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Abstract—In mobile edge computing (MEC), mobile users can
offload tasks to edge nodes to alleviate local computational loads,
leveraging the computing capabilities of edge nodes. However,
users’ high mobility and temporal variability pose challenges in
dynamically allocating mobile users to optimize perceived Quality
of Service (QoS). To address this challenge, this paper proposes an
adaptive ant colony algorithm for user allocation decisions. This
method constructs hidden mobility fitness relationships between
users and servers based on user movement trajectories. It utilizes
an improved adaptive ant colony algorithm to adjust fitness
values automatically and optimize user allocation. The goal is
to maximize overall user satisfaction under resource constraints
while minimizing user allocation costs. Experimental analysis
demonstrates that the proposed method achieves higher user
allocation rates and effectively utilizes available resources on edge
servers.

Index Terms—Mobile Edge Computing, User Allocation, QoS
Optimizing, Ant Colony Algorithm, Knapsack Problem

I. INTRODUCTION

With the rapid development of Internet of Things (IoT)
devices, accompanied by the emergence of scenarios such as
smart cities, smart healthcare, and intelligent transportation,
the total number of Internet-connected devices continues to
increase [1]. Smart mobile devices (SMD) generate numerous
computationally intensive tasks, such as autonomous driving,
AR/VR, real-time monitoring, and others [2]. Due to the
limited computational capacity of SMD, relying solely on
local computing resources is insufficient to meet the demands
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of such tasks. Mobile Edge Computing (MEC) is a novel
distributed computing paradigm that entails the migration
of cloud-centric computational capabilities towards edge net-
works [3]. Within the edge computing environment, edge
servers are strategically positioned in proximity to end-users
to deliver services, known as edge services [4]. Mobile users
can request edge servers to offload local tasks to these servers,
leveraging edge node computational resources to alleviate
local resource scarcity. Despite the relatively abundant re-
sources in edge nodes compared to end-user devices, the
influx of mobile users accessing these nodes may lead to high
loads, resulting in resource shortages. Additionally, due to user
mobility, sustained long-term connections between users and
servers become impractical, leading to service interruptions.
These factors can potentially impact the quality of service
(QoS) experienced by users. Hence, it becomes particularly
important to reasonably allocate edge users to optimize QoS.

Traditional approaches [5]–[8] typically assume that user
positions remain static, thereby formulating the user allocation
problem as a static optimal allocation problem. However,
users’ locations are constantly dynamic in the real world.
Therefore, traditional static optimization methods may not
apply to user allocation in real-world scenarios. Furthermore,
some researchers have begun to focus on user allocation in
dynamic mobile environments [9]–[11]. These methods often
focus on reducing delay or energy consumption from the
perspective of service providers or mobile and IoT devices.
However, in resource-constrained mobile edge environments,
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Fig. 1. Mobile Edge Service Invocation Scenario.

solely maximizing user resource demand from the service
provider’s perspective may result in the satisfaction of some
users at the expense of others, leading to a decrease in the
Quality of Experience (QoE) for users. Therefore, during the
user allocation process, it is essential to consider maximizing
global user QoE under limited resources.

We illustrate the motivation using the following scenario
of users requesting edge services. As shown in Fig.1, each
of the five edge users generates a set of tasks. For instance,
edge user u1 generates a request set {a1, a2, a3}. Assuming
that each request has resource requirements of < 1, 1, 1, 1 >,
representing CPU, RAM, Memory, and Bandwidth needs
respectively, and adhering to the signal coverage constraints
of the edge servers. Edge server s1 fully satisfies u1 and
u2, while the requests of u3 and u5 are allocated to edge
servers s2 and s3. However, the remaining resources on s2 are
insufficient to fulfill the request of u4. If user u4 is assigned
to a remote cloud, it will result in a high service delivery
delay, leading to a poor user experience for u4. Typically, a
user’s task can be decomposed into sub-tasks that multiple
edge servers can collaboratively process. Consequently, we
can construct user-server fitness relationships based on user
mobility trajectories. In this scenario, let us assume that the
edge server set s1, s2 exhibits the highest fitness compatibility
with user u4. Therefore, the tasks submitted by u4 can be
collaboratively processed by edge servers s1 and s2, where
task a3 is allocated to s1 and task a4 is allocated to s2.
As a result, the total resource requirement for executing the
submitted tasks on s1 amounts to < 6, 6, 6, 6 >, which does
not exceed s1’s resource of < 6, 7, 8, 7 >. Additionally, s2
possesses ample resources to handle the allocation of tasks
for other users, thereby ensuring the overall quality of service
for user requests.

