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Abstract—This paper presents a novel probabilistic Quality of
Service (QoS) monitoring method named DLSTM-BRPM (Dou-
ble Long Short Term Memory (DouLSTM-Den) based Bayesian
Runtime Proactive Monitoring) to accurately and efficiently
monitor QoS in a mobile edge environment. This method consists
of a DouLSTM-Den model and a Gaussian Hidden Bayesian
classifier. The DouLSTM-Den model aims to predict a user’s
future movement trajectory in real time and proactively monitor
the spatio-temporal QoS performance of services based on the
predicted trajectory. The Gaussian Hidden Bayesian classifier
is employed to accurately monitor QoS by constructing parent
attributes to reduce the interdependence between QoS attributes.
Our experiments based on public synthetic datasets demonstrate
the effectiveness of the proposed method over state-of-the-art
solutions. We also conducted experiments in a real-world edge
environment to validate the feasibility of the proposed method.

Index Terms—Mobile/Multi-Access edge computing, Quality of
Service, Monitoring, Bayesian classifier, LSTM model.

I. INTRODUCTION

OBILE (or Multi-Access) edge computing is a new

distributed computing paradigm that transfers the com-
puting power from cloud data centers to the edge of a
network [1]. Mobile edge networks employ Software Defined
Network (SDN) and Network Functions Virtualization (NFV)
technologies to enable networking, computing, storage, and
communication resources close to end users [1]. It can process
and analyze data in real-time to achieve the goal of cost and
delay reduction.

Mobile edge services refer to the services provisioned in
mobile edge environments. Users’ requirements on mobile
edge services have gradually shifted from functional require-
ments to non-functional requirements, i.e. Quality of Service
(QoS ) [2], [3]. QoS is a key discriminant in service selection
[4]. Extensive studies focused on selecting a service that meets
a user’s QoS requirements among many services with similar
functions [5]. In mobile edge environments, monitoring QoS is
crucial for ensuring system reliability, performance, and secu-
rity. Through QoS monitoring, services can be more effectively
selected to align with user QoS requirements. In instances
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where issues like high network latency or service interruptions
hinder users from fulfilling their requirements, the reliance on
QoS monitoring can aid in early problem identification. This
allows users to promptly switch to alternative services, thereby
ensuring the uninterrupted fulfillment of their needs.

Effective service monitoring techniques have been exten-
sively studied [6]-[8]. Traditional methods adopt Eclipse plug-
in! and timed automata to monitor the service providers’ com-
pliance with Service Level Agreement (SLA) [9] or model-
driven methods [10]. These server-side methods only consider
enterprise-defined standards and ignore users’ personal pref-
erences [11].

There is a strong trend for QoS requirements to be repre-
sented by probabilistic quality attributes [7]. For example, a
service reliability requirement can be described as “the aver-
age downtime probability of a service does not exceed 10% per
year”. This can more precisely reflect users’ expectations to-
ward QoS. A variety of monitoring methods have been devised
for probabilistic quality attributes. These include QoS moni-
toring methods based on traditional probability statistics [2],
hypothesis testing [3], [12] and Bayes’ theorem [13], [14].
Those methods aim to perform continuous QoS monitoring
based on user-defined standards in addition to computation
overhead reduction. However, these methods encounter the
following challenges in the mobile edge environment:

Challenge 1. Traditional QoS monitoring approaches lack
a proactive mechanism [15]. Most of the existing QoS moni-
toring methods rely on passively monitoring the current state
of a service. However, monitoring the current state of a
service cannot fully prevent the service from failing in the
next moment. In addition, the monitoring results received
by a user can only reflect the service status in the past
due to network transmission delay. Therefore, it is essential
to develop proactive service monitoring solutions to detect
service failure in advance. More specifically, proactive service
monitoring in a mobile edge environment needs to determine
if the QoS of a service provisioned by an edge server meets a
user’s demands in advance. This can be achieved by predicting
the user’s future access to the edge server based on the user’s
trajectory. However, most existing monitoring strategies [10],
[11], [14], [16] do not consider proactive service monitoring.

Challenge 2. The current QoS monitoring approaches ig-
nore the temporal and spatial characteristics of QoS [15].
Most of the existing QoS monitoring methods [2], [3], [17],

Uhttps://axis.apache.org/axis2/java/core/tools/eclipse/plugin-
installation.html
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Fig. 1: Motivation scenario of service monitoring

[13], [18], [16] overlook the impact of user mobility on QoS.
In reality, a user may request services in different locations at
different moments. The QoS of a service is highly correlated
to when and where the service is requested. This is due to
the fact that the QoS (observed from the client) depends on
the status of the service (on the server) and the network
environment [19]. The service status is affected by factors
such as server capacity, workload, and allocated computing
resources. The network environment is affected by a user’s and
a server’s locations, network bandwidth and traffic, number
of clients, etc. Both are highly dynamic in time and space
[20]. For instance, different QoS values may be observed
when a user invokes the same service from the same server in
different locations, as a result of signal strength differences
between these locations. Therefore, considering the space-
time awareness QoS monitoring may enhance the monitoring
accuracy.

Our previous work [15] proposed a preliminary mobile-
aware QoS active monitoring method. It contains 1) an LSTM
model for predicting a user’s future movement trajectory and
2) a Bayesian classifier for actively monitoring service QoS.
The LSTM model extracts user mobility features by analyzing
historical user movement trajectories. Subsequently, perceived
QoS data for the next moment is fed into a Bayesian classifier
to achieve proactive service monitoring. However, this method
has the following major limitations:

e Lack of automated edge region division. Users in the same
edge region often have similar geographical locations
and network communication environments. Therefore, the
QoS perceived by users in the same edge region is similar.
In [15], edge regions were manually divided, resulting in
low accuracy. As a result, this approach is also impractical
for servers with a large number of service calls.

o Insufficient experimental validation. The work in [15]
included only a single experiment to validate the method.
Such limited experimental scale and limited processing
constrained its ability to demonstrate the comprehensive-
ness and reliability of the proposed method. Additionally,
there was a lack of usability assessment in real scenarios.

