduling.

2.3 Edge caching
Considering that service placement on edge servers nearby
can reduce the latency of users to access services, many re-
searchers have explored optimal service placement schemes
to maximize the QoS on mobile devices. In recent years,
how to cache services on edge servers has attracted the
attention of many scholars. Liang et al. [25] propose to
place service entities with user states and computation tasks
in distributed interactive applications to achieve low-delay
pairwise interactions under the budget constraint. You et
al. [26] propose a service placement model that measures
cost and delay. Qian et al. [17] propose a service placement
strategy based on FL combined with user preferences, while
protecting the sensitive historical data of users’ mobile de-
vices. Wang et al. [27] train DRL agents in MEC systems to
optimize edge caching and computing. They introduce FL
for optimized intelligent resource management. However,
this approach only considers the cache content.

The existing work share the following common issues.
First, the existing work only focuses on addressing the QoS
optimization problem from a single perspective, i.e., user
allocation, service task scheduling or edge caching. There
is a lack of exploration from all of the aforementioned
aspects. Next, none of the above QoS optimization work
considers how the environmental changes resulted from
users’ mobility impact task offloading and scheduling as
well as service caching. Finally, no solution is proposed for
preventing the leakage of user feature privacy and location
privacy. There is currently no dynamic QoS optimization
method considering privacy protection and user mobility in
MENs.

3 THE MENIFLD QOS STRATEGY
The threat model and privacy protection optimization
scheme is presented in Section 3.1. The overview of the
MENIFLD QoS strategy is outlined in Section 3.2. The three
steps of MENIFLD QoS are introduced in details in Sec-
tion 3.3, Section 3.4 and Section 3.5.

3.1 Threat Model and Privacy-protecting Scheme
QoS optimization in the edge environment usually targets
three components: user groups on mobile edge networks,
edge server clusters, network infrastructure providers and
edge service providers. As shown in Fig. 3, Vae and Lee
are communicating via a mobile edge network. When they
initiate the communication through an edge service (e.g.,
WhatsApp), the network infrastructure provider and the
edge service provider can identify their geographic location,
communication time, service types and other information in
real time. The providers authorize the edge server cluster to
utilize the user and service information. The cluster trains
a user feature model based on the information to realize
user personalized service caching and optimization. For
attackers, their goal is to steal sensitive user information

and obtain user features. During this process, attackers
can steal user privacy through the following channels: 1)
during the user and service information authorization, at-
tackers can steal user sensitive information (e.g., Vae and
Lee’s geolocation, communication time, etc.) by forging the
addresses of trusted edge server clusters; 2) during the user
feature model training, attackers can identify or infer user
model parameters (e.g., service types Vae and Lee invoked)
by inducing them to authenticate (e.g., constructing a fake
”login” module). Therefore, a scheme is urgently needed to
protect user privacy.

Network infrastructure provider and 

edge service provider

Edge server cluster

Vae and Lee

User information 

authorization

Model delivery and 

upload

Fig. 3: A privacy threat scenario during edge QoS optimiza-
tion

When we visit some websites/applications (e.g., real
estate websites, etc.), we inevitably receive some pop-up
advertisements provided by third parties. The locations of
the advertised product sellers or service providers are usu-
ally close to ours. This is a typical example of information
leakage via channel 1). In addition, the product/service
types on the pop-up advertisements are usually relevant to
the ones we are browsing in the current website. This is an
example of information leakage through channel 2).

The existing privacy protection QoS optimization studies
in mobile edge computing are mainly based on protection
of user locations and other privacy-sensitive information.
They usually rely on fuzzy functions [12] or encryption
protocols [28] to protect users’ locations. However, most of
these techniques require the input of users’ locations, which
are vulnerable to attacks or theft during user information
authorization. To address this issue, a federated learning-
based model [17] is proposed, which aims to protect sub-
model parameter transfer. However, these parameters can
still be leaked by analyzing the differences between user
sub-models during the parameter transfer. Therefore, how
to protect user privacy is a significant issue in edge QoS
optimization.

We realize privacy-preserving edge QoS optimization
through user location protection and model unification. Fig.
4 shows our proposed edge privacy protection optimization
scheme, where MENIFLD QoS is employed for QoS opti-
mization. Here users are data producers. They generate rel-
evant information (e.g., user locations and service attribute
values, etc.) during their movement and service invoking
processes. The mobility model is trained by the edge server
clusters. When network infrastructure providers and edge
service providers authorize edge server clusters to access the
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user information, the concept of ”K-Anonymity” is adopted
to protect user location privacy. ”K-Anonymity” processes
the original data before the release of data by means of
generalization (i.e., data description abstraction) to protect
individual privacy [29]. Its principle is to weaken the asso-
ciation between private information and personal identities.
Fig. 5 shows an example of the user information general-
ization process based on the concept of ”K-Anonymity”,
in which access time and invoked service are generalized.
Similarly, a user’s exact location (i.e., user location) at a
moment is generalized by replacing it with the location of
an edge server accessed by this user at that moment. In this
regard, the exact locations of any user in the final processing
result are hidden, and the user location privacy is effectively
protected. Once network infrastructure providers and edge
service providers authorize edge server clusters to access
the generalized information, the clusters first identify the
sequence of edge servers accessed by the same user based on
the IMEI (e.g., 356709081343630), and then utilize the edge
location information (e.g., longitude: 118.793851, latitude:
31.9181716) to train the mobility model to predict the user’s
movement direction. When mobile users interact with edge
servers, they download a unified model as the foundation to
train personalized models, and submit a set of parameters
covering the entire model (i.e., part of the parameters are
users’ individual training parameters, and the remaining are
0s, thereby all users’ model dimensions are same, making
each individual model difficult to be distinguished) during
the upload process to hide individual features. The scheme
effectively alleviates the problems faced by the existing
approaches in the privacy threat scenario.

Edge server cluster

Vae and Lee

User location protection Model unification

Network infrastructure provider and 

edge service provider

Fig. 4: Privacy protection based edge QoS optimization
scheme

3.2 Overview of MENIFLD QoS

Optimizing the overall QoS (i.e., quality of all the services)
in an edge region is closely related to the proper allocation
of users to the edge servers covering that region [10]. There-
fore, we aim to obtain the optimal overall QoS of each edge
region through edge user allocation optimization.