We propose an optimization method based on an improved
adaptive ant colony algorithm to address the user allocation
problem in the aforementioned mobile edge environment. The

main contributions of this paper are as follows:

• We first model the Edge User Allocation (EUA) prob-
lem as a 0-1 knapsack problem under finite resource
constraints. Based on the evolving trajectories of users
in mobile scenarios, we establish concealed fitness rela-
tionships between users and servers to derive a candidate
service set, thereby ensuring the stability of links between
users and servers.

• To address the EUA problem, we simultaneously consider
both user allocation costs and the QoE for mobile users.
We propose an improved ant colony algorithm with
adaptive pheromone updates to prevent the algorithm
from falling into the pitfalls of premature convergence
and local optima. This approach allows us to obtain the
optimal allocation strategy, maximizing user QoE while
minimizing the overall user allocation costs.

• Through simulation experiments, we compared our pro-
posed method with several baseline approaches. The
results demonstrate that our algorithm significantly out-
performs other methods in terms of user allocation rate,
resource utilization efficiency, and service response time.

The rest of this paper is organized as follows: Section II
introduces the related work. Section III describes the details
of the user Allocation problem model in MEC. Section IV
describes the proposed task offloading method. Section V
presents the experimental evaluation. Finally Section VI con-
cludes the paper.

II. RELATED WORK

Mireslami et al. [12] proposed a multi-objective optimiza-
tion algorithm to obtain the optimal combination of cloud
resources satisfying customer demands. This algorithm aims to
minimize deployment costs while meeting QoS performance
requirements. However, this method is only applicable to fixed
workload scenarios and known supplier pricing strategies.
Miao et al. [13] combined artificial intelligence techniques
to design an intelligent computation offloading method. They
proposed a computation task prediction algorithm based on
Long Short-Term Memory (LSTM) and an optimal computa-
tion offloading strategy based on task prediction. In large-scale
computing and service scenarios, their approach effectively
reduces the total task delay. Ding et al. [14] transformed the
resource allocation problem into a real-time linear program-
ming sub-problem, proposing a centralized resource allocation
strategy that effectively addresses the service allocation opti-
mization problem under budget constraints. This method uti-
lizes Lyapunov optimization techniques to convert the original
problem into a series of real-time linear programming sub-
problems. It introduces a centralized algorithm for resource
allocation to user requests. Li et al. [15] introduced a novel
user allocation method that implements edge user allocation
strategies under constraints such as budget and coverage. This
method targets allocating the maximum edge users while min-
imizing the number of edge servers utilized. They proposed
EUA-FOA, utilizing the Fruit Fly Optimization Algorithm to



address the EUA problem, significantly enhancing the effi-
ciency of user allocation. However, these studies only consider
the benefits to service providers, such as reducing overall
service delay and device energy consumption. The QoE of
end-users, who are the consumers of these services, is also
crucial for user allocation.

