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Abstract—This paper proposes a novel security-aware QoS
(Quality of Service) forecasting approach – Edge QoS Per-
PM (Edge QoS forecasting with Personalized training based
on Public Models in mobile edge computing) by migrating the
principle of integrating cooperative learning and independent
learning from federated learning. Edge QoS Per-PM can make
fast and accurate forecasting on the premise of ensuring
enhanced security. We train private model based on public
model for personalized forecasting. The private models are
invisible to other users to ensure the absolute security. At
regular intervals, a Long Short-Term Memory (LSTM) model
is trained based on the latest private data to meet the real-
time requirements of the dynamic edge environment and ensure
the accuracy of prediction results. A series of experiments
is conducted based on public network data sets. The results
demonstrate that Edge QoS Per-PM can train appropriate
models and achieve faster convergence and higher accuracy.

Keywords-Mobile edge computing; Quality of Service; Public
model; Private model; LSTM; Security Forecasting

I. INTRODUCTION

Service Oriented Architecture (SOA) is an application
architecture, in which all functions are defined as inde-
pendent services. Web service is one of the technologies
to implement SOA [1]. Industry experts often orchestrate
these services to fulfil users with changing requirements. In
recent years, with the development of Web services, its non-
functional attributes (i.e., Quality of Services (QoS)) have
attracted increasing attentions [2], [3]. Nowadays, there are
a large number of Web services with redundant functions
on the Web. It is therefore particularly important to employ
QoS to select appropriate web services to meet users’
requirements [4].

With the advent of 5G era, mobile edge computing
technologies are being increasingly used [5]. Computing
power is located on the edge of the network and very close to
users or information sources. In this way, response delay can
be greatly reduced. Providing mobile edge based services
responses to users has become the current development
trend [6]. However, it would also generate security problems.

At present, researchers have made tremendous efforts
in the field of privacy-preserving QoS forecasting. Current

solutions include local sensitive hash [7], multidimensional
anonymity [8], differential privacy [9] and location aware
protection [10]. It can be seen that the existing methods
are mostly suitable for traditional environments and they
mostly use data encryption to manipulate QoS data directly
to realize security.

However, the existing security-aware QoS forecasting
approaches mainly face the following problems in the mobile
edge environment:

i). The security mechanisms of traditional approaches
are inadequate. Because of the dynamic and regional char-
acteristics of the edge environment, local users are more
frequently and closely connected. They can access each
other’s historical data for forecasting [11]. With increasing
interactions, the user behaviors are easier to be inferred, and
the encryption rules of data are easier to be cracked [12].
Therefore, the traditional data encryption based QoS fore-
casting approaches are more vulnerable in the edge environ-
ment.

ii). The prediction accuracy is greatly reduced. Because
mobile edge computing technology has the characteristics
of proximity and low latency, it can effectively improve
user experience. Meanwhile, the requirements on real-time
data and data accuracy are more rigorous. However, the
traditional approaches do not have mechanism to update the
data dynamically, and consequently the prediction accuracy
in mobile edge computing cannot be guaranteed.

To overcome the problems aforementioned, this paper
proposes a novel security-aware QoS forecasting method in
the mobile edge environment, abbreviated as Edge QoS Per-
PM (Edge QoS forecasting with Personalized training based
on Public Models in mobile edge computing). We combine
public model and private model training for personalized
forecasting. The private models are only visible to their
own. The parameters of the private models are different
from one to another, which enables the security. The main
contributions of this paper are as follows:
• We propose a novel personalized security-aware QoS

forecasting method inspired by the idea of cooper-
ation and independence in federal learning [13], to
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address the deficiency of traditional encryption methods
and fundamentally eliminate the possibility of being
cracked. First, we extract the general data from the
whole data set to form a public data set. Next, a Long
Short-Term Memory (LSTM) is trained via the public
data set. The weight parameters obtained in the training
process are transmitted to private users. Finally, the
LSTM will be trained based on the users’ private data
to perform personalized forecasting.