We propose a dynamic service quality optimization strat-
egy MENIFLD QoS based on IL and FL in a mobile edge
environment. IL can avoid boosted training costs caused by
repeated training upon incremented historical data. To pre-
vent user privacy data leakage during the training process,
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Fig. 5: User information processing based on the concept of
”K-Anonymity”

we adopt 1) FL to train service invocation models and 2) ”K-
Anonymity” concept and Lagrangian interpolation to train
the user mobility model. The process is shown in Fig. 6.
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Fig. 6: The overview of MENIFLD QoS

An edge user in a MEN continuously generates new
location and service invocation data. The new data provides
foundation for training an invocation model that indicates
the user’s preference and a mobility model that predicts
the user’s direction. Following the principle of IL, MENI-
FLD QoS has a memory function for learned knowledge,
which does not need to retrain historical data to effectively
learn new knowledge from new data. An IL based adaptive
framework built on SVM is adopted to dynamically adjust
the user invocation models to reduce the training cost for
the boosting data, so as to reduce the cost of model training
and improve optimization efficiency.

The network infrastructure providers and edge service
providers respectively own the locations of edge servers
accessed by users and the quality of the services invoked
by users from the accessed edge servers in each time period
[30]. When users move, communicate, and invoke services,



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.XXX, NO.XX, XXXXXX 6

network infrastructure providers and edge service providers
can obtain the information about these activities. The loca-
tion of edge nodes are divided according to edge regions.
Users’ movement data is acquired from the data sets by
extracting the locations of edge servers accessed by the
users. Each user’s movement directions are then predicted
based on their mobility models trained upon their historical
movement data. A user’s service invocation data in all edge
servers of a region is used to train the user invocation
model. A public model is trained for each region to reflect
all the users’ service invocation preference in that region.
This public model will be employed to determine the service
caching in the edge servers of that region. It aims to optimize
the response time of edge services by providing the services
with lower transmission data volume and higher response
speed. Finally we employ a heuristic method to allocate the
edge users to optimize the overall QoS in an edge region.
The whole process comprises the following three primary
steps:

i). Edge location information and QoS data set collection
and processing. The first step is to respectively collect and
process edge location information and QoS attribute values.
The collected edge location information contains users’ edge
server access records. The QoS data set includes response
time and throughput of services invoked by users from the
edge severs in each time slice. First, we map the latitude
and longitude values of the edge servers to a Cartesian
coordinate system to reflect the actual distance between the
edge servers, so as to obtain the distribution of edge servers
and users’ edge server access records. The latter includes
the locations of the edge servers accessed by the users and
their access time, etc. Next, we allocate the QoS data of
the services invoked by the users from edge servers to the
corresponding users and edge servers to form an edge QoS
data set.

ii). Model training. After obtaining the edge QoS data set,
we extract the user feature data (i.e., services invoked by
users) in terms of user id. The user feature data is to train
a gradient descent logistic regression model (i.e., the user
invocation model), for each user to indicate their service
preference. Finally we use FL to extract the parameters of
the user invocation models in an edge region to train a
regional public service caching model. FL can effectively
protect user privacy during the model training. The regional
public service caching model is further trained based on
the principles of IL and FL for the newly generated service
invocation data. In addition, we employ Lagrangian inter-
polation to predict the user’s movement direction according
to the locations of edge servers accessed by the user. The
predicted user movement direction is used to determine
the candidate edge server set to be accessed by the user.
Moreover, the newly accessing edge location information
of a user can dynamically update the predicted movement
direction to regenerate the candidate edge servers set.

iii). Regional dynamic QoS optimization. On the basis of the
service invocation information and candidate edge server
set of a user at the next moment, an edge server is allocated
to the user. Each allocation is regarded as a feasible solution
for the EUA problem. We then calculate the fitness value,
that is, the overall QoS value (i.e., the quality of all the
invoked services in an edge region) of each feasible solu-

tion. Finally, an artificial bee colony algorithm is used to
iteratively generate and update the feasible solutions to find
the optimal solution.

3.3 Dynamic Data Collection and Preprocessing
The aforementioned scenario shows that mobile users Vae
and Lee simultaneously access a real-time communication
service during their movement. When a user connects to an
edge server via wireless networks, the network infrastruc-
ture providers will obtain the information about the user’s
location. However, the network infrastructure providers
are only the data owners and providers, and they do not
perform model training and other tasks. Vae accesses the
communication service from edge servers S1, S3, and S5

respectively, while Lee accesses the service from edge servers
S2 and S4. This process generates some access records,
including ids and locations of the accessed edge servers,
user ids and server access time (e.g. {S1, loc(S1), uV ae,
T1}), and QoS data (e.g. response time, throughput) of the
accessed service from different servers.

The data collection and preprocessing procedure collects
and processes the aforementioned access records and QoS
data respectively [31], and clusters the geographically close
edge servers that share the similar edge network environ-
ment [32].

The edge region division process is to narrow down
solution space and improve efficiency for the forthcoming
optimization. A geographical area is divided into several
edge regions according to locations of the edge servers in a
data set. This process comprises the following three steps.

Step 1: We screen out active edge servers according to
all users’ access records in the area, and extract all non-
redundant edge servers’ locations according to their IP
addresses.

Step 2: We employ Universal Transverse Mercator Pro-
jection (UTMP) to project the latitude and longitude of each
edge server into the corresponding Cartesian coordinates
to accurately measure the actual distance between the edge
servers. UTM is broadly used as a reference projection
system to compile maps [33].