He et al. [9], [10], [16] modeled the user allocation prob-
lem considering constraints such as available resources and
distance in the edge environment. They proposed heuristic
methods to solve the edge user allocation problem. Building
upon this, He et al. further considered the dynamic service
quality levels of edge service users to find a solution that
improves the overall QoE for application users. They also
explored edge user allocation based on distance awareness
and adversarial awareness. However, these methods often treat
user requests as independent entities. In the real world, tasks
generated by users may be more complex, and relying solely
on a single server may not meet all user needs. Peng et al.
[17] considered the high mobility of edge users and viewed the
edge user allocation problem as an online decision-making and
optimization process. They provided online decisions based
on user mobility and temporal characteristics and developed a
method named MobMig, which incorporates mobility aware-
ness and migration functionality for real-time user allocation.
However, this method is limited to a single service provider
offering services to edge users and may not be suitable
for scenarios with multiple service providers competing for
limited resources. Wu et al. [18] proposed a novel real-time
user allocation method. They treated the edge user allocation
problem as a static optimization process, considering long-
term edge user allocation rates, edge server leasing costs,
and edge server energy consumption from the perspective
of mobile application providers. They designed a distributed
reactive approach based on a fuzzy control mechanism for
real-time allocation decisions. However, employing static opti-
mization methods may not be suitable for real-world scenarios
characterized by real-time connections and dynamic changes.

The above-mentioned methods primarily optimize user al-
location problems in terms of service provider costs, resource
utilization at the server end, and energy consumption. How-
ever, as service users, user experience plays a crucial role in
user allocation strategies. Additionally, since users are mobile,
interruptions in connectivity between users and servers may
occur. Due to the mobility of users, connections between
users and servers may experience interruptions. Therefore, it
is imperative to minimize the cost of user service migration
and alleviate the impact on user service quality during user
mobility.

III. SYSTEM MODEL AND PROBLEM DESCRIPTION

A. System Model

In a mobile edge environment, each base station covers a
specific area, with edge servers placed at these base stations.
Services provided by service providers are deployed on these
edge servers, limiting access to edge services only to edge
users covered by the respective base station. This is known

Fig. 2. Quantitative Correlation Chart between QoS and QoE [9].

as coverage constraint. During communication between users
and edge servers, wireless transmission follows a slow decay
pattern. In other words, wireless signal strength depends on the
distance between users and edge servers, with closer distances
resulting in stronger signal strength. Additionally, each edge
server is equipped with available server resources such as
CPU, memory, storage, and bandwidth. The resource capacity
of servers or the resource requirements of user tasks are rep-
resented as a vector ⟨CPU,RAM,Memory,Bandwidth⟩.
When assigning an edge user to an edge server, the server
should have sufficient available server resources to accommo-
date it, known as resource capacity constraint.

We define a set of edge server S = {s1, ..., sm}, the set
of edge users at time t is denoted as Ut = {u1, ..., un}.
The requests submitted by users can be decomposed into a
set of independent tasks. It can be represented as At(ui) =
{a1, ..., an}. Each task ak can be processed by an edge server
sj covering the user. The total resource demand of all tasks
on each edge server must not exceed the available capacity
during the respective time, as exceeding this limit may lead
to server overload, resulting in performance degradation or
even service interruption. The user allocation problem in edge
computing environments aims to allocate users to edge servers
across multiple time slots, satisfying task requests from users
in specific areas and adhering to relevant constraints during
user allocation. The objective is to maximize overall user
satisfaction and minimize service migration costs.

B. Quality of Experience

Existing research [19]–[21] has already demonstrated a
quantitative correlation between QoS and QoE, as depicted
in Fig.2. At a certain point (e.g., W3), user satisfaction tends
to converge, meaning that regardless of the QoS level, QoE
remains nearly constant at its highest level. Each user ui

is allocated resources corresponding to a specific QoS level,
resulting in different levels of QoE. Currently, most research
measures user QoE through the quality of service delivered
to the user [19]. Generally, the QoS of a user is nonlinearly
correlated with its QoE [20]. The correlation between QoE
and QoS is modeled using a sigmoid function, expressed by



the following equation:

E0
i =

L

1 + e−α(xi−β)
(1)

where xi =
∑

k∈D wk
i

|D| , D represents the set of server tasks. wk
i

represents the number of resources required for the task, L is
the maximum achievable QoE value, β is the target level that
QoE should reach, α is the growth rate of QoE, indicating
how quickly QoE changes from its minimum to maximum. It
is worth noting that if user ui is not allocated, then Ei = 0.