• The LSTM model can update the weight parameters
dynamically to improve the accuracy of QoS prediction,
considering the requirements of real-time and data
accuracy in the mobile edge environment. Within every
time interval, users perform LSTM training on the
private data generated in that interval. The latest weight
parameters are imported into the LSTM for attribute
value forecasting in the next time interval. As private
data is continuously imported over time, periodic train-
ing is constantly performed to dynamically update the
weight parameters. This process repeats until no new
private data is generated (i.e.,the user terminates the
service(s)). The training process completes and the edge
QoS forecasting results are obtained.

• We conduct a series of experiments to explore the
proposed Edge QoS Per-PM approach based on public
network data sets. The experiments verify the influence
of different learning rates and training time on public
model training, and the effectiveness of the optimal
public weight parameters on personalized forecasting.
The experimental results also demonstrate that Edge
QoS Per-PM can achieve the goal of security, ensuring
the accurate forecasting performance.

The structure of this paper is organized as follows: Section
2 states the related work of the existing research. Section
3 introduces the background knowledge and relevant theo-
retical basis of our approach. Section 4 presents the Edge
QoS Per-PM approach proposed in this paper. Section 5
delivers the experimental design and result analysis. Section
6 summarizes the paper and plans future work.

II. RELATED WORK

A. QoS privacy preserving

With regards to QoS privacy preserving, Liu et al. [9]
combined a differential privacy encryption algorithm with
collaborative filtering to design a QoS privacy protection
method. Qi et al. [7] developed a distributed recommenda-
tion system based on local sensitive hash in 2017. Shahriar
et al. [10] devised a protection protocol for attribute value
encryption and location hiding. It is obvious that the existing
QoS privacy protection methods are mostly applicable to
static environments, and the prediction accuracy is hindered
after data encryption. In addition, they are easier to be
cracked in the edge environment [11], [12].

B. QoS security services

With regard to security services, researchers have pro-
posed a variety of security mechanisms and guidelines. Shen
et al. [14] introduced a distributed dynamic management
mechanism considering both security and QoS. However, the
mechanism is only suitable for specific environments, e.g.,
when network traffic is not too busy. Alessandro et al. [15]
adopted an integrated tool support approach, which can
achieve the maximum trade-off between safety and quality.
However, this approach does not consider the changes in the
dynamic environment. Jalal et al. [16] presented a security-
aware QoS optimization method in distributed real-time
environments to reach an agreement between confidential-
ity, integrity and authentication security. Nevertheless, it is
mostly used in IP routing protocols. Charuenporn et al. [17]
proposed a new paradigm for developing the QoS security
metrics (QoS-SM) using QoS ontologies. Nevertheless, this
paradigm can only be applied with two defined information
system standards (COBIT and ITIL).

To solve the security limitations in mobile edge comput-
ing, this paper proposes a security-aware QoS prediction
approach in the mobile edge environment called Edge QoS
Per-PM. Inspired by the ideas of sharing and independence
from federated learning [13], this approach extracts and
trains data with the same characteristics of the horizontal
federated learning.

III. PRELIMINARIES

A. Security and challenges of mobile edge computing

Mobile edge computing (MEC) is a new computing
model and extends centralized cloud computing to net-
work edges [18]. MEC provides users with services and
computing functions at the edge of a mobile network to
reduce latency. It also ensures efficient network operations
and service delivery. However, due to its characteristics of
interoperability, decentralization and mobile support, mobile
edge computing faces new security challenges. Because
of the technical characteristics of MEC, there are many
differences between MEC security and traditional security.
From the perspective of privacy security, users in a node are
easy to obtain other users’ sensitive data, which causes user
privacy disclosure [19]. This results from the fact that users
are close to nodes in MEC. In addition, MEC is an open
ecosystem, and user mobility also brings some challenges
to security mechanism.

B. Long Short-Term Memory

Long Short-Term Memory (LSTM) is a type of deep
learning methods, which was first proposed by Sepp Hochre-
iter and Jürgen Schmiduber in 1997 [20]. It is a specific
form of RNN. RNN is the general term of a series of neural
networks that can process sequence data.