This paper presents an approach named DLSTM-BRPM
(DouLSTM (Double Long Short Term Memory)-Den-based
Bayesian Runtime Proactive Monitoring) to address the above
QoS monitoring problems in mobile edge environments. The
ultimate goal of this proactive monitoring approach is to pro-
vide users with a better service experience while saving com-
puting resources for service monitoring. We use the following
mobile edge service scenario to illustrate our motivation.

As shown in Fig. 1, a user drives from city A to city B.
The user requests a service from an edge server (S1) during
this journey. When S1 receives this service call, our proposed
solution is able to predict that the user will likely next access
the same service in the edge server S2 according to the user’s
historical trajectory. Therefore, S2 proactively monitors the
spatio-temporal QoS of the same service. We divide the signal
range of S2 into several circular areas in terms of their distance
to S2. These circular areas indicate different signal strengths.
The signal strength has a strong correlation with the QoS
performance of the edge service. Assuming that Our approach
predicts that the user will next be in Area 4. We extract the
historical QoS data from the same circular area during the
same time period (e.g. the same day) for QoS monitoring. The
extracted QoS data is then classified by a Gaussian hidden
Bayesian classifier to determine whether it meets the user’s
QoS requirements. The classification result is viewed as the
final monitoring result.

The main contributions are summarized as follows:

o This paper proposes a proactive QoS monitoring mecha-
nism taking into account users’ mobility in mobile edge
environments. We construct a DouLSTM-Den model to
predict a user’s future movement trajectories. The model
is trained upon the user’s historical movement path. The
QoS can be proactively monitored along with the user’s
predicted trajectory. This would reduce the burden on
real-time monitoring and subsequent decision making.
Therefore, it can reduce time and computing resources
for monitoring client-side QoS.

e Our service monitoring implements spatio-temporal
awareness when capturing the QoS of edge services.
This is achieved by considering the geographical location
and relative distance of edge servers and users, service
invocation time, etc. All of these pose significant impacts
on user-perceived QoS. In addition, we use the DBSCAN
clustering algorithm to realize automatic partitioning of
server coverage, reducing the error caused by manual
partitioning for space-time-aware QoS monitoring. The
inclusion of the contextual dependency and automatic
partitioning greatly enhances the QoS monitoring perfor-
mance.

e We use a Gaussian hidden Bayes classifier to monitor
each probabilistic QoS attribute for a given service. We
train a Gaussian hidden Bayesian classifier using spatio-
temporal QoS data for accurate QoS monitoring. At
the same time, this classifier allows us to construct a
parent attribute for each QoS attribute to eliminate the
inter-attribute dependency between QoS attributes and
effectively improve monitoring accuracy.

o A set of dedicated experiments is performed based on
a public data set and a self-created real-world data set.
The experimental results validate that DLSTM-BRPM
outperforms the state-of-the-art approaches in terms of
feasibility and effectiveness.

The rest of the paper is summarized as follows. Section II
analyzes related QoS monitoring methods and their limitations.
Section III introduces the preliminary knowledge used in
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this approach. Section IV gives a detailed description of the
DLSTM-BRPM approach. Section V discusses the evaluation
of this approach on both public and real-world data sets.
Section VI summarizes and prospects the work.

II. RELATED WORK

Many monitoring methods were proposed for probabilistic
QoS attributes. [2] compared the proportion of successful
samples with the pre-defined probability standard to judge
whether the service requirements are met. This method needs
to collect a large number of service call records, which con-
sumes a lot of resources and performance. A new toolchain,
WS-PSC, was provided in [16]. It monitors time attributes in
composite services based on graphical specification attribute
sequence diagrams and time attribute sequence diagrams.
However, other QoS attribute values cannot be monitored. A
monitoring method ProM o based on sampling and continuous
hypothesis testing was introduced in [17]. The probabilistic
attribute C' SLMON was defined for monitoring. It employs the
sequential probability ratio test (SPRT) to perform verification.
This method does not support continuous monitoring. An
improved SPRT (iSPRT) method was proposed in [12]. iSPRT
realizes dynamic monitoring by reusing previous monitoring
information. However, it requires additional memory space
to store historical monitoring results. All the aforementioned
methods were built on the prerequisite of fixed probabilistic
QoS requirements. In reality, users’ service requirements vary
along with changes in their surrounding environments. In this
regard, fixed probabilistic QoS requirements cannot reflect
users’ dynamic service requirements.

Many probabilistic QoS monitoring techniques based on
Bayesian classifiers were proposed to address the limitation
of the aforementioned methods on variable user requirements.
A Bayesian probability monitor (BaProM on) was introduced
in [13]. This method checks whether the runtime QoS infor-
mation supports the null or alternative hypothesis by comput-
ing the Bayes factor. In this way, it realizes effective QoS
monitoring. A Web Service QoS monitoring method named
weighted naive Bayes running monitoring (WBSRM) was
demonstrated in [14]. This method uses the Term Frequency-
Inverse Document Requency (TF-IDF) algorithm to calculate
the influence of environmental factors. It cannot accurately
monitor the future state of the service. A weighted naive
Bayes runtime monitoring method called IgS-wBSRM was
delivered in [21]. It is based on the information gain theory and
the sliding window mechanism. IgS-wBSRM addresses the
limitation of real-time monitoring that does not consider his-
torically redundant data. Therefore, It can maintain monitoring
accuracy in dynamic environments. The defect of IgS-wBSRM
is that it ignores the impact of user preferences on QoS
monitoring results. A new mobility and dependency-based
QoS monitoring method named ghBSRM-MEC was presented
in [22]. This method constructs a parent attribute for each
QoS attribute, thereby reducing the dependencies between
attributes to improve the accuracy of monitoring. It relies
on historical data to monitor the current service status. The
common drawback of the above methods is that they cannot

judge whether the future status of services can continuously
meet user demand. In addition, they cannot tolerate invalid
or inaccurate monitoring results caused by network delays. In
this regard, proactive QoS monitoring is required. Proactive
QoS monitoring can determine if a service will continue to
meet users’ needs in the future and minimize the impact of
network delay.

QoS monitoring has also been implemented based on neural
networks. An approach for cloud-edge-based dynamic service
workflow reconfiguration was introduced in [23]. The long-
short-term memory neural network is used to predict the
stability of the service. The stability and cost of the service
are comprehensively evaluated for candidate service selection.
This method does not consider the impact of user mobility
characteristics on candidate service selection. A proactive
approach for web service composition (WSC) was described
in [24]. It relies on the Markov Decision Process to model
the WSC process and a Reinforcement Learning technique to
adapt to dynamic changes in the WSC environments proac-
tively. Since this method relies on Web service execution log
data to determine active adaptation, it may fail for new scenar-
ios or application scenarios with high real-time requirements.