Step 3: The Affinity Propagation (AP) clustering algo-
rithm is used to cluster the edge servers [34]. Compared
with other clustering methods, the AP clustering algorithm
can handle large-scale data with better clustering perfor-
mance and higher efficiency. The algorithm is introduced
as follows:

Given N = {ni}Ki=1 is the set of edge server locations to
be clustered, where K represents the number of edge servers,
and S is a matrix that describes the similarity between the
locations, for any location nk in the set N, the attraction
information r(i, k) and attribution information a(i, k) can be
used to characterize the location. The attraction information
r(i, k) describes the degree of attraction of a point k as
the cluster center to a point i. The attraction information
rt+1(i, k) is iterated as follows:

rt+1(i, k) = s(i, k)−max
k ̸=k′

{αt(i, k
′) + s(i, k′)} (1)

where s(i, k) represents the similarity between the point i
and the point k in the matrix S. The attribution informa-
tion a(i, k) describes the adaptation degree for the point i
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selecting k as the cluster center. The attribution information
at+1(i, k) is iterated as follows:

αt+1(i, k) = min{0, rt(k, k)+
∑

i′ /∈{i,k}

max{0, rt(i′, k)}}, i ̸= k

(2)
αt+1(k, k) =

∑
i′ /∈{i,k}

max{0, rt(i′, k)} (3)

After initialization, the value of a(i, k) will gradually
decrease to reach a stable state along with the increase of the
r(i, k) value. The above steps are iterated until the decision
of the clusters remains unchanged or varies in a small range,
or the number of iterations reaches a predefined number.

3.4 Model Training

We use IL to train the increasing user invocation data as
the user invocation model. Then use FL to train the public
model for each edge region, determining the service cache.
At the same time, we use the user-server accessing data to
train the user mobility model to perceive the mobility of the
MEN.

3.4.1 User Invocation Model Training
We only use user feature information (i.e., services invoked
by users) to train the user invocation model. This process
does not involve users’ sensitive information (i.e., users’
specific locations).

SVM is a powerful machine learning tool broadly ap-
plied for classification and regression. SVM also has remark-
able generalization performance in sparse high-dimensional
environments. The data learning theory proposed by Vapnik
provides theoretical support for SVM to reduce structural
risks [35]. We use SVM to train the user invocation model
to optimize service caching for each edge server. To train
the SVM, we collected and computed 3 static features from
user samples. With the help of these features and Gaussian
kernel with variance 1/(2 ∗ scale), we can obtain the main
parameters for SVM. Therefore, the invoked services are
checked by the trained SVM classifier, and We can divide
the training examples into three different categories based
on the partial derivatives gi: a margin support vector set
S (gi = 0), an error vector set ε (gi < 0) and a reserve
vector set R (gi > 0). Traditional SVM can help select the
most frequently invoked services at a time period, but is not
enough to train the boosting samples in the long term. We
deploy IL based SVM to train new samples dynamically.

When the learning sample set receives new invoking
data, we use IL to train the samples with the goal of
preserving the KKT conditions for all the previous training
data [36]. We need to vary the margin vector coefficients in
response to the perturbation imparted by the incremented
new coefficients to maintain the KKT conditions.

Our objective is to determine the necessary changes in
the margin vector coefficients ∆αk and the bias ∆b that pre-
serve the KKT conditions on all learned data according to a
given perturbation on partial derivatives of dual parameters
gi and h of the unlearned vector coefficients ∆αl.

∆gi =
∑
k∈S

Qik∆αk +
∑
l∈U

Qil∆αl + yi∆b = 0 ∀i ∈ S (4)

∆h =
∑
k∈S

yk∆αk +
∑
l∈U

yl∆αl = 0 (5)

The process of perturbation is controlled by a pertur-
bation parameter p. When the SVM solution is perturbed
from its initial ’unlearned’ to final ’learned’ result, p varies
from 0 to 1. When p = 0, the solution is initialized to
the previous solution, before introducing new examples.
During each perturbation, p is incremented by the smallest
value ∆pmin which leads to the change for examples. When
p = 1, all unlearned vectors have reached either of the three
categories, whilst both new and old data satisfies the KKT
conditions.

The IL proceeds through a sequence of ’adiabatic’ steps
by maintaining the KKT conditions during the perturba-
tions. The adiabatic increment ∆αi is expressed as the prod-
uct of ∆p and the corresponding coefficient sensitivities. As-
suming that ∆αk = βk∆p(k ∈ S), ∆αl = λl∆p(l ∈ U), and
∆b = β∆p, we can obtain the differential KKT conditions
expressed in terms of the coefficient sensitivities by

γi =
∆gi
∆p

=
∑
k∈S

Qikβk +
∑
l∈U

Qilλl + yiβ = 0 ∀i ∈ S (6)

∆h

∆p
=

∑
k∈S

ykβk +
∑
l∈U

ylλl = 0 (7)

where λl is determined by a natural choice, and βk and β are
obtained by solving the system of equations. Once the coef-
ficient sensitivities are known, we can compute the margin
sensitivities γi for the error, reserve and unlearned vectors.
The smallest ∆p in applicable conditions determines the
category change and perturbation step ∆pmin. Then we can
determine ∆pmin from the possible category changes.

Once ∆pmin is determined, we update the coefficients
for the margin vectors (αk → αk + βk∆p : ∀k ∈ S) and the
unlearned vectors (αl → αl + λl∆p : ∀l ∈ U). After noting
the category change, we recompute the coefficient and the
margin sensitivities and determine the next perturbation.
This process repeats until p = 1.

When no SVM solution initially exists, in other words,
all of the training examples are initially unlearned and
{αl = 0, b = 0 : ∀l ∈ U}, the margin vector coefficients
allow the preservation of the equality condition when an
initial SVM solution is given. The margin vectors provide
the degree of freedom to counterbalance the changes in
the unlearned vector coefficients. One way is to bootstrap
the process by selecting one example from each class and
learning an initial SVM, another is to simply proceed with
the initial perturbation and disregard condition until the
margin vector set is no longer empty.

After the current SVM adapt to changes in the regu-
larization and kernel parameters, we utilize the leave-one-
out (LOO) error estimation [37]. LOO divides the original
data into two groups, in which each sample is used as a
validation set, and the remaining samples are used as a
training set. The average of the classification accuracy of
the final validation set is used to evaluate the generalization
performance of the SVM.

3.4.2 Region Public Model Training
After training all incremental data of a user, we employ the
technique of FL to transmit the trained support vectors to
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the edge regions. FL features joint learning and cooperative
modeling. Each user submits the parameters of a unified
model (i.e., part of the parameters are their respective train-
ing parameters, and the remaining are 0s) when building
a public model. Thus, all users can assure that their mod-
els have same dimensions. It can effectively prevent user
privacy leakage during data transfer [38]. Therefore, we
adopt FL to optimize service cache and protect users’ feature
privacy. By means of the average support vector and each
region’s feature X = Average(x) that reflects the features
x of the region’s users, we train a user invocation model
to reflect the probability of the services in a region to be
invoked by the user. A region invocation model is then
trained by employing FL to extract the parameters of all
the user invocation models in an edge region.