The signal strength of a user weakens as the distance from
the edge server increases. The attenuation of data rate in
wireless transmission must be considered to measure user
signal strength. According to the Free-Space Path Loss (FSPL)
model [22], the signal power attenuation in free space can be
calculated as:

f(d) = GtGr

(
λ

4πdij

)2

(2)

where Gr and Gt are respectively the receiver and transmitter
antenna gains, typically set to 1, λ is the wavelength, and dij
is the distance between the edge server sj and edge mobile
user ui.

In the scenario of user allocation with collaborative multi-
edge servers based on the attenuation coefficients above, the
calculation of user QoE is expressed by the following formula.
The W t

i represents the resources allocated to user ui at time
t.

Ei =
W t

i∑
ak∈At(ui)

wk
i

f(d)E0
i (3)

C. User Allocation Cost

In MEC, user locations continuously change over time, and
user mobility can lead to service interruptions. To prevent a
decrease in user QoE due to service disruptions, it is necessary
to migrate user tasks, which incur associated migration costs.
We define the cost ltak

(ui) generated by user migration task
ak ∈ At

ui
as the span between the migration start time and

the start time of the migration task on the target edge server.
The computation is as follows:

ltak
(ui) = ztak

(ui)/v
t
ak
(ui) + tcom

W t
i

Ct
j

(4)

Here, ztak
(ui) represents the size of data transmitted between

servers, while vtak
(ui) represents the transmission rate. tcom

represents the delay in waiting for the target server to initiate
the service. Ct

j stands for the resource capacity of the desti-
nation edge server.

We aim to minimize the migration cost incurred by users
during task migration in the user allocation process, defined
as follows:

P1 : min

|Ut|∑
i=1

|At(ui)|∑
k=1

ltak
(ui) (5)

s.t. C1 :

|Ut|∑
i=1

|At(ui)|∑
k=1

wkxi,j,k ≤ Ct
j (5a)

C2 :

|S|∑
j=1

xi,j,k ≤ 1 (5b)

where C1 represents that the total allocated resources for all
tasks in server j are less than the resource capacity limit. C2

represents that each task can only be executed within one
server.

IV. MULTILATERAL COLLABORATIVE USER ALLOCATION
ALGORITHM

The algorithm mainly consists of three parts: Data Col-
lection and Preprocessing, Generating Candidate Resource
Schemes, and Obtaining the Optimal User Allocation Strategy.
The process is depicted in Fig.3.

Data Collection and Preprocessing. Firstly, existing edge
QoS data is analyzed and processed to extract dynamic user
trajectory data and edge server QoS sample data to construct a
merged dataset. Then, simulation processing is performed on
the existing merged dataset to construct a simulation merged
dataset that meets the experimental requirements.

Generating Candidate Resource Schemes. Firstly, the
future geographical locations of users are predicted using a
user trajectory prediction model. Then, based on the coverage
area of edge servers, the set of edge servers that users
can access the next time are identified. The hidden fitness
relationship between each user and edge server in the server
set is calculated, and the top M edge servers with the highest
hidden fitness are extracted to construct a candidate station set
for user allocation (see line 3 in Algorithm 1).

Obtaining the Optimal User Allocation Strategy. Firstly,
the QoE model for users and the cost model for user allocation
are constructed. These models are combined with weights to
form a comprehensive value model for users. Subsequently,
the user allocation problem is formulated as a knapsack
problem, wherein the comprehensive value of all allocated
users is translated into the knapsack’s value, and the resource
constraints of edge servers are equated to the knapsack’s
capacity limit. This problem is then optimized and solved
using an enhanced adaptive ant colony algorithm to derive the
optimal user allocation strategy (see line [4-15] in Algorithm
1).