Proactive monitoring techniques have also been applied to
other fields. A QoS monitoring algorithm that can quickly
detect broken or congested links was depicted in [25]. This
algorithm takes advantage of a multi-threaded design based
on lock-free data structures. It improves the performance by
avoiding synchronization among threads. Their work specifi-
cally focuses on real-time streaming. It does not realize proac-
tive QoS monitoring. A proactive solution was introduced in
[26]. It migrates the virtual machines before violating the
actual delay threshold. The authors proposed a delay-aware
resource allocation method that considers an adaptive delay
warning threshold for various users. Their work focuses on
dynamic resource allocation for hosting delay-sensitive vehic-
ular services in a federated cloud. It cannot realize proactive
QoS monitoring.

All the aforementioned monitoring methods do not consider
proactive QoS monitoring through capturing user trajectories
in mobile edge environments. They also ignore the impor-
tance of spatio-temporal QoS for monitoring accuracy. These
deficiencies lead to their incapability to solve the problem
of monitoring lag. This inspires us to devise a space and
location-aware proactive QoS monitoring method to fully cater
to mobile edge environments.

III. PRELIMINARIES
A. LSTM neural network

The DouLSTM-Den model is based on an LSTM (Long
Short Term Memory Networks) model. LSTM is a special
RNN model that can predict what will happen next based
on time sequences [27]. It is characterized by a time loop
structure. The structure diagram of the LSTM neural network
is shown in Fig. 2. An LSTM model consists of a set of
interconnected recursive sub-networks. Each module contains
one or more core cells for auto-correlation and three cells
used to control the flow of information into the storage unit,
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Fig. 2: Structure of LSTM network

the current unit, and the new units of the network, namely the
forget gate, the input gate, and the output gate.

In LSTM, the gate is an optional way to propagate informa-
tion [28]. The forget gate performs selective filtering based on
the output at the previous moment. This decision is controlled
by the sigmoid function of the forget gate layer. This function
is based on the output h;_; and the current input x; to generate
an f; value of O or 1. The forget gate is to decide whether to
pass or partially pass the information C;_; learned at the last
moment. The f; value is calculated as follows:

fi =Wy - [he—1, ] + by) (D

The input gate determines the information that needs to be
updated. It adds new information to the cell state. This step
consists of two parts. The first part is the input gate layer
that uses the sigmoid function to determine which values to
update. The second part is the tanh layer to generate new
candidate values C. It serves as the layer to process the data
at the current moment. The calculation method is as follows:

/vit = U(wi . [htfhxt] + b’L)
Cy = tanh(W, - [hi—1, z¢] + be)

Then, the output gate updates the old cell state to get the
new candidate value C;. It is expressed as follows:

2

Cr=fi*xCrq+i % Cy 3)

Finally, the output gate is used to determine what value the
model needs to output. First, it gets an initial output o, through
the sigmoid layer. It then uses tanh to scale the value of C;
to the interval [-1,1] and multiplies the output o; obtained by
the sigmoid layer pair by pair to get the output of the model.
The calculation method is:

or = (W - [he—1, @) + bo) 4)
ht = O * tcmh(Ct)

The DouLSTM-Den model designed for our problem con-
text will be introduced in Section 4.2.

B. Naive Bayesian classifier

The Naive Bayes classifier is a probabilistic classifier based
on Bayes theorem [29]. It derives from the assumption that the
attributes are independent of each other. The basic premise is
that it considers the possibilities of an event to be classified by
all the categories. Its theoretical basis is that the probability

Bayesian classifier

Output

discriminant
functions

input

Fig. 3: Structure of Bayesian classifier
of each category is calculated when the event to be classified
occurs. The category with the highest probability is considered
as the category of the event [30] [31].

Bayes theorem is defined as follows: Given that the prob-
ability of the event B occurring under the condition that
the event A occurs is known as P(B|A) when the event B
occurs, the probability of the event A occurring P(A|B) can
be expressed as [32]:

P(B|A)P(A)
P(B)

Given the predefined category set C' = cg,cy,...,¢;, the
sample vector X = 1, xs, ..., T, is:

P(AB) = 5)

P(c;)P(X]c))
P(X)
When X belongs to the class c¢;, the values of the elements
in X are independent of each other, and P(X) is the same
for all the classification results. Hence the Bayesian classifier
formula can be simplified to:

P(c;|X) = ©)

n

C(X)= ar§éncax {P(cy) H P(x;lc;)} (7

C. QoS monitoring in mobile edge computing

QoS monitoring is one such effective method to determine
whether the current service status meets user needs. Generally
speaking, QoS attribute requirements can be expressed by
probabilistic quality attributes. For example, the response
time can be described as “The probability that the service
response time to a customer request is less than 3.6 seconds
is greater than 80%.” Therefore, the QoS monitoring problem
can be transformed into the probability calculation and anal-
ysis of whether the collected runtime information meets the
probabilistic QoS requirement, proactively capturing service
abnormalities.

The framework of QoS monitoring is shown in Fig. 3. QoS
monitoring can be viewed as a binary classification task. The
monitoring result is either satisfactory (i.e. the service meets
the probabilistic QoS requirement) or unsatisfactory (i.e. the
service does not meet the probabilistic QoS requirement). The
probabilistic QoS monitoring process can be mathematically
expressed as follows:

We define a set of QoS sample vectors of a certain service
in an edge server as X = {x1,x9, 23, ..., T, }, where x(k €
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Fig. 4: Structure of proactive QoS monitoring

[1,n]) is the value of the k th QoS sample of the service.
C = {co,c1} is defined as a set of predefined categories,
where ¢y represents that the sample meets the probabilistic
QoS requirement, and c; represents that the sample does not
meet the requirement. Next, a Bayesian classifier is built for
each server based on these probabilistic criteria to calculate
the ratio of the two types of posterior probability, where the
ratio of posterior probabilities is defined as P, = %’;ZEET%.
When P, > 1, the monitoring result belongs to the category cy;
otherwise it belongs to c;. In the process of service monitoring,
the Bayesian classifier is trained based on historical data.
Whenever a sample is collected, the state of the current sample
must be tested for probability.