All RNNs contain a chain form of repetitive neural
network modules, while LSTM is designed to solve long-
term problems. The structure of a single node is shown
in Fig. 1. The repeated modules comprise of four layers,
which interact in a special way. Different from the single
neural network layer, the subtlety of LSTM is to update
the input threshold, the forgetting threshold and the output
threshold, so that the weight of self cycle changes constantly.
Therefore, when the model parameters are fixed, the integral
scale can change dynamically at different time, so as to
effectively avoid the problem of gradient disappearance or
gradient expansion.
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Fig. 1. LSTM structure diagram

C. Federated Learning

Federated learning is a new basic technology of arti-
ficial intelligence. Its design goal is to ensure data se-
curity when model training needs data exchange among
multiple repositories. Under the premise that terminal data
and personal privacy data are legal and compliant, efficient
machine learning is carried out among multiple participants
or computing nodes. As a distributed machine learning
paradigm, federated learning can effectively solve the data
island problem, i.e., data stored and maintained indepen-
dently among different individuals obstacles data sharing. It
allows participating models to collaborate on the basis of
not sharing data [21], and technically break the data island
to achieve AI cooperation.

According to data set differences, federated learning can
be divided into three types: horizontal federated learning,
vertical federated learning and federated transfer learn-
ing [13]. Among them, horizontal federated learning is
mainly used for data sets with more overlapped user features
and less overlapped user numbers, e.g., for two banks in
different regions, the number of same users is very small
but the business features of users are similar, while vertical
federated learning is the opposite, which is suitable for data
sets with more overlapped user numbers and less overlapped
user features. Federated transfer learning is used in the case
of fewer user numbers and user features. We use transfer
learning to overcome the situation of small data scale or

insufficient labelled samples, so as to improve the learning
performance of learning models.

IV. THE EDGE QOS PER-PM APPROACH

A. Overview of Edge QoS Per-PM
We propose a security-aware QoS forecasting approach

(Edge QoS Per-PM) in the mobile edge environment. The
main goals of Edge QoS Per-PM are security-aware, accurate
and efficient forecasting. The main workflow is shown in
Fig. 2. It includes two primary phases:

1) Public model training: First, the edge station location
information and a QoS data set are fused to form a spatio-
temporal edge user QoS data set. The QoS data set is then
employed to determine the edge server locations based on
the geographical distribution of the users. The whole edge
network area is divided into several edge regions according
to the geographical distribution of edge servers. Next, the
public edge QoS data set in each edge region is generated
based on the previous edge user QoS data set. Finally, a
public LSTM is trained via the public data set of each
region to obtain a regional model. The weight parameters
of the regional models are transmitted to private users in the
corresponding regions for personalized forecasting.

2) Personalized forecasting: A user uses the weight pa-
rameters of the public LSTM in his/her belonged region as
the initial parameters of his/her private LSTM. The private
LSTM will be further trained based on the user’s private
data to make the personalized forecasting. A user’s private
data is the temporal QoS data generated in the process that
the user interacts with services. The private data is used to
train the private LSTM in each time interval to update its
weight parameters continuously, so as to ensure the real-
time performance of the weight parameters in the dynamic
edge environment and improve the prediction accuracy.
With the increase of training iterations, the private model
is continuously optimized. QoS forecasting results will be
generated for future time slots.

B. Public model training
The purpose of the public model training is to provide an

initial forecasting model for all users in an edge region. The
training bases on privacy-insensitive public data. The trained
public model parameters are passed to each individual user
to train the user’s private model using his/her private data. It
thus can improve the private model training efficiency, while
achieving the purpose of security without disturbing the
personalized forecasting. The public model training consists
of the following three steps.

1) Region division : First, the QoS data set and the
edge location data are integrated to form a spatio-temporal
edge user QoS data set. Next, according to the geographical
distribution of the edge users, the actual locations of edge
servers on the map are obtained through a map service1. We

1https://www.dituwuyou.com/
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Fig. 2. Edge QoS Per-PM overview

assume that the servers are evenly distributed in each edge
region. The geographically close edge servers are assumed
to share the similar edge environment [22]. Therefore, in
order to improve the forecasting accuracy as much as
possible, we divide the whole edge network area into k edge
regions, where k (k ≥ 2) is determined by the geographical
distribution of edge servers. Each edge region contains a
group of edge servers that share the same edge environment.