A. Data Collection and Preprocessing

The objective of data collection and preprocessing is to
merge and construct a dataset that satisfies the requirements
of mobility awareness and resource constraints. In areas with
deployed edge servers, numerous users move between different
regions and access edge servers at various locations at dif-
ferent times. Each edge server concurrently processes service
requests from many users and records the data of service calls
made by mobile users, including the range of regions where
mobile users are located, the types of devices used, the latitude
and longitude information of the accessed edge servers, and



Fig. 3. The overall framework diagram of the method.

Algorithm 1 Multilateral Collaborative User Allocation Algo-
rithm
Input: Trajectory of User, Task information
Output: The Optimal User Allocation Strategy

1: Initialize Population size P , Evaporation rate e,
Pheromone deposition rate m

2: Initialize Pheromone matrix M
3: Predicting the position at time t + 1 based on historical

trajectories and obtaining a candidate set of servers Jt+1

4: for each i = 1, 2, . . . , N do
5: for each Ant = 1, 2, , . . . , n do
6: Ant select paths based on the concentration of

pheromones
7: Compute the fitness ci of each Ant’s path
8: Update the global best solution
9: if A new global best solution is found then

10: Saving global best solution
11: end if
12: Evaporate all pheromones according to the evapora-

tion rate
13: Select the top k paths with the highest fitness and

add pheromones to them
14: end for
15: end for

the types of services called. The purpose of the data collection
phase is to collect the location information of edge servers
and the stored QoS historical data. Data preprocessing mainly
involves filtering out invalid data, such as QoS samples with
response times of -1, to make the experimental dataset more
consistent with practical requirements.

B. Generating Candidate Resource Schemes

We employ the LSTM model to predict the geographical
location of users at the next time. The historical trajectory

Fig. 4. Mobility Fitness Relationship between User and Edge Server.

information of users serves as the input to the trajectory
prediction model, which is then propagated to subsequent lay-
ers to obtain predicted trajectory points. The user’s historical
trajectory points are represented as Y (t) = {latt, lngt}. The
prediction model is represented as:

Y (t+ 1) = F{Y (t), Y (t− 1), ...Y (1)} (6)

Based on the coverage range of edge servers and the
predicted future geographic locations of users, the set St+1 of
candidate edge servers that users can access at the next time
step is computed. Each edge server Si in this set satisfies:

(lngm, latm) ∈ cov(si) (7)

Next, we calculate the Mobility-awareness Fitness Value
(MF ) mapped to each edge server in the available server set
St+1 based on the coverage area of servers. MF represents the
expected duration that a user remains within the coverage area
of a particular edge server. As shown in Fig.4, the calculation
of the MF t

i,j value between user ui and server sj is as follows:

MF t
i,j =

Et
i,j

vti
(8)



Where Et
i,j =

√
R2

j −
(
dti,j

)2
+ 2Rjdi,j cos θ represents the

expected movement distance of user ui within the signal range
of edge server sj at time t, vti the speed of the user ui at
time t, dti,j denotes the distance between the user ui and edge
server sj at time t, and Rj represents the coverage range of
the edge server. Subsequently, all MF mapped between users
and edge servers are sorted and the pre-allocated candidate
nodes Jt+1 = {s1, s2, · · · , sn} for users are formed.

C. Obtaining the Optimal User Allocation Strategy

The ant colony algorithm simulates the behavior of ants
discovering paths while searching for food to find optimized
paths in graphs. In the ant colony algorithm, the pheromone
trail is a distributed numerical information that ants utilize for
decision-making analysis. It has been widely applied to solve
problems such as the traveling salesman problem (TSP) and
the 0-1 Knapsack Problem. When considering the allocation of
users under the constraint of edge server resources, we model
the user allocation problem as a 0-1 Knapsack Problem, as
shown in Table I.

TABLE I
MODEL MAPPING RELATIONSHIP

0-1 Knapsack Problem User Allocation Optimization Problem
Value of the goods Maximum weighted value after user allocation
The volume of the backpack Resource constraints on base stations

The weighted value of each requested task allocated to
various edge servers (i.e., the weighted sum of user QoE and
allocation cost) is considered the value of each item placed into
the knapsack. The resource constraints of each edge server are
treated as the volume of the knapsack. Selecting appropriate
items to maximize the total value of the knapsack ensures
that the total weighted value of the user’s various request
tasks offloaded to the candidate resource set of edge servers
is maximized.