IV. THE DLSTM-BRPM APPROACH

This section introduces the proposed DLSTM-BRPM ap-
proach in the mobile edge environment. Section 4.1 presents
an overview of how DLSTM-BRPM facilitates proactive QoS
monitoring for mobile users. Sections 4.2, 4.3, and 4.4 intro-
duce the approach in detail.

A. Proactive QoS monitoring in mobile edge computing

The proactive QoS monitoring method is detailed in Algo-
rithm 1. Its main framework is shown in Fig. 4. It mainly
includes three steps:

1) Data preprocessing. First, we collect edge server loca-
tions, which are represented by latitude and longitude
coordinates. The complete monitoring procedure must
take into account the user’s previous trajectory data and
call service information to adapt to the user’s mobile
scene. As a result, we built a dataset of mobile edge
servers and user movement trajectories. The second data
preprocessing task is to filter out incorrect data, such as
the sample data with a response time of -1 and 0. We
also interpolate missing data in the samples to ensure
the integrity of the sample data. This can make the
experimental data closer to the real scenario.

Obtaining  spatio-temporal aware QoS based on
DouLSTM-Den. We designed a model named DouLSTM-
Den to predict the user’s location in the next moment. A
user’s moving path is tracked according to the sequence
of base stations accessed by the user. The user’s historical
trajectory data is the input of the DouLSTM-Den model
for training and prediction. The output of the model is
the user’s location in the next moment (see lines[1-4]

2)

in Algorithm 1). We can thus obtain the edge server
that is possibly accessed by the user according to the
predicted user location and the server’s signal coverage.
In addition, according to the findings of [33], users
within the same signal coverage region of the server
have similar edge environments, and user requests in the
same area at the same time can obtain similar quality of
service responses. Hence, we divide the signal coverage
of the edge server into several circular areas. We can
then determine in which circular area the user will be.
This is achieved by calculating the distance between
the predicted location and the server.(see lines[5-6] in
Algorithm 1). In this way, the possible QoS values can
be predicted based on the historical data in the same
circular area with the same duration of the server (see
line[7] in Algorithm 1).

Constructing a Gaussian hidden Bayesian classifier. First,
a parent attribute is constructed for each attribute to
enable the independence of the attribute. The value of the
parent attribute is obtained based on the value of each
corresponding QoS attribute (see line[8] in Algorithm
1). Next, a Gaussian hidden Bayes classifier is built
upon the value of the corresponding parent attribute
(see line[9] in Algorithm 1). The obtained user spatio-
temporal awareness QoS value is entered into the clas-
sifier to determine whether the QoS value satisfies the
probability requirement of the QoS attribute of the area
to which it belongs. The posterior probability ratio of
the QoS value is calculated to obtain the monitoring
result (see lines[10-16] in Algorithm 1). In this way, the
QoS of service possibly invoked by a user is proactively
monitored based on the user’s probabilistic requirement.

3)

B. Data preprocessing

The purpose of the data collection phase is to collect the
location information of an edge server and the QoS history
data stored in the edge server. When there is no historical
QoS data in the server to be accessed by the user, we try
to find the adjacent edge servers. The historical data in the
edge server is used to construct a Gaussian hidden Bayesian
classifier to make monitoring decisions for the services to be
called by users. The primary goal of data preprocessing is to
filter out incorrect data, such as samples with a response time
of -1, and to use the mean value to fill in the missing data for
the samples in order to guarantee the samples’ integrity and
validity.

Our goal is to enable accurate proactive QoS monitoring
based on the spatio-temporal dependency of QoS values. We
model each QoS value as a three-dimensional tensor of user —
service—time. Our proposed method monitors the QoS tensor
and selects the historical data of similar users from the same
edge server for proactive QoS monitoring. An example of the
QoS tensors is shown in Fig. 5.

C. Spatio-temporal QoS acquisition based on Doul.STM-Den

The primary purpose of this step is to construct and train the
DouLSTM-Den model to obtain the user’s space-time-aware
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Algorithm 1 Proactive QoS Monitoring

Require: 17,5 = [X1, Xo,...X,,]: training sample
U:User set
QoS_Value: QoS threshold
B: QoS probabilistic standard
(z1,11), (x2,Y2), .., (Tt—1, Yt—1): user’s trajectory
coordinates
(X1,Y1),(X3,Y3),...: the locations of the servers
Ensure: Proactive monitoring result ¢;
1: for u; € U do
2:  Extracting the historical locations (x1,y1), (x2,¥2), ...
(z¢—1,y+—1) and the instant location (x¢,y;) of u;
3:  Predicting (2441, yt+1) of u; based on DouLSTM-Den
: Calculating the distance between (zty1,y:+1) and the
servers to determine the (Xiy1,Y:y1) that w; will
access
5:  Determining the area;;; that u; will be in
:  Obtaining historical QoS data Ti,s
7:  Calculating mobility-aware QoS
QoSi11 = Tqos1 + Tqosz + ---TqQosn
8:  Calculating the value of parent attribute
™ (xl) = (l‘l “+ 2o + ...$k_1)/(k - 1)
9:  Applying Gaussian distribution to probability
distribution in (19)
10 fori=1—>ndo

11: Calculating posterior probability P of ¢y and ¢;
12: if Pc, > Pc, then

13: return cg

14: else

15: return c;

16: end if

17:  end for

18: end for

ts

T T T
I I

'] 2.21 ) 0.03 I 1.11 ‘ 1.21
t2 4

l 0.21 { 0.25 l 0.13 | 0.02
t. 4
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s, | 0.04 | 0.02 | 001 | 003

Ss 0.06 0.05 0.01 0.02

Ss: | 17 | 003 | 005 | 001

Uz u: us Ua
Fig. 5: A third-order tensor of QoS

QoS. Due to the continuous movement of users, relying solely
on the current service status for monitoring leads to delayed
results. To address this, we developed a trajectory prediction
model to achieve spatiotemporal awareness of service quality.
This model is then integrated into a Gaussian hidden Bayesian
classifier to enable proactive monitoring of services, adapting
to the user’s movement. A user’s historical trajectory is col-
lected from the locations of the servers previously accessed by
the user. The user’s future location is predicted based on this
historical trajectory. The edge server that is possibly accessed
by the user in the next moment is thus determined by the
user’s future location and the signal coverage of servers. If