3.4.3 User Mobility Model Training

We leverage the concept of ”K-Anonymity” [29] to pro-
tect users’ private information, and introduce Lagrangian
interpolation method to restore user mobility information
based on locations of edge servers accessed by users, while
effectively protecting user location privacy.

In the user mobility model training process, the lon-
gitude and latitude coordinates (i.e., the location of the
server accessed by the user) need to be mapped to a set
of Cartesian coordinates. The user’s mobility is modeled in
line segments located by the Cartesian coordinates to predict
the user’s movement direction. Interpolation is a common
method in mathematical modeling. It is generally suitable
for situations where the data is accurate or the amount of
data is small. Since the locations of the segmented mobility
model is certain and in tiny quantities, linear Lagrangian
interpolation [39], [40] is used to train the user mobility
model.

The edge server access information extracted in Sec. 3.3
contains the user set U = {u1, u2, ..., um} and the edge
servers set ES = {es1, es2, ..., esn} in each time pe-
riod. Therefore, we can obtain a set of access matrices
K = (kit)(i ≤ m, t ≤ T ), where kit is the index of
the edge servers esj accessed by user ui in the tth time
period. By extracting the access matrices of all the edge
servers Gi = (ki0, ki1, ..., kiT ) of ui, a set of observation
values (xi0, yi0), (xi1, yi1), ..., (xiT , yiT ) is obtained, where
(xit, yit)(0 ≤ t ≤ T ) are the mapped Cartesian coordinates
of an accessed server’s location. We divide the Cartesian
coordinates of the locations into groups to ensure that the
abscissa of the observed coordinates in each group changes
monotonously. Interpolation is performed for each group of
observed coordinates (xi0, yi0), ..., (xit, yit), The interpola-
tion interval (x̂i0, x̂it) is the range where the interpolated
nodes x̂i ∈ (x̂i0, x̂it) are. The interpolation interval is
calculated as follows:

x̂i0 = ⌊min{xi}/step⌋ ∗ step (8)

x̂it = ⌈max{xi}/step⌉ ∗ step (9)

where step refers to the length of an interpolation step.
There are a total of k interpolation points calculated by the
interpolation interval and step, to simulate the value ŷi at
xi.

We can calculate the interpolated predicted value by:

ŷi =

k∑
p=0

(yp ∗
k∏

q=0,q ̸=p

x̂i − xq

xp − xq
) (10)

We then combine each group of predicted values to get
the restored user’s mobility information. The element esi in
the candidate edge server set A of ui satisfies:

(x̂i, ŷi) ∈ cov(esi) (11)

where cov(esi) represents the coverage of edge server esi.
In this strategy, we consider not only the historical loca-

tions (x′, y′) and (x̂′, ŷ′) of ui, but also the new location
(x, y) generated at each moment. The mobility model is
dynamically adjusted by constantly comparing with the
predicted result. The process of the dynamic adjustment
process is described in Algorithm 1.

Algorithm 1 Dynamic Lagrange Interpolation Prediction
Process
Require: The user set U , the historical locations (x′, y′), the

historically predicted location (x̂′, ŷ′), and the current
location (x, y), the edge server set ES and its distribu-
tion ESLOC

Ensure: The candidate edge server set A
1: for ui ∈ U do
2: Extracting the historical locations (x′, y′) and the cur-

rent location (x, y);
3: Calculating the offset o of the mobility model by

comparing with (x̂′, ŷ′);
4: while o > threshold do
5: Adjusting the interpolation step to retrain the mo-

bility model;
6: Calculating the offset o of the mobility model;
7: end while
8: Retraining the user mobility model on the new step;
9: Obtaining the user’s possible location (x̂, ŷ);

10: for esj ∈ ES do
11: Reading esj in ESLOC

12: if (x̂, ŷ) ∈ cov(esj)) then
13: esj → A
14: end if
15: end for
16: return A ;
17: end for

3.5 Edge User Allocation

In order to optimize the overall QoS of the focused area, our
solution dynamically allocates edge servers to edge users
based on the cache of edge servers and the mobility of users.
Since the dynamic edge user allocation problem based on
edge cache is a multi-peak and multi-variable optimization
problem, there is a multi-peak functional relationship be-
tween edge user allocation and the overall QoS. The Arti-
ficial Bee Colony (ABC) algorithm solves the multivariate
function optimization problem by simulating the foraging
behavior of the bee colony [41]. The ABC algorithm can
largely avoid falling into the local optimal solution and find
the global optimal solution [42], [43], [44] .
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In the ABC algorithm, the honey collection system of
the bee colony consists of three parts: honey sources, hired
bees and non-hired bees. Hired bees only include one
type of workers–collecting bees, which are responsible for
contacting a certain honey source and transmitting this
information in the dance area of the hive. Non-hired bees
include two types of workers: scouting bees and observing
bees, which are mainly responsible for mining new honey
sources. Scouting bees search for new honey sources under
certain field-searching rules, and transmit information in
the dance zone. Meanwhile, observing bees observe honey
source information and evaluate its quality to gather high-
quality honey sources. The corresponding relationship be-
tween the components of the bee colony foraging model in
the ABC algorithm and the QoS optimization problem is
shown in Table 1.