Firstly, we have constructed a directed graph G = (V,E),
V represents the set of points, which consists of Vs and Vd,
where Vs represents the nest location of the ants (i.e., user
position), and Vd represents the location of the items (i.e.,
edge server positions in the candidate resource solutions). E
is the set of edges, which includes the distance from the user
ui to each edge server in the candidate resource solutions.

Let τi(i = 0, 1, ..., n) be the pheromone on the path, where
the value of the pheromone represents the concentration of the
pheromone on the path. Due to the lack of data such as the
time delay of the user’s assignment to the target edge server
when performing the initial user assignment, we only consider
the distance between users and edge servers when initializing
pheromone values. In calculating the pheromone on the path
between the service invoked with the user and the edge server,
it is represented by the following equation:

τi = 1/di,n (9)

where di,n represents the distance from user ui to the edge
server sn.

Secondly, We assume the route taken by the i-th ant in
the colony in the k-th step is L(i) = (0, t1, t2, t3, · · · , tn),
which means that the ants start from the origin and arrive at
t1, t2, t3, · · · , tn in turn, the ants follow the transfer probability
formula to choose tk+1 and choose the location with the largest
transfer probability as the next step. If

∑k+1
j=1 aij ≤ b, where

b represents the capacity of the knapsack (available resources
of the edge server), and aij represents the resources required
for the j-th task called by ui, if the capacity constraint of the
knapsack is satisfied, then tk+1 is added to the knapsack, i.e.,
L(s) = (0, t1, t2, t3, ..., tk+1); otherwise, the ant stops walking
and returns to the starting point.

The weighted sum of all service requests allocated to the
edge server) given by

∑
i∈L(s) ci(s = 1, 2, ...,m), where ci

represents the weighted value of each item, calculated as
follows:

ci = ω1
Ei − Emin

Emax − Emin
+ ω2

ltak
(ui)− ltakmax

(ui)

ltakmax
(ui)− ltakmin

(ui)
(10)

ω1 and ω2 respectively represent the importance of the user’s
QoE and allocation cost, with ω1 + ω2 = 1.

The updating of pheromones mainly consists of two parts:
strengthening the pheromones on arc L(s) and evaporating
the pheromones on other arcs. To prevent the algorithm from
falling into a local optimal solution prematurely and facilitate
the global search, we adopt an adaptive pheromone updating
strategy to dynamically adjust the pheromone intensity on the
paths searched by ants that are in a state of local convergence,
making the user allocation result more reasonable. Therefore,
the concentration of pheromones will be adjusted according to
the following formula.{

τij(t+ 1) = (1− ρ)1+ω(m) • τij +∆τij , τ ≥ τmax

τij(t+ 1) = (1− ρ)1−ω(m) • τij +∆τij , τ ≤ τmax

(11)
where ρ and 1−ρ respectively represent the retention level and
evaporation level of pheromones. ∆τkij represents the residual
pheromone concentration of the ants during the optimization
process in the period t to t + n. ω(m) = k/l, k is the
convergence iteration count. Here, l is a constant used to
adaptively adjust the strength of pheromones on each path
according to the distribution of solutions, thereby updating
the pheromones adaptively. This approach prevents the al-
gorithm from prematurely falling into a local convergence,
thus enhancing the global search capability of the ant colony
algorithm. Finally, we choose the ant with the maximum total
knapsack value, indicating that the user allocation strategy has
the highest overall value. We select the set of edge servers
within this value to collaborate in providing services for the
user’s requests.

V. EXPERIMENTS

The PyTorch 1.9.1 framework is used to implement the
proposed method. The model is trained with a computer with



NVIDIA GTX1650Ti GPU, AMD Ryzen 7 CPU@2.90 GHz.
All methods are compared under the same environment.