LEGEND

A Past trajectories

Historical location =
Predected trajectories

Predict location Feature Flow

Predected trajectories

6: Architecture of DouLSTM-Den model

the predicted user location is within two servers’ overlapped
areas, the server closer to the user will be selected. The LSTM
is able to efficiently capture the long-term dependencies and
temporal patterns in trajectory data, Here we propose a model
named DouLSTM-Den to predict a user’s future location. As
shown in Fig. 6, DouLSTM-Den comprises an LSTM layer
with 3 units, a hidden LSTM layer with 2 units, and a normal
dense layer with 2 hidden outputs for 2 columns. By adopting
a two-layer LSTM model, we can capture more complex
temporal dependencies and sequence patterns. The first LSTM
layer, with 3 units, extracts lower-level temporal features. The
second LSTM layer, with 2 units, builds on these lower-level
features to capture higher-level temporal dependencies. This
hierarchical structure enables the model to learn more intricate
patterns in the data.

The DouLSTM-Den model is trained by comparing the
predicted user locations with the actual locations to establish
the mapping between the user’s historical and future trajectory.
The sequence of base stations accessed by the user is viewed
as the user’s historical trajectory. A user’s trajectory is defined
as follows:

The original trajectory data of the moving user is con-
verted into a sequence of h positions H; = {hy, ha, ..., hp},
where H; represents the movement trajectory of user;, h; =
{Ingm,lat,,} represents the mth longitude and latitude of
user; based on time series. The current location is H' =
{Ingt, lat,}. In practice, we continuously update the trajectory
by combining the current location of the user for trajectory
prediction.

We predict the ¢ 4 1th location H;y; of the user; through
the DouLSTM-Den model. A high-level definition of the
DouLSTM-Den model can be expressed as follows:

f{Hq, Hs, ...,

Fig.

Ht+1 = HhaHt}) ®)

Its technical details can be referenced in Section 3.2.
According to [34], buildings can interfere with signal trans-
mission to mobile devices, and wood, concrete, and metal
elements can obstruct service signal propagation. The envi-
ronment around the edge server (e.g., dense woods, hills,
and metropolitan regions with high-rise buildings, etc.) can
cause significant variations of network quality in a real-world
context. At the same time, the network load in various areas
varies [19]. Network quality and network load conditions have
a significant impact on service response time, delay, etc. [35].
It can be inferred that the QoS values of edge servers vary
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Fig. 7: Response time of a user in different areas

based on their coverage area. The coverage of the server is
circular according to [36]. Accordingly, we divide the coverage
area of a server into several circular rings and monitor QoS
in each circular ring.

Fig.7 shows the observed response time values when a user
called the same service within different coverage areas and
time slots called the same service from an edge server in
different time slots. This is obtained from the experimental
data set. It can be seen that the QoS values of the same service
at different times and locations are unequal. The response
time has large fluctuations. Therefore, it is reasonable to
consider time and location in the process of proactive service
monitoring.

Mobile operators measure base station coverage through ra-
dio frequency planning. Base stations usually employ LPWAN
technology to provide 2-5 kilometres of coverage [36]. Here
we set the coverage of each edge server to 2 kilometres to
imitate the service coverage offered by a real server.

The division of coverage area is expected to enhance the
accuracy of QoS monitoring. To this end, the coordinates
of a user and a server’s locations are converted into two-
dimensional plane coordinates using the Miller projection
technique [37]. Next, the coverage of the server is automati-
cally divided into circular areas by means of clustering. The
Miller projection process is formulated as follows:

Let {Ing, lat} represent the longitude and latitude of a user
or server. First, we convert longitude and latitude to radians.
Let x,, and y, represent the radian value respectively, then

Ty = 5" ©)
Yp = 145" (10)

Next, we convert y,, to ¥, through Miller projection, which

can be realized by the following formula:
1.25 * log(tan0.25 = © + 04 * y,)  (11)

Finally, the converted two-dimensional plane coordinates
(X,Y) is calculated by the following formula:

Yg =

X = (W/2) +(W/2r) %z, (12)

Y = (H/2) — (H/2+mill) * y, (13)

Where L represents the circumference of the earth, and R
represents the radius of the earth, where R = 6381.372.
When expanding the plane, the length of the X-axis equals
the perimeter, which is W = L. The length of the Y-axis is

about half the perimeter, so that H = L/2, and mill is a
constant in Miller projection.

The coverage area of the server is divided into multiple
circular areas A = (a1, as, ..., ax) based on the location plane
coordinates of the server. The division is realized by means of
clustering. This paper adopts the DBSCAN clustering method
[38]. DBSCAN method is a density-based clustering algorithm
that groups data points based on their proximity and density
within a given epsilon radius. The density is defined in the
following formula:

Ne(z;) ={z; € D|dist(x;,z;) < €} (14)

with

dist(X,Y) = (31 | — yil?)'/? (15)

The user’s distance from the server and its QoS attribute values
are used as inputs to the classification algorithm for calculating
the dist. If both x; and x; are reachable to core object samples,
then x; and x; are densely connected. Then, the maximum
density-connected sample set is defined as a class (cluster).
The radius of each region from the server location is calculated
by the following formula:

RE = (31 si)/n (16)

with

S = \/ (X-Xps)? + (Y-Yps)? (17)

where S represents the distance from the user’s location to
the server, and {X,Y} and {Xs,Yss} represent the two-
dimensional coordinates of the user and server respectively.

We choose the server closest to a user as the server that
the user is most likely to access. We then determine the
exact circular area of the user where the user will be. This is
achieved by calculating the distance S between the predicted
locations of the user and the edge server.

The historical QoS data of the service to be invoked by the
user is extracted from all the users in the same circular area
a; of the predicted edge server. It is denoted by Tyreq,,, =
{Tw,,Tuy, s Tu, }, where T,,, represents the QoS of the ser-
vice invoked by the user i. The average value of the historical
QoS data is calculated to obtain the mobility-aware QoS of the
service. It is denoted by QoS;y1 = Zi Tarea; 4,/ Where n
is the number of the users in this area.