2) Public data extraction: The public data extraction
process is divided into three steps. Step 1: the QoS data
set of each edge region is resorted according to the order
of user ID, time period ID, service ID and attribute value.
Step 2: The values of a QoS attribute shared by all services
invoked by all users in an edge region in time period T1
are extracted from the regional data set and expressed in the
form of a service-user matrix. We take the median value of
each row of the matrix to get a service-T1 column vector,
and make the column vector as the public QoS data of the
services invoked in the region in time period T1. Step 3:
We repeat Step 2 to get service-T2, ... , service-Tn column
vectors. Finally, the n column vectors are synthesized to
generate a two-dimensional (service-time interval) matrix as
the public QoS data set in an edge region for the public
LSTM training.

3) Public data training: Each regional LSTM performs
training based on the regional public data set. Before the
model training, we have reached a consensus between the
learning rate and training iterations. That is, the larger the
learning rate, the faster the error adjustment speed. Hence we
can use less training iterations to achieve the same training
goal. A combination of parameters in the model training
is learning rate and training iterations. Because there is
a negative correlation between learning rate and training
iterations, the training iterations decrease with the increase

of the learning rate. For example, if the learning rate of the
LSTM is increased in [0.001, 0.01] with the step size of
0.001, the corresponding training iterations are decreased in
[100, 1000] with the step size of 100 to achieve a trade-off
between the learning rate and the training iterations.

After the parameter setting, we use the regional public
QoS data set to train the regional LSTMs. The following are
the calculation formulas of the forgetting gate, input gate,
current time unit state and output gate.

ft = σ(Wf · [ht−1, xt] + bf ) (1)

where Wf is the weight matrix of the forgetting gate, ht−1
and xt respectively represent the output of the previous time
and the input of the current time, bf is the bias term of the
forgetting gate. LSTM selectively keeps the cell state of the
previous time to the current time by the forgetting gate.

it = σ(Wi · [ht−1, xt] + bi) (2)

where Wi is the weight matrix of the input gate, bi is the
bias term of the input gate. The input gate selectively saves
the current input to the unit state. Next, we calculate the
cell state at the current time ct. It bases on the aggregation
of the cell state of the last moment ct−1 multiplied by the
forgetting gate ft, and the cell state of the current input c̃t
multiplied by the input gate it, as shown in formula (3) (4):

c̃t = tanh(Wc · [ht−1, xt] + bc) (3)

ct = ft ◦ ct−1 + it ◦ c̃t (4)

In this way, we combine LSTM’s current memory c̃t and
long-term memory ct−1 to form a new unit state ct. The
operations on the forgetting and input gates can save the



information of a long time ago and avoid the current
unimportant content from entering the memory. Equation (5)
is the calculation process of the output gate, which controls
the effect of long-term memory on the current output.

ot = σ(Wo · [ht−1, xt] + bo) (5)

The final output of LSTM is determined by the output gate
and unit state.

ht = ot ◦ tanh(ct) (6)

The loss function is estimated by calculating the RMSE
(Root Mean Square Error):

RMSE =

√√√√ 1

N

N∑
i=1

(hti − h′ti)
2 (7)

Where hti is the output value of LSTM at time ti, h′ti is the
real value at time ti, and N is the total number of times.

Through the derivation of loss function, the weight param-
eters are adjusted continuously. Hence, with the increase of
the number of training iterations, the training error decreases
continuously until the obtainment of the optimal initial
weight parameter values for personalized forecasting.

C. Personalized forecasting

In the personalized forecasting, a user makes QoS fore-
casting based on his/her private LSTM with the initial weight
parameters passed from the public LSTM. The calculation
process is shown in formula (1)∼(6). After a QoS forecast-
ing is made for time period T1, if the actual QoS is obtained
from T1, we adjust the model weight parameters with the
deviation between the predicted and actual QoS data. The
weight parameters are adjusted with the following formula
(8):

weighti = weighti − l ∗ error (8)

Among them, weighti is the initial weight parameter, l is the
learning rate and error = 2 ∗ (hti − h′ti)

′ is the derivation
of prediction error.