A. Experimental Setup

Experimental Data. This experiment mainly involves two
datasets:

1) Dataset 1 is the Shanghai Telecom dataset1. This dataset
consists of real geolocation information for 3,233 base
stations and the invoked service records of 611,507 base
stations, including the start and end times of service calls,
server addresses (latitude and longitude), and user IDs.

2) Dataset 2 is a real-world service quality dataset released
by the Chinese University of Hong Kong2. The dataset
provides real service QoS data, recording the QoS in-
formation for 4,500 edge services invoked by 142 users
across 64 different time slices (each time slice being 15
minutes apart).

3) Based on the aforementioned two datasets, a validation
dataset for simulation was constructed. We simulated
edge server resource capacity data and user resource re-
quest data. Each server’s resource capacity data and user
requests consist of four attributes: CPU, RAM, Memory,
and Bandwidth. The number of resources required for
each attribute is a random number between 1 and 5. The
simulation parameters are shown in TableII.

TABLE II
SIMULATION DATASET PARAMETER SETTINGS

Parameters Default Values Range
Number of Edge Servers 60
Number of Edge Users 160

Number of Tasks 4 (1∼5)
Server Resource Capacity (10,10,10,10) (1∼10,1∼10,1∼10,1∼10)
User Resource Demand (1,1,1,1) (1∼10,1∼10,1∼10,1∼10)

B. Comparison Methods.

We compared the Ant Colony Optimization Algorithm
for Edge User Allocation (EUA-ACO) with several baseline
methods and some of the more effective service quality
optimization methods in recent years to verify the superiority
of EUA-ACO. These optimization methods include EUA-
Random, EUA-GA, EUA-ABC, EUA-FOA [15], and EUA-
ILP [9]. Their descriptions are as follows:

• EUA-Random: A random service quality optimization
method. This method forms a user allocation strategy by
randomly assigning edge servers based on user mobility
while satisfying server resource constraints and signal
coverage constraints.

• EUA-GA: A quality of service optimization method based
on Genetic Algorithm (GA). This method searches for
feasible edge user assignment strategies based on user
mobility and iterative selection based on genetic algo-
rithms, taking into account resource constraints and signal
coverage constraints.

1http : //sguangwang.com/TelecomDataset.html
2http : //wsdream.github.io/dataset/wsdreamdataset2.html

• EUA-ABC: A service quality optimization based on the
Artificial Bee Colony algorithm (ABC). This method
allocates users by simulating the process of a bee colony
harvesting honey using the Artificial Bee Colony algo-
rithm while considering resource limitations and signal
coverage constraints.

• EUA-FOA: A service quality optimization method based
on the Fruit Fly Optimization Algorithm (FOA). This
method uses the FOA to allocate edge users to edge
servers by simulating the predator-prey process of fruit
flies, forming allocation strategies, and seeking optimal
solutions.

• EUA-ILP: A service quality optimization method based
on Integer Linear Programming (ILP). This method em-
ploys a heuristic approach based on integer linear pro-
gramming to provide users with edge servers that offer
sufficient computing resources from a set of candidates.

• EUA-ACO: This paper proposes an optimization method
for user allocation. The method is based on an improved
adaptive ant colony algorithm, which allocates edge
servers to users by simulating the process of ant colony
searching for food.

C. Experimental Results and Analysis.

Algorithm Performance. To verify the algorithm’s con-
vergence speed, we compared its performance under different
numbers of iterations. As shown in Fig.5. It can be observed
that the proposed method achieves the highest fitness value
starting from the second iteration throughout the entire period.
It remains relatively stable after the third iteration. The opti-
mization effects of Random-EUA and EUA-GA are weaker,
and their values remain stable in the later stage of the iteration
process. The lower fitness value of EUA-GA is attributed to
its susceptibility to getting trapped in local optima during the
search process. The optimization performance of EUA-ILP
and EUA-FOA strategies is relatively poor because they cannot
guarantee the highest overall value of users in the region.
EUA-ILP, being a heuristic method, stabilizes in value after
the third iteration. EUA-FOA, based on swarm intelligence
technology, obtains higher fitness values than EUA-ILP but
exhibits slow convergence and is also prone to get trapped in
local optima during the search process. Overall, the method
proposed in this paper outperforms other methods in terms
of convergence speed, achieving the highest fitness value and
making user allocation decisions more quickly.