D. QoS monitoring based on Gaussian Hidden Bayesian
classifier

The main purpose of this step is to train a Gaussian Hidden
Bayes classifier based on historical data. The classifier will
proactively monitor the mobility-aware QoS acquired from the
last step. A Naive Bayes classifier assumes that the attribute
values are independent of each other. However, it ignores the
fact that there might be a dependence between QoS attribute
values, leading to inaccurate classification results. Here we
define a parent attribute m(x;) to reduce the dependence
between QoS attributes. Each parent attribute represents the
influence of other sample attribute values on a given attribute
value. Hidden parent attributes are constructed by obtaining
the mean values of the sample attribute values. For a given
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Fig. 8: Architecture of Gaussian Hidden Bayesian classifier

sample response time attribute x;, depicted in Fig. 8, the value
of the parent attribute 7(x;) corresponds to the mean value
of z; through z;_; [22]. The improved Bayesian classifier
formula can be expressed as:

n

C(X) = argmax {P(c;) [ [ Plailn(x:).c;)}

c; €C i=1

(18)

The Gaussian distribution is generally used to represent
the class conditional probability distribution of continuous
attributes. We apply Gaussian distribution to the probability
distribution of continuous variables in the Bayesian classifier.
The assumption of the Gaussian distribution is expressed as
follows:

Uz, + P e (ﬂ-(xl) _uﬂ'(a:-))7
P(x; i):¢j) = Ne, ’ I ‘
(1' |7T(l' ) Cj) j ( 032:1(1 . pg)

(19)
where N, represents the Gaussian distribution of the corre-
sponding category c;, Uz, and agi are the mean and variance
of the sample attributes, and u,(,,) and o (,,) are the mean
and variance of the parent attributes corresponding to the
sample. The correlation coefficient between x; and 7(x;) is
denoted by p = % .

@i Im(x;)

In the training phase, a Gaussian hidden Bayesian classifier
is constructed upon its parent attributes for each sample. The
classifier is trained based on the historical data of each edge
server. The spatio-temporal QoS data (i.e., the QoS data in
the same circular area of a server within the same time
period) is adopted as the input for the classifier. Every time
a new QoS value is obtained, whether or not the QoS value
satisfies the probabilistic requirements can be determined. We
assume that the QoS attribute value follows the Gaussian
distribution. Therefore, the determination can be implemented
by the following probability density integral formula:

Qos_Value 1

_ (z—u)?
e 202

P(X < Qos_Value) = / (20)

o 2ro

where 1 and o represent the mean and standard deviation of
the QoS value. For example, if a QoS requirement is that the
probability that the service response time is less than 2s is
greater than 85%, the value of QoS_Value is 2.

In the QoS monitoring process, contains a set of user target
QoS requirement vectors as Tgos = [X1, Xo,- -+, X,], where
X, = [x1,29, ,xn}T refers to the set of required QoS
values of all the services called by the user n when accessing
a server. The category set is C' = {cp, c1}, where ¢ refers to

a satisfactory grade and c; refers to an unsatisfactory grade.
The posterior probabilities of cy and c; are calculated via the
aforementioned process. The category with a higher posterior
probability is regarded as the final monitoring result.

V. EVALUATION
A. Research Questions

The effectiveness and feasibility of the DLSTM-BRPM
method are verified respectively in a simulated mobile edge
environment and our created real-world data sets. The exper-
iments aim to verify:

e RQI1: Why is the structure of the DouLSTM-Den model
modelled in such a way?

e« RQ2: Can QoS requirement violations be proactively
monitored using DLSTM-BRPM?

« RQ3: How is DLSTM-BRPM compared with traditional
monitoring methods in terms of effectiveness?

e RQ4: How does automatic partitioning affect monitoring
accuracy compared to manual partitioning of server cov-
erage?

o RQS5: How is the efficiency of our method while main-
taining the accuracy of proactive monitoring?

B. Experiments on simulated data sets

1) Experiment setup

Experimental environment configuration. The Tensor-
Flow 2.4.0 deep learning framework? is used to implement the
proposed DouLSTM-Den model. The model is trained with a
computer with Nvidia GTX1080Ti GPU. The Adam algorithm
is used as the optimizer. The model is trained for 30 epochs
with a batch size of 128. The initial learning rate is set to
0.001. All these parameters are optimal settings according to
our experimental observation.

Data sets. This experiment involves three data sets in the

experiment.

o Data Set 1 is the Shanghai Telecom data set®. This
data set includes the geographic location information of
3,233 base stations and 611,507 service calling records,
including start time and end time of service calls, server
addresses (latitude and longitude), and user IDs.

o Data Set 2 is a real-world Web service quality data set
released by the Chinese University of Hong Kong*. This
data set includes the response time of 4,500 Web services
called by 142 users in 64 different time slices (15 minutes
per time slice).

e Data Set 3 is a simulated verification data set. The
verification data set is generated according to users’
QoS requirements in the experiment. The verification
data is used to verify the effectiveness of the proposed
method. For example, if the QoS requirement is that
the probability that the response time of the service is
less than 3.6s is greater than 80%, we inject more than
20% exceptional response time (i.e. greater than 3.6s)
samples in a certain range of the original samples as the
verification data.

2https : //github.com/tensor flow/tensor flow /tree/v2.4.0
3http : //sguangwang.com/TelecomDataset.html
*http : //wsdream.github.io/dataset /wsdreamgataset2.html
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TABLE I: Sample edge QoS data set

Response time T To T3 Ton,
St 5.982 2.131 0.854 1.285
So 0.228 0.262 0.366 0.222
S3 0.237 0.273 0.376 0.232
S 6.777 0.263 0.173 0.13
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Fig. 9: Distribution of the edge servers

Data set fusion. The mobile edge environment needs to
consider users’ location changes. The traditional data set can-
not meet such a requirement. Therefore, we employ the data
fusion method [39], [40] to create a data set with dynamic user
locations. A simulated mobile edge environment is constructed
by fusing Data Set 1 and Data Set 2. The data fusion process
is detailed as follows:

(1) QoS data partitioning. We assume that the services (with
QoS) in the same geographic locations (i.e. latitude and
longitude values) belong to the same edge servers. In this
way, the existing data sets are merged to generate an edge
QoS data set. Table I is an example of the edge service
QoS data set, where S represents the edge server, and
x represents the sample data stream of the edge server.
This data set contains the geographic locations of 60 edge
servers, the movement trajectories of 160 users (see Table
II), and QoS (i.e. response time and throughput) values of
5,085 service calls.