TABLE 1: Correspondence between the components of the
ABC algorithm and the QoS optimization

Bee colony foraging model QoS optimization problem

honey sources user-base station allocation strategy

hired bees allocation process initialization

observing bees policy selection process

scouting bees realm search process

honey collection QoS value of the allocation policy

The traditional ABC algorithm executes an optimization
process based on a one-dimensional solution vector [41],
reflecting the optimization performance of each parameter.
We introduce the optimization process by designing 2-D
Solution Based Artificial Bee Colony Algorithm, an ABC
algorithm based on a two-dimensional solution vector, and
calculate the optimization performance of each allocation
strategy for comparison. The goal of the cache-based dy-
namic edge user allocation problem is to maximize the fit-
ness value Q and make the predicted user location (x̂ui

,ŷui
)

∈ cov(esj), where cov(esj) ∈ ES (i.e., edge server set). It
can be formalized as follows:

maximize(Q =

m∑
i=1

n∑
j=1

k∑
l=1

(sij ∗ qijl)) (12)

among them, when ui is allocated to esj , sij = 1, otherwise
sij = 0. The service quality qijl increases with the increase
of historical data q′ijl, and decrease with the increase of the
distance between a user and an edge server dis(ui, esj) and
the capacity of the edge server capacity(esj). Its formula is
as follows:

qijl = q′ijl +
α

1 + dis(ui, esj)
+

β

1 + capacity(esj)
(13)

where α and β are the influence coefficients of the user-
server distance and the server capacity respectively.

In order to prevent it from data divergence, the sigmoid
function is used to map the historical service quality data:

qijl =
1

1 + e−
∑T

t=0 qijl
(14)

where T represents the optimized current time period, and
the service quality is normalized to facilitate the compari-
son.

The steps of the ABC algorithm for the QoS optimization
are as follows:

i). Initializing the honey source. The parameters of the ABC
algorithm are initialized, including the number of honey
sources SN , that is, the number of collecting bees and
observing bees, the number of optimization iterations I, and
the maximum invalid number Invalid. The honey sources
are generated by the following formula:

S = (sT1 , s
T
2 , ..., s

T
m) (15)

Si = (si0, si1, ..., sin) (16)

∃!sij = 1 ⇐⇒ esj ∈ A (17)

where si represents the ith dimension vector of the honey
source S, that is, the allocation matrix between ui and
his/her participating n edge servers in the region. An edge
server esj is randomly selected from the set of candidate
edge servers A of ui for allocation. A user can only be
allocated to one server each time. Thus, ∃!sij = 1. Initializing
the honey source is to generate a range of random vectors
for all dimensions of each honey source through the above
formula, thereby generating each initial honey source of SN .

After determining the parameters for initialization, the
ABC algorithm repeats Step ii) - iv) in a predefined number
of iterations to find the optimal solution:

ii). Collecting bees’ period. The honey source is updated
during collecting bees’ period as follows:

if Si = (..., sTij , ...) & Sk = (..., sTkj , ...) (18)

then S′
i = (..., sTij−1, φ(s

T
kj), s

T
ij+1, ...) (19)

where Sk (k ∈ 1, ..., SN and k ̸= i) represents a neighboring
honey source, and φ(sTkj) represents a random transition of
the kth dimension vector of the neighboring honey source
Sk, that is, randomly selecting the kth user to re-allocate the
user with an edge server from the feasible solution. After
obtaining the new honey source, the fitness values of the
collected honey sources are compared to select the better
one.

iii). Observing bees’ period. The observing bees’ period
starts after the completion of the collecting bees’ period.
After gathering the honey sources and returning to the hive,
they share the honey source information, namely the fitness
value of each feasible solution. The observing bees analyze
the fitness value of each honey source and calculate the
relative score of each honey source by:

accF itness =
0.9 +Q

max(Q)
+ 0.1 (20)

Observing bees randomly choose to follow the honey
sources whose relative scores are greater than a random
threshold. In the collecting bees’ period, we use equations
18 and 19 to update the honey sources and choose the best
honey source to preserve.

iv). Scouting bees’ period. If a honey source has not been
updated after executing Step ii) and iii) for invalid times, it
means no better allocation can be found. This honey source
needs to be discarded and the scouting period is started.
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This process reflects the self-organized negative feedback
and volatility properties of the ABC algorithm [42]. In this
period, the scouting bee searches for a new honey source to
replace the abandoned honey source. It means, if the user
allocation strategy is not updated in invalid times, we will
abandon it and generate a new strategy.

4 EVALUATION
The experiments are conducted on a computer with the
following configuration: Intel(R) Core(TM) i5-1035G1 CPU
@ 1.00GHz 1.19GHz, 16 GB RAM and Windows 10 OS. We
use MySQL 8.0 for data processing. All the experimental
models are developed in Python 3.6.

4.1 Research Questions
We perform a set of dedicated experiments to explore the
following basic research questions.

• RQ1: What are the optimal parameters for the user
invocation model and user mobility model training?

• RQ2: How can the model training be accelerated
with the IL strategy adopted in the MENIFLD QoS
method?

• RQ3: How do the parameters in the ABC algorithm,
such as the iteration times and population size (i.e.,
the number of collecting bees), and the edge region
size (i.e., the number of users) influence the optimiza-
tion performance?

• RQ4: How is the performance of the proposed
method in comparison to other optimization meth-
ods?

4.2 Experimental Setup
4.2.1 Data Set Description
The experimental data in this paper mainly originates from
two data sets. The first part [20] [45] comes from the Shang-
hai Telecom data set 1, including the distribution of edge
servers and users’ server access information. The second
part [46] originates from the open source QoS (including
response time RT and throughput TP) data of different edge
services. Here we use RT to calculate the fitness values of
user allocation in an edge region to measure the optimiza-
tion performance, considering the impact of server-user
distance changes caused by users’ mobility on the response
time of an edge service.

The first data set contains more than 7.2 million records
generated by 9481 users’ mobile devices when they accessed
to 3233 edge servers of Shanghai Telecom during 30 days.
The edge servers of the Shanghai Telecom are divided into
20 regions by using the proposed AP clustering algorithm,
where the edge servers in each region are marked in Fig. 7.
Examples of the edge server access records are shown
in Table 2. The second data set includes 142 users’ QoS
evaluations on 4500 services during a period of 16 hours
(4 collections/hour). Examples of the QoS evaluation data
are shown in Table 3.

Our experiments are conducted upon the QoS data (i.e.,
RT) of 4500 edge services accessed by 142 users from 274

1. http://sguangwang.com/TelecomDataset.html

Fig. 7: Regions generated by the AP clustering algorithm

TABLE 2: Shanghai Telecom Data Set

Region
ID

Base
Station ID

Access
Time

Base Station
Location

User
ID

5 68 22:19-22:42 31.240874/121.518086 1

1 1 17:17-17:18 31.237872/121.470259 3

edge servers within a duration of 16 hours by merging the
aforementioned two data sets. We randomly select the edge
server access records of 142 users’ mobile devices within a
duration of 16 hours to map with the QoS data set.