Algorithm Feasibility. To verify the speed of convergence
of the algorithm, we conducted a set of experiments to analyze
the feasibility of the method by comparing the user allocation
rate and resource utilization rate. Fig.6 shows the user allo-
cation rates for different algorithms. It can be observed that
the user allocation rate for EUA-Random is relatively low,
while EUA-ILP, EUA-GA, and EUA-FOA exhibit higher user
allocation rates. EUA-ACO and EUA-ABC can successfully
allocate a larger number of users within the experimental area.
This discrepancy arises because EUA-Random only randomly
allocates users to edge servers based on server resource



Fig. 5. Performance of Different Algorithms.

Fig. 6. User Allocation Rates Across Different User Scales.

constraints and signal coverage constraints without considering
the overall resource utilization in the region, resulting in
a poor user allocation rate. EUA-ILP, EUA-GA, and EUA-
FOA do not jointly allocate all users in the region from an
overall perspective using multiple edge servers. In contrast,
EUA-ACO and EUA-ABC aim to allocate all users to edge
servers at the edge of the region from a holistic viewpoint by
coordinating multiple edge servers, resulting in a larger scale
of successfully allocated users. As the user scale increases, the
method proposed in this paper consistently maintains a high
user allocation rate.

Next, we compared the resource utilization rates across
different regions under different algorithms. Users are divided
into four regions based on their location distribution, with
40 users in each region. The resulting regional division is
illustrated in Fig.7. The resource utilization rates of different
algorithms are shown in Fig.8. It can be seen that the EUA-
ACO achieves the highest resource utilization rate, while the

Fig. 7. User Distribution by Region.

Fig. 8. Resource Utilization Rates for Different Algorithms.

resource utilization rates of the other methods are relatively
low. The disparity arises because EUA-ILP, EUA-GA, and
EUA-FOA optimize user allocation without considering min-
imizing allocation costs to the minimum extent. Conversely,
EUA-ACO considers the collaboration of surrounding edge
servers for resource sharing, thus improving resource utiliza-
tion rates.

Optimization Effectiveness. The optimization effect of user
allocation is specifically reflected in the user’s quality of
service experience, with the response time of the service being
the most intuitive indicator. In this experiment, the users were
divided into four groups of 40 people each based on their
geographical distribution. The average response time of edge
services before and after optimization was calculated for each
group’s user allocation optimization strategy. By comparing
the response times of the original sample tasks for these
four groups of users with the response times after optimizing
user allocation, it can be seen that the optimization method
proposed in this paper can reduce the average response time
of services by approximately 6%. The changes in average
response time before and after optimization for these four
groups of users are shown in Table III.

TABLE III
THE CHANGES IN RESPONSE TIME BEFORE AND AFTER OPTIMIZATION IN

EACH AREA.

Area Average Response Time/s After Optimization/s Reduction Rate
1 2.3727 2.1944 7.51%
2 4.6156 4.2342 8.26%
3 5.6381 5.2914 6.15%
4 5.2351 4.9102 6.21%

VI. CONCLUSION

This paper proposes a collaborative user allocation method
for multi-edge environments. This method utilizes users’ fu-
ture trajectory information and information about the coverage
range of surrounding edge servers to dynamically obtain
hidden fitness relationships among all users and edge servers
within the region. This allows for the pre-allocation of users
to perform tasks with higher fitness. The method considers



cooperation between mobile edge servers and addresses multi-
resource joint constraint problems. An improved adaptive ant
colony algorithm is used to optimize user allocation, aiming
to maximize the total benefits obtained by all users within the
region. Future work will consider user location privacy and
security to avoid exposing sensitive information, thus ensuring
the security of user data.
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