(2) Edge data set formation. The locations of edge servers
are determined by applying K-means clustering on the
data set. A cluster centroid is regarded as an edge server.
The other points (i.e. locations of base stations) in the
same cluster are regarded as the historical users’ locations
covered by the edge server. Hereby users’ trajectories
are decided. We set k to 60 according to each server’s
coverage area (i.e. a circle with a radius of approximately
2 kilometres according to [41] and the distribution of the
users’ locations. Fig. 9 shows the locations of some edge
servers.

Comparison method. We compare DLSTM-BRPM with
the following state-of-the-art service quality monitoring meth-
ods to verify the superiority of DLSTM-BRPM. These include
ghBSRM [22], wBSRM [14] and IgS-wBSRM [21].

2) Experimental results

Model Structure Comparison. To answer RQI1, we set
up an experiment to verify if the prediction performance of
the DouLSTM-Den model with the current structure is better

TABLE II: Statistics of user trajectories

Distance(km) 0-2 24 46 6-8 8-30
Number of users 31 57 51 14 7

than the models with other structures. The structure of a
neural network model usually poses a significant impact on the
performance of the model. Therefore, a design-of-experiment
(DOE) method [42] [43] is performed to determine the
best structure of the proposed model. This method allows
each experiment to use the same hyper-parameter settings
for training and testing, except for the structural parameters.
Consequently, the model structure can be tuned.

We conduct a performance comparison between the pro-
posed DouLSTM-Den model and the variations of the model
with other structures. We follow a standard 8:2 ratio to assign
the training and testing sets. The moving paths of 128 users are
selected as the training set to train this model. The validation
set contains the moving paths of the other 32 users. The
metrics of MAE (Mean Absolute Error), RMSE (Root Mean
Square Error) and R? are selected to evaluate the prediction
accuracy of the models. Their mathematical formulae are
expressed as follows:

YA
MAE:Zlu'L u’L|

> @)
L !\2

RMSE — L%N ) 22)
AR

R2—1_ 2o (i —ui)” (23)

> (uf = )’
where u; is the true coordinate value of user i, u} is the
predicted coordinate value of user i, and N is the number
of predicted users. The lower the RMSE and MAE values,
the higher the model’s prediction accuracy. The higher the R?
value, the better the model’s fitting degree with the actual need.
Table III shows the compared models and their performance
upon those metrics. L; refers to an LSTM layer with ¢ units.
D, represents a dense layer with ¢ hidden outputs in the output
layer. We investigate several combinations between these two
layers. For example, L3 + D3 refers to a 3-unit LSTM layer
followed by a dense layer with 3 hidden outputs in the output
layer. Each experiment is trained and tested with the same
hyperparameter setting. It can be seen from Table III that our
model based on Ls + Lo + Dy achieves the best prediction
results. In addition, we observed that the performance of the
model is decreased when the number of network layers is
increased. Therefore, we can conclude that the DoulLSTM-
Den model based on the structure of L3 + Lo + D5 is more
appropriate for user trajectory prediction in this experimental
environment.

Our next experiment is to verify if the model can converge
with the increasing number of epochs. Fig. 10 shows the loss
curve of the DouLSTM-Den model on the training data set
and the verification data set. It can be seen that this model
can converge after 13 epochs of training.

Accuracy. To further answer RQ1, we set up an experiment
to verify if the DouLSTM-Den model can accurately predict a
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TABLE III: Comparison of prediction accutacy of each model

model MSE MAE R?
I, 11e %  7.949¢ 3 8.466¢ T
L3+ Lo 1.0e3 6.797¢3 9.081e~!
Ls + Dy 143 7.706e~3 8.91e
LatLo+Dy;  8.3e=% 3.769¢=3 9.79521e~1
Ls+Lo+Lo+Lo 8.4e~4 3.838¢73 9.74129¢~1

user’s trajectory. We use the fused data set for the model test-
ing. The test set contains 160 users’ locations. The prediction
accuracy is verified by comparing the actual users’ coordinates
and the predicted users’ coordinates.

We demonstrate the average absolute error rates of 5 ran-
domly selected users and all the users in the test set in Table
IV. It can be seen that the average absolute error of the
difference between the predicted and actual positions for the
five users is less than 0.02. In addition, the overall error rate is
also relatively low (less than 0.05). It shows that the model can
accurately predict users’ locations in the next moment based
on the users’ historical movement trajectory. Therefore, we
can conclude that the prediction results of the DouLSTM-Den
model can describe the users’ future trajectories.

Feasibility. To answer RQ2, we set up an experiment to as-
sess the feasibility of the proposed method. We verify whether
our approach can detect abnormal service states before users
access new edge servers. We choose two realistic scenarios of
user movement with different speeds: 1) a simulated scenario
that a user is driving, and 2) a simulated scenario that a user
is riding a high-speed train. The experiment assumes that a
group of 160 users call services when driving a car and taking
a high-speed train respectively. We assume that the speed of
the vehicle is 72km/h and the speed of the train is 300km /h.
The monitoring time ¢t prsTa—Brpy Of our approach mainly
contains two parts: the time ¢ po,,zs7as to obtain the mobility-
aware QoS attribute value based on the DouLSTM-Den model,
and the time %,,,, to monitor the QoS using the Bayesian

TABLE IV: Comparison of predicted and actual coordinate

Real coordinate Predicted coordinate | Absolute Error

ul (31.1616,121.5273) | (31.1625,121.5266) | (0.0009,0.0007)
u2 (31.1067,121.3989) | (31.1096,121.3876) | (0.0029,0.0113)
u3 (30.9546,121.3338) | (30.9439,121.3245) | (0.0107,0.0093)
u4 (31.1314,121.4297) | (31.1512,121.4200) | (0.0198,0.0097)

us (31.3140,121.5098)
All users

(31.3230,121.4912) | (0.0090,0.0186)

(0.0433,0.0496)

classifier. The estimated time ¢,,., required for a user to access
a new edge server is obtained by calculating the distance
between two edge servers divided by the speed.