4.2.2 Experimental Data Preprocessing
Cloud computing can be viewed as a centralized big data
processing paradigm, while MEN can be regarded as a
distributed big data processing paradigm. QoS data sets
collected from cloud environments usually contain users’
IP addresses and IDs and QoS values of services accessed
by users as well as access time, which cannot reflect the
distributed and dynamic features of the edge environment.
Therefore, QoS data sets collected in clouds are required to
be allocated to edge servers according to users’ edge server
access records. The data allocation comprises the following
steps.

We assume that, in a sequence of time periods Ti(i =
1, ..., t), a set of users U accesses a set of edge services
WS located in a set of edge servers ES. The QoS values of
the services accessed by the users together with the service
access time are stored in a cloud during this process. First,
we extract the users’ server access records in each time pe-
riod Ti from network operators, which contain the users’ IP
addresses and IDs and the locations of the servers accessed
by the users. Next, we divide the cloud based QoS data set
into t parts according to their corresponding time periods
and extract the IDs and QoS data of the services accessed

TABLE 3: Time-Aware QoS Data Set

User
ID

Time
ID

Web
Service ID RT TP

1 41 0 0.721 0.5034674

25 54 1012 0.309 4.579288
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by each user in each time period. Finally, we map the users’
server access records and QoS data of the accessed services
by matching between the user and server access time of the
former and the user and service access time of the latter.
In this way, we can obtain the time of a service (identified
by the service ID) accessed by a user (identified by the
user’s IP address and ID) from an edge server (identified
by the server location) (termed as service access information)
and the QoS values of the service in this process. After the
edge region division, users’ service access information and
service QoS values are allocated to the corresponding edge
region of each edge server to form an edge based QoS data
set. The data set forming process is illustrated in Fig. 8.

time-aware QoS data
T1

users' IP , services' IDs , QoS

users' IP , services' IDs , QoS
Tt

......
...

users' server access records
T1

users' IP , servers' IDs and locations

Tt

......
...

users' IP , servers' IDs and locations

T1

users' IP , services' IDs , servers' IDs and locations , QoS

Tt
......

...

users' IP , services' IDs , servers' IDs and locations , QoS

edge based QoS data

edge region division

Fig. 8: Edge based QoS data set forming process

This project aims to optimize the regional QoS by op-
timizing the service cache and predicting the direction of
user movement. Therefore, for each region, it is required
to extract a user’ service access information to indicate the
user’s service preference and the user’s edge server access
record to show his/her movement.

4.2.3 Experimental Parameters
The parameter setting of the experimental environment is
shown in Table 4. In the user invocation model, we set
the user feature as a 3-dimensional vector and generate the
feature values by normal distribution. Considering that the
dimension size of the samples is small, we employ Gaussian
kernel as the kernel type to map the user samples to a
higher dimensional space. We set the proportion parameters
of distance and resource in the fitness value calculation to
respectively 0.5 and 0.2 via experiments. We then configure
the maximum invalid number of solutions in the ABC
algorithm to 1 to promote the renewal of feasible solutions.
We set the number of iterations as (0, 1, ... , 20) and the
number of collecting bees SN as (2, 4, ... , 14) respectively
to find the optimal parameters. We divide the regions into
four clusters according to their user scales, that is, [0, 9],
[10,19], [20,29], [30,∞), and randomly choose a region from
each cluster. The profile of the experimental regions are
shown in Table 5. These regions can be utilized to explore
how region size impacts on the optimization performance.
The distribution of the edge servers in these experimental
regions is shown in Fig. 9.

4.2.4 Metrics
The following experiments intuitively compare the opti-
mization performance among the combinations of different

TABLE 4: Parameter Setting of Experimental Environment

Name Meaning Setting

n number of edge servers 274

m number of region users 142

k number of edge services 4500

p dimension of user feature 3

type kernel type
Gaussian kernel

with variance
1/(2*scale)

α, β parameters in QoS calculating 0.5, 0.2

invalid maximum invalid time in ABC 1

TABLE 5: Profile of Experimental Edge Regions

Region ID User
number BSs number Records number

1 49 44 2632619

4 12 16 1804082

8 24 25 2255050

10 8 15 562891

training scales, iteration times, and optimization strategies
based on fitness values and optimization amounts. The fitness
value (equation 12) indicates the overall QoS value in each
edge region.

We introduce the metric of optimization amount to in-
tuitively reflect the performance of the optimal solution
generated by each optimization strategy in comparison to all
feasible solutions. It is defined as the difference between the
fitness value of the optimal solution and the average fitness
value of all feasible solutions:

δ = fitnessopt − fitnessavg (21)

4.3 Experimental Procedure

After forming the edge based QoS data, we extract the data
of each region to train the user mobility model and the
user invocation model for each user to predict the candi-
date edge server to be accessed and the cache of the edge

Fig. 9: Distribution of edge servers in edge regions
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region storing the services to be invoked by the user. We
measure the training speed of MENIFLD QoS based on IL
in comparison to its variation based on static learning. Next,
we tune the population size and the iteration number for the
proposed ABC algorithm to observe their influence on the
optimization effect. Eventually we compare the optimiza-
tion performance of MENIFLD QoS with several baseline
strategies. The detailed experimental steps are described as
follows:
(1) We compare the effect of the number of interpolation

steps on the user mobility model and compare the
training time on different soft-margin regularization and
kernel scale parameters, to choose the appropriate pa-
rameters.

(2) We compare our proposed IL based SVM with a tra-
ditional SVM model to verify that if IL can effectively
accelerate training time. To further testify the efficiency
of MENIFLD QoS for the region invocation model train-
ing, we compare its training time with another popular
supervised learning based classification algorithm, the
gradient descent algorithm for logistic regression.

(3) We explore how the number of iterations impacts the
optimization performance of the ABC algorithm in the
same edge region with the same number of collecting
bees.

(4) We investigate how the population size (i.e., the number
of collecting bees) influences the optimization perfor-
mance of the ABC algorithm in the same edge region
with the same number of iterations.