After completing the forecasting and training in time
period T1, the forecasting will be performed for the next
period. If there is actual QoS data obtained from the next
time period after the forecasting, the training will be ex-
ecuted again to further adjust the weight parameters. This
forecasting followed by training process will repeat until no
new QoS data is obtained from the next time period (i.e.,
the user terminates the service(s)).

V. EVALUATION

A series of experiments are performed to validate Edge
QoS Per-PM based on several public data sets. We con-
duct the experiments in a computer system with Intel(R)
Core(TM) i5-8250U CPU @1.60GHz, 8.00GB RAM, Win-
dows 10, and MatLab R2018b to train models and carry out
personalized forecasting.

A. Data Set Description

We use two data sets: a time series QoS data set and
an edge station location data set, which can be downloaded
from the data sources used in [23], [11]. The first data set 2

describes real-world QoS evaluation results from 142 users
(IDs: 0-141) on 4500 Web services over 64 consecutive time
slices (with a 15-minute interval between each two slices).
The QoS attributes mainly include response time (RT) and
throughput (TP). The general information of the first data
set is shown in Table I.

Table I
QOS DATA SET INFORMATION

User ID Time ID Service ID Attribute value
24 18 100 0.3060

24 18 2485 0.1100

96 63 3895 1.3310

140 9 289 0.5760

The second data set 3 is provided by Shanghai Telecom.
It contains more than 7.2 million Internet access records of
9481 mobile phones collected by 3233 base stations [24].
We use the latitude and longitude information of the base
stations in the data set to locate the edge server positions.
The information Shanghai Telecom data set is shown in
Table II.

Table II
SHANGHAI TELECOM DATA SET INFORMATION

Longitude Latitude District Server ID
121.407680 31.137509 Minhang 17

121.390889 31.002479 Minhang 13

121.480699 31.240686 Huangpu 47

121.454410 31.128227 Xuhui 31

B. Data fusion and public data extraction

We randomly select 142 sets of base station positions from
Shanghai Telecom data set and fuse them with the QoS data
set in the following steps: First, the 142 sets of positions are
numbered from 0 to 141 and matched with the 142 users
in the QoS data set in terms of identical IDs. Thereby, the
spatio-temporal QoS data set of edge users is obtained. Next,
the edge users in the same positions are mapped to the same
edge servers. 67 edge servers are located through the map
service1. Considering the geographical distribution of the
67 edge servers and the municipal districts in Shanghai, we
divide the whole edge network area into three edge regions,
in which each edge region maps with 1-4 municipal districts.
The division results are shown in Fig. 3. The numbers of
edge servers in the edge regions are respectively 22, 24
and 21. The spatio-temporal edge user QoS data set is also

2https://github.com/wsdream/wsdream-data set
3http://sguangwang.com/Telecomdata set.html



(a) Edge region 1 distribution : Minhang District (b) Edge region 2 distribution : Huangpu District,
Hongkou District and Pudong New District

(c) Edge region 3 distribution : Xuhui District,
Songjiang District, Qingpu District and Jingan
District

Fig. 3. Chart of edge region distribution

(a) RT training of edge region 1 (b) RT training of edge region 2 (c) RT training of edge region 3

(d) TP training of edge region 1 (e) TP training of edge region 2 (f) TP training of edge region 3

Fig. 4. Training performance of different learning rate and training iterations combination

divided into three subsets in correspond to the geographical
locations of the edge regions.

We independently train a public model for each edge
region using the public data subset in that region. We take
the edge region 1 as an example. According to the step
of public data extraction stated in Section IV, the attribute
values of 4500 services invoked by all the users in edge
region 1 in T1 time period are extracted and expressed in a
two-dimensional matrix. We take the median value of each
row of the matrix to generate a service-T1 column vector.
We use the same method to generate the column vectors for
T2, ... , T64. Finally, the column vectors are aggregated to
from a service-time matrix.