(5) We measure the effect of the edge region size on the
optimization effectiveness of the algorithm based on
the same number of iterations and the same number of
collecting bees. We also calculate the computation time
of user allocation in different edge regions.

(6) We compare the optimization performance and the
number of allocated users between MENIFLD QoS and
several existing optimization methods over the experi-
mental regions with the same population size. We also
analyse their optimization trend by increasing the num-
ber of iterations.

4.4 Experimental Results
4.4.1 The Optimal Parameters for Model Training
In the user mobility model training, the number of interpo-
lation steps influences the model’s accuracy and complexity.
The model predicts the set of candidate edge servers that the
user may access based on locations of edge servers histor-
ically accessed by the user. We introduce the performance
metric of access rate to measure the ratio of the number of
users who access the predicted candidate edge servers to
the total number of users. The access rate of the user mobility
model at different numbers of interpolation steps in all the
experimental regions is shown in Fig. 10. It can be seen that
the access rate of the user mobility model decreases with the
increase of the number of interpolation steps. The access rate
values of the number of interpolation steps ranging from 100
to 500 are relatively higher. Further analysis shows that there
are 31 inactive users out of 142 users in our experiments,
i.e., 22% of users do not access any edge servers. Although
our access rate calculation takes into account those users,

the prediction error does not affect those inactive users at
all. There is an additional situation where a user’s actual
location is within the coverage of the predicted candidate
edge server but the user chooses to access another edge
server. For example, when the interpolation step is 200, the
mobility model accurately predicts accessed edge servers
for 83 of 111 (i.e. 74.77%) active users, in addition to 12 (i.e.
10.81%) active users whose locations are within the coverage
of the predicted severs.
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Fig. 10: access rate of different interpolation steps

We introduce the performance metric of offset to further
observe the deviation between the predicted and actually
accessed interpolation points. offset calculates the average
deviation between the predicted and the actually accessed
interpolation points of each user. The offset of the user
mobility model at different numbers of interpolation steps
ranging from 100 to 500 is shown in Fig. 11. We can observe
that the offset is lower when the step is 200 or 400. It is
acknowledged that the number of interpolation points to be
computed is lower when the number of interpolation steps
is larger. Therefore, we set the number of interpolation steps
as 400 to balance among access rate, offset and the computation
cost.
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Fig. 11: offset of different interpolation steps

The user invocation model is built on IL and FL based
SVM, the training process of which includes four steps:
dynamic SVM training, leave-one-out error rate estimation
(for generalization performance evaluation), regularization
parameters perturbation, and kernel parameter perturba-
tion. The training inputs include the samples X of users in a
region (indicating the users’ features), their service invoca-
tion labels yk (indicating the invocation of the user sample
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X on the services servicek), the dimension parameter of the
soft-margin regularization C, and the kernel scale scale. We
conduct a series of experiments in the four regions to ex-
plore the impact of C and scale on training time on average.
The experimental results are shown in Fig. 12. It can be
observed that there is no obvious change in the training
time when C and scale vary. We compare the classification
performance among all the possible combinations between
the values of C and scale and find that no error vector
is generated when (C, scale) ∈ {(1, 6), (4, 7), (3, 6), (4, 9)}.
Eventually we choose C = 1 and scale = 6, since they generate
lower error vectors rate and need less training time.
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Fig. 12: Training time of soft-margin regularization parame-
ter and kernel scale

4.4.2 Training Time
We compare the training time of three candidate service
invocation models, i.e., the proposed IL based SVM model, a
traditional SVM model without adoption of IL, and a logistic
regression model. We make use of the three candidate
models to train the region invocation model for an edge
region (i.e., Region 10) randomly selected from the four
experimental regions. The new data arrives in 19 of the 64
time periods. The models are trained sequentially upon the
corresponding data labelled by each of the time periods. The
total training time of all the 4500 services of this region in
each time period is calculated. The result is shown in Fig. 13.
The inference time refers to the time for estimating the
possibility of invocations according to the overall preference
of the region. It is relatively short (about 8s for all the users
in the data set) compared with the training time. In addition,
the inference time spent at each moment is almost equal.
Therefore, the inference time does not need to be compared
and can be ignored here.

It can be observed that the training cost of the logistic
regression model is relatively stable and the highest among
the three models. This is because the logistic regression
model needs to be trained on all the previously arrived
data when new data arrives. In contrast, the structure of
SVM is more flexible and gets larger with the incremented
data Therefore, its time assumption remains increasing. The
IL based SVM model costs less training time than the
traditional SVM, saving almost 75.8% training time of the
latter. The logistic regression model is relatively simple,
which is more suitable for large-scale linear classification.
Its training time after time period 45 is slightly lower than
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Fig. 13: Comparison of the training time

SVM, while SVM costs less training time in most of the
time periods. Moreover, IL based SVM only needs to train
incremented data and appropriately add disturbances to
achieve the training effect in each time period, which can
greatly increase the training speed.

4.4.3 Optimization Performance
Iteration Times. The average optimization performance
over the experimental regions with different iteration times
is revealed through the metrics of fitness value and opti-
mization amount in Fig. 14. It can be clearly observed that
the fitness value reaches its peak and stabilises when the
number of iterations >9. On the other hand, the optimiza-
tion amount gradually decreases with the growth of the
iteration times when the number of iterations >9. This
phenomenon indicates that the relative advantage of the
optimal solution compared to all the feasible solutions is
reduced with the higher numbers of iterations. The ideal
optimization objective is to achieve a higher fitness value
and optimization amount in a smaller number of iterations.
Eventually we set the iteration times of the ABC algorithm
to 10 by considering the balance between the fitness value
and the optimization amount.

Population Size. The average fitness value and optimiza-
tion amount over the experimental regions with different
population sizes at the 10th iteration are shown in Fig. 15.
The fitness value and optimization amount keep growing in a
fluctuating way with the increase of the population size. The
former indicates that the optimal solution can be obtained
if the population size keeps expanding. The latter reveals
that the larger population size can create more significant
difference between the optimal and the average fitness value.
This results from more non-optimal solutions generated by
a larger population size. Compared with the population size
of 2, when the population size is 4, the improvement of
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Fig. 14: The influence of iteration times on the optimization
performance

the optimal fitness value is greater than the improvement
of the average fitness value (i.e., ∆opt = fitnessopt 4 −
fitnessopt 2, ∆avg = fitnessavg 4 − fitnessavg 2, ∆opt >
∆avg), so the optimization amount (equation 21, i.e., δ4 =
fitnessopt 4 − fitnessavg 4) becomes larger, and the first
peak appears. Conversely, compared to the population size
of 4, when the population size is 6, the improvement of the
optimal fitness value is less than the improvement of the av-
erage fitness value (i.e., ∆opt = fitnessopt 6−fitnessopt 4,
∆avg = fitnessavg 6 − fitnessavg 4, ∆opt < ∆avg), so the
optimization amount (i.e., δ6 = fitnessopt 6 − fitnessavg 6)
becomes smaller, and the first valley appears. The fitness
value of the solution experiences a sharp rise when the
population size is 12. The optimization amount also reaches
its peak value, indicating the greater relative advantage of
the optimal solution in this point. We eventually choose
12 as the optimal population size for the ABC algorithm,
considering that further expanding the population size will
dramatically increase the optimization cost, and the tradeoff
between the fitness value and the optimization amount.
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Fig. 15: The impact of population size on the optimization
performance

Edge Region Size. We compared the optimization per-
formance among ten edge regions to explore the relationship
between optimization performance and the edge region size
(i.e., the numbers of edge servers in a region). As shown in
Fig. 16, either optimization amount or fitness value per user has

no obvious trend with the increase of the region size. This
indicates that the edge region size has no significant impact
on the optimization performance. From equation 12, it can
also be seen that the optimization effect has a non-linear
relationship with the region size m.
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Fig. 16: The influence of edge region size on the optimization
performance

Computation Time. Fig. 17 shows the computation time
of user allocation in the ten edge regions. It can be seen that
the growth rate of computation time is lower than it of num-
ber of users (e.g., 0.02s for 10 users, 0.13s for 89 users). The
highest computation time is only 0.14s, which is relatively
minor for most application scenarios (i.e., walking, cycling,
driving, etc.).
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Fig. 17: The influence of number of users on the computation
time

4.4.4 Optimization Method Comparison
Since the existing strategies only focus on static optimiza-
tion, we compare the one-time optimization performance
among our proposed strategy, two baseline strategies, and
two state-of-the-art EUA strategies. We take into account
users’ mobility and regions’ cache ahead of time to deter-
mine the solution space of each strategy. The five compara-
tive strategies include:

• Random. This strategy randomly assigns edge servers
to users as long as the users are in their coverage.

• GA QoS. This is a variant of our proposed MENI-
FLD QoS strategy that bases on a genetic algorithm.

• EUA ILP. This strategy employs a heuristic approach
based on integer linear programming (ILP) to select
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an edge server with sufficient computing resources
for a user from the user’s candidate server set [10] .

• EUA FOA. This strategy adopts a Fruit fly Optimiza-
tion Algorithm (FOA)-based approach to allocate
edge users to edge servers [47].

• MECMA QoS. This strategy does not train a user
invocation model and does not contain FL. It only
considers the mobility of user and employs the ar-
tificial bee colony algorithm to form the allocating
strategy.

Fig. 18 shows the optimization performance comparison
between MENIFLD QoS and the other strategies. Since the
purpose of the optimization is to find a better user-edge
server allocation plan, the fitness values of the six strategies
among the experimental regions are compared, along with
the increased number of iterations. As can be seen, our
MENIFLD QoS strategy achieves the highest fitness value in
the whole period and stays relatively stable after the second
iteration, MECMA QoS performs slightly weaker, followed
by the Random and GA QoS strategies whose values are
more fluctuating. The lower and unstable value of GA QoS
results from its defect that it is easily stranded by local op-
timal solutions during the searching process. The EUA ILP
and EUA FOA strategies have relatively inferior optimiza-
tion performance, since they cannot guarantee every user
in a region to be allocated to an edge server. EUA ILP is a
heuristic method and its value tends to be flat after the third
iteration. EUA FOA is based on a swarm intelligence tech-
nique and achieves higher values than EUA ILP. However,
it converges slowly and also easily falls into local optimal
solutions during the searching process.
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Fig. 18: Comparison of the optimization performance

Next, we compare the numbers of successfully allo-
cated users in our four experimental regions among those
strategies in Fig. 19. It can be seen that Random, GA QoS,
MECMA QoS and MENIFLD QoS can allocate all the users
in the experimental regions, in comparison to the two
state-of-the-art EUA strategies, EUA ILP and EUA FOA.
This is because Random, GA QoS, MECMA QoS and MENI-
FLD QoS have the same objective function that aims to
allocate all the users to edge servers in an edge region,
whilst EUA ILP and EUA FOA’s objective functions cannot
guarantee all the users to be allocated to edge servers in an
edge region.
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5 CONCLUSIONS AND FUTURE WORK

The existing QoS optimization strategies do not consider the
allocation of edge users, both the user feature privacy and
location privacy, and the impact of dynamic incremental
data. Further, their research scenarios are prone to single
and static. In response to the above problems, this paper
proposes a mobile QoS optimization strategy based on IL
and FL in the network. By optimizing the edge service cache
and user mobility scenarios, the user’s feature privacy and
location privacy are effectively protected. An improved ar-
tificial bee colony algorithm basing on the two-dimensional
solution to the edge network is proposed. As a result, user
allocation problem is optimized.

The experiment proves that the edge cache can optimize
the regional QoS. The improved artificial bee colony algo-
rithm effectively optimizes the user allocation according to
its multi-variable and multi-peak characteristics. The idea of
IL can significantly improve the efficiency of model training.
Therefore, the MENIFLD QoS strategy proposed in this
paper effectively realizes privacy protection while ensuring
the optimization performance, and effectively enhances the
cache model training efficiency.

In future work, we will focus on the following issues.
First, at present, only response time is considered to op-
timize regional QoS, we will further study multiple QoS
attribute values for QoS optimization. Second, the current
approach is only locally optimized in a clustering region,
we will consider QoS and load balancing for global opti-
mization.
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