C. Experimental Results
(1) The trade-off between learning and training
The training results on combinations of various learning

rates and training iterations in the three edge regions are
shown in Fig. 4. The horizontal axis represents the learning
rate, and the two vertical axes respectively represent the
training iterations and the average root mean square error.
In the training process, when the learning rate increases, the
adjustment range of the weight parameter also increases,
to make the error rate decrease faster. Therefore, when the
same training effect is achieved, the number of required
training iterations can be reduced accordingly. Thus, the
training iterations decrease with the increase of learning rate
to achieve a trade-off between the two parameters.

Fig. 4(a) and 4(d) show the training performance of



edge region 1 on RT and TP. It can be seen that, as the
learning rate increases (or the training iterations decrease
simultaneously), the error rate curve shows a concave shape.
At the point (0.006, 500), both RT and TP reach their
lowest error rates. Therefore, we find the best combination
of the learning rate and training iterations for edge region
1, and use them for the public model training. Similarly,
from Fig. 4(b) and 4(e), it can be seen that the point (0.006,
500) is the best combination of the learning rate and training
iterations for edge region 2. RT and TP in edge region 3
reach the lowest error rates at different points, i.e., (0.009,
200) and (0.005, 600), according to Fig. 4(c) and 4(f). To
achieve the relatively lower error rates for both RT and TP,
we choose the average values (0.007, 400) as the relatively
better combination for edge region 3.

(2) Weight parameter of public model training
After determining the best parameter combination for each

region’s public model training, our next experiment is to find
the optimal initial weight parameter values that each region’s
public model can provide for personalized forecasting. We
perform training on both the RT and TP data sets of each
region. Fig. 5 shows the variation of the data training error
rate of the three public models with the increasing number
of iterations. Fig. 5(b), 5(d) and 5(f) are enlarged views of
the first 100 iterations of Fig. 5(a), 5(c) and 5(e).

Fig. 5(a) shows the training of the edge region 1 public
model, in which the learning rate is set to 0.006 and the
training iterations are 500 according to our above experiment
(1) results. It can be seen that, with the increase of the
iterations, the error rate first shows a sharp downward trend,
followed by a relatively plain and stable trend after the
iterations increase from 100 to 500. There is no gradient
explosion or gradient disappearance being discovered in
the model training process. Therefore, it can be seen from
the experimental results that the public model training has
basically reached the optimal state around 100 iterations.
Considering the training cost-effectiveness, we provide the
weight values of the forgetting gate, input gate, cell state
and output gate of the LSTM after 100 training iterations as
the initial weight parameters for users in edge region 1 to
perform personalized forecasting. From Fig. 5(b), we can see
that the training error rates for RT and TP are reduced from
nearly 300 at the beginning to 38.41 and 22.14 respectively.

Similarly, in Fig. 5(c), 5(d), 5(e) and 5(f), compared with
the error rates after 100 iterations, the error rates of the
public models in edge regions 2 and 3 have reached their
ideal state around 100 iterations. Therefore, we use the
model weight values obtained at 100 iterations as the initial
parameters for the users’ private models in edge regions 2
and 3.

(3) Personalized forecasting performance
When users access the edge servers in different edge re-

gions, personalized forecasting is carried out after obtaining
the public model weight parameters of the corresponding

(a) Training error of 500 iterations
in edge region 1

(b) Training error of 100 iterations
in edge region 1

(c) Training error of 500 iterations
in edge region 2

(d) Training error of 100 iterations
in edge region 2

(e) Training error of 400 iterations
in edge region 3

(f) Training error of 100 iterations
in edge region 3

Fig. 5. Training performance of public model data (RT and
TP) on RMSE in three edge regions

edge regions (e.g., when users access edge region 1, users
get the weight parameters of the public model in edge
region 1). In the process of user personalized forecasting,
in order to ensure the real-time and accuracy of the weight
parameters, we regularly train a user’s private model. Each
user’s QoS data is recorded in 64 time slices (15 minutes
each). Theoretically, the smaller the training interval and the
higher the training frequency, the higher the accuracy of the
model. However, we need to balance between training cost
and training performance. Therefore, our training frequency
is set to 4 time slices (one hour) for a cycle. 16 times of
training and forecasting have been performed in total.

A group of edge servers with unbalanced user records
(i.e., maximum (6, 3 and 6 respectively) and null accessing
records) in three edge regions are accessed. Each user
accesses each edge server lasting for 64 time slices. Taking
TP data as an example, Table III gives the average RMSE
of all the services over 16 training iterations. Among them,
Edge QoS Per-PM is the proposed forecasting method, while
Non Per-PM QoS which are purely private LSTMs and
does not contain public models. Thereby it cannot receive
initial weight parameters during the process of training and



forecasting. Each Non Per-PM QoS needs to train from the
private QoS data of an individual user. It can be seen that the
average RMSE of Edge QoS Per-PM is far less than Non
Per-PM QoS. Hence, Edge QoS Per-PM not only ensures
security, but also has better forecasting accuracy.

Table III
THE FORECASTING ACCURACY

Edge Region 1 Edge Region 2 Edge Region 3

Server ID F-10 F-57 S-04 S-41 T-04 T-25

Edge QoS Per-PM 28.03 24.84 32.50 26.61 25.95 36.65

Non Per-PM QoS 133.58 113.78 138.46 113.08 105.05 100.94

Table IV shows the forecasting time required for the two
approaches to achieve the same forecasting performance
(e.g., the total forecasting error rate is less than 50). It can
be seen from the table that the time required for Edge QoS
Per-PM is far less than Non Per-PM QoS.

Table IV
THE FORECASTING TIME COST

Edge Region 1 Edge Region 2 Edge Region 3

Server ID F-10 F-57 S-04 S-41 T-04 T-25

Edge QoS Per-PM 2.85s 2.03s 3.11s 1.91s 2.08s 1.92s

Non Per-PM QoS 18.04s 13.24s 18.25s 12.23s 12.86s 11.79s

In conclusion, our proposed Edge QoS Per-PM forecast-
ing is more accurate and faster than Non Per-PM QoS via
the experiments.

VI. CONCLUSIONS AND FUTURE WORK

Existing security-aware QoS forecasting approaches can-
not meet the demand of the edge environment on security
and high forecasting accuracy. We propose a novel security
aware QoS forecasting approach for mobile edge environ-
ments named Edge QoS Per-PM. It combines public model
and private model training for personalized forecasting to
achieve the goal of security-aware, accurate and efficient
forecasting.

For future work, first, we will consider the automatic
clustering of edge servers to divide the sub edge regions.
Second, the current approach only achieves a trade-off
between learning rate and training iterations, we will further
optimize the public model to improve forecasting perfor-
mance. Finally, we will study multivariate QoS forecasting
in the edge environment.

VII. ACKNOWLEDGEMENTS

The work is supported by the National Natural Science
Foundation of China under Grant No. 61572171, the Natural
Science Foundation of Jiangsu Province under Grant No.
BK20191297, and the Fundamental Research Funds for the
Central Universities under Grant No. 2019B15414.

REFERENCES

[1] S. P. Lee, L. P. Chan, and E. W. Lee, “Web services implementation
methodology for soa application,” in 2006 4th IEEE International
Conference on Industrial Informatics, pp. 335–340, IEEE, 2006.

[2] Y. Syu, J.-Y. Kuo, and Y.-Y. Fanjiang, “Time series forecasting for
dynamic quality of web services: an empirical study,” Journal of
Systems and Software, vol. 134, pp. 279–303, 2017.

[3] P. Zhang, H. Jin, H. Dong, W. Song, and L. Wang, “LA-LMRBF: On-
line and long-term web service QoS forecasting,” IEEE Transactions
on Services Computing, 2019, DOI: 10.1109/TSC.2019.2901848.

[4] B. M. A. Madi, Q. Z. Sheng, L. Yao, Y. Qin, and X. Wang, “Plmwsp:
Probabilistic latent model for web service qos prediction,” in 2016
IEEE International Conference on Web Services (ICWS), pp. 623–
630, IEEE, 2016.

[5] I. Ahmad, T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, and
A. Gurtov, “Overview of 5g security challenges and solutions,” IEEE
Communications Standards Magazine, vol. 2, no. 1, pp. 36–43, 2018.

[6] M. La Polla, F. Martinelli, and D. Sgandurra, “A survey on security for
mobile devices,” IEEE communications surveys & tutorials, vol. 15,
no. 1, pp. 446–471, 2012.

[7] L. Qi, H. Xiang, W. Dou, C. Yang, Y. Qin, and X. Zhang, “Privacy-
preserving distributed service recommendation based on locality-
sensitive hashing,” in 2017 IEEE International conference on web
services (ICWS), pp. 49–56, IEEE, 2017.

[8] X. Zhang, L. Qi, W. Dou, Q. He, C. Leckie, K. Ramamohanarao, and
Z. Salcic, “Mrmondrian: Scalable multidimensional anonymisation for
big data privacy preservation,” IEEE Transactions on Big Data, 2017.

[9] S. Liu, A. Liu, Z. Li, G. Liu, J. Xu, L. Zhao, and K. Zheng, “Privacy-
preserving collaborative web services qos prediction via differential
privacy,” in Asia-Pacific Web (APWeb) and web-age information
management (WAIM) joint conference on web and big data, pp. 200–
214, Springer, 2017.

[10] S. Badsha, X. Yi, I. Khalil, D. Liu, S. Nepal, E. Bertino, and K.-
Y. Lam, “Privacy preserving location-aware personalized web service
recommendations,” IEEE Transactions on Services Computing, 2018.

[11] S. Wang, Y. Zhao, L. Huang, J. Xu, and C.-H. Hsu, “Qos prediction
for service recommendations in mobile edge computing,” Journal of
Parallel and Distributed Computing, vol. 127, pp. 134–144, 2019.

[12] Y.-L. Huang, C.-R. Dai, F.-Y. Leu, and I. You, “A secure data
encryption method employing a sequential-logic style mechanism for
a cloud system,” International Journal of Web and Grid Services,
vol. 11, no. 1, pp. 102–124, 2015.

[13] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems
and Technology (TIST), vol. 10, no. 2, p. 12, 2019.

[14] Z. Shen and J. P. Thomas, “Security and qos self-optimization in
mobile ad hoc networks,” IEEE Transactions on Mobile Computing,
vol. 7, no. 9, pp. 1138–1151, 2008.

[15] A. Aldini and M. Bernardo, “A formal approach to the integrated
analysis of security and qos,” Reliability Engineering & System Safety,
vol. 92, no. 11, pp. 1503–1520, 2007.

[16] A. Jalal and M. A. Zeb, “Security and qos optimization for distributed
real time environment,” in 7th IEEE International Conference on
Computer and Information Technology (CIT 2007), pp. 369–374,
IEEE, 2007.

[17] P. Charuenporn and S. Intakosum, “Qos-security metrics based on itil
and cobit standard for measurement web services.,” J. UCS, vol. 18,
no. 6, pp. 775–797, 2012.

[18] E. Ahmed and M. H. Rehmani, “Mobile edge computing: opportuni-
ties, solutions, and challenges,” 2017.

[19] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et
al.: A survey and analysis of security threats and challenges,” Future
Generation Computer Systems, vol. 78, pp. 680–698, 2018.

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[21] Y. Liu, T. Chen, and Q. Yang, “Secure federated transfer learning,”
arXiv preprint arXiv:1812.03337, 2018.

[22] Z. Li, R. Xie, L. Sun, and T. Huang, “A survey of mobile edge
computing,” Telecommun. Sci, vol. 34, no. 1, pp. 87–101, 2018.

[23] Z. Zheng, H. Ma, M. R. Lyu, and I. King, “Qos-aware web service
recommendation by collaborative filtering,” IEEE Transactions on
services computing, vol. 4, no. 2, pp. 140–152, 2010.

[24] Y. Li and S. Wang, “An energy-aware edge server placement algorithm
in mobile edge computing,” in 2018 IEEE International Conference
on Edge Computing (EDGE), pp. 66–73, IEEE, 2018.