Fig. 11(a) and Fig. 11(b) respectively show the time needed
for proactive monitoring and connecting to a new edge server
for 5 randomly selected users and all the users when driving
and taking high-speed trains respectively. We can draw a
conclusion that our approach can efficiently complete the
proactive service monitoring before users access new edge
servers. This would provide more time for servers to make
decisions if service anomalies occur.

. DLSTM-BRPM monitoring time Server switching time
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Fig. 11: Time consumption comparison between proactive
service monitoring ({prsTym—prpa) and server switching
(ttra) When (a) driving cars and (b) taking high-speed trains.

Effectiveness Comparison. To answer RQ3, we establish
an experiment to verify whether the proposed proactive moni-
toring method can more quickly and accurately detect service
exceptions before users call the services. Since response time
and throughput are two typical types of QoS attributes, we se-
lected both as monitoring attributes to validate the foundational
applicability of the approach. We compared the proposed
approach with the three baseline approaches mentioned above.

Data Set 3 is used for the experiment. Data Set 3 contains
two QoS attributes, i.e., response time and throughput. First,
we extract the QoS values of 2000 services to train a Gaussian
hidden Bayes classifier. We then inject 200 exceptional sam-
ples with a response time of 3s in the ranges of [200,400] and
[400,600] of 1000 test samples (i.e. services). We also inject
200 exceptional samples with a throughput of 1.0kbps in the
ranges of [600,800] and [800,1000] of the test samples. These
exceptional samples are used to verify whether the proactive
monitoring method can detect service exceptions in advance.

The response time requirement is that the probability that
the service response time is less than 2s is greater than
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85%. The throughput requirement is the probability that the
maximum throughput of the service is not less than 1.83kbps
and greater than 80%. These probability values mentioned
above are determined by analyzing the distribution of the data
set.
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Fig. 12: Result of response time monitoring on: (a) Ex-
ceptional samples injected in [200,400] and (b) Exceptional
samples injected in [400,600].

Fig. 12(a), Fig. 12(b), Fig. 13(a) and Fig. 13(b) respec-
tively show the monitoring results of the exceptional samples
injected in different intervals. The abscissa represents the
number of samples that a monitoring method can obtain based
on the test set (i.e., 1400 services accessed by 32 users). The
ordinate represents the monitoring result, where 1 represents
normal, and -1 represents abnormal. The number of samples
required for each method to monitor the abnormality of the
service status is marked at the top of the diagram. It can
be seen that the proposed proactive monitoring method (i.e.
DLSTM-BRPM) needs the lowest numbers of samples to
detect the service exceptions. ghBSRM detects the service ex-
ceptions quicker than IgS-wBSRM. However, ghBSRM makes
misjudgments in some cases. For example, we insert wrong
samples in the interval [200, 400] in Fig. 12(a). The ghB-
SRM method only detects exceptions at 475 samples for the
first time. In this regard, ghBSRM only considers contextual
information for monitoring current QoS other than QoS data
predicted to conduct active monitoring. In addition, wBSRM
cannot monitor these service anomalies. This results from the
fact that it does not take into account the mobility of users
and the impact of other samples when making decisions for
the current monitoring samples. In general, it can be seen that
the prediction results of DLSTM-BRPM are more consistent
with the injected exceptions. The experimental results verify
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Fig. 13: Result of throughput monitoring on: (a) Exceptional
samples injected in[600,800] and (b) Exceptional samples
injected in[800,1000].
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Fig. 14: Comparison of manual and automatic partition-based
monitoring results

the effectiveness of the proposed proactive monitoring method
in the mobile edge environment.

Division mode comparison. To answer RQ4, we conduct an
experiment to verify the effect of automatic partitioning on the
accuracy of monitoring results. Firstly, we compare the error
rates of predicted QoS (i.e. response time) between the auto-
matic and manual partitioning methods. Second, we compare
the impact of space-time-aware QoS on the monitoring results
(i.e., whether the service requests at that location can satisfy
the user demand) with the two partitioning approaches. We use
the DBSCAN algorithm to implement automatic partitioning.
The manual partitioning divides the server coverage into five
areas with the respective radius of [400,800,1200,1600,2000].
This is due to the uniform distribution of historical requests
observed in the coverage area. Fig.14 shows the monitoring
results of 50 requests under six randomly selected servers
respectively.

It can be seen that the average error rate (0.162) of the
QoS predicted by the automatic partitioning is smaller than
that (0.358) of the manual partitioning. The average number
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of correct monitoring results of the former is 9 higher than
that of the latter. In addition, the average error rate of all the
servers based on the automated partitioning and the manual
partitioning is 0.175 and 0.347, respectively. The average
number of correct monitoring QoS results of all the servers
based on the automatic and the manual partitioning is 45 and
36, respectively.

Since the regions are divided by the clustering algorithm, the
users in each region have similar geographical locations and
similar QoS. As a result, the QoS obtained upon the predicted
locations appears to be more accurate.

Performance. To answer RQS5, we set up an experiment
to verify if the average time consumption (i.e., the time of
training and monitoring per service) of DLSTM-BRPM is
shorter than the three aforementioned baseline methods. We
separately record the time required for each method to train
2000 samples under different QoS (i.e. response time) thresh-
olds. We then measure the time required for these monitoring
methods to complete the monitoring of 3000 samples under
several different QoS thresholds and obtain the average time
consumed for each sample. The time of the monitoring method
under the same quality requirements can effectively reflect its
efficiency.

The training time and the monitoring time of the candidate
methods under different QoS thresholds are visualized in
Fig.15. It can be seen that the monitoring time of DLSTM-
BRPM is not higher than the baseline methods on the premise
that its monitoring performance is significantly improved. This
can be attributed to the time taken by this method to obtain
spatio-temporal QoS data and predict a user’s trajectory. In
addition, the training cost of DLSTM-BRPM is slightly higher
(approximately 0.1s) than the other baseline methods. This is
considered to be acceptable given that the training is only run
one time for each user in an edge server.

C. Evaluation in a real-world edge environment

1) Data set description: We conduct experiments in a
small-scale real-world edge environment to further evaluate
the feasibility of the proposed method. 6 edge servers are
established on the campus (with a total area of 1077 acres)
of Hohai University in Nanjing, China. Each edge server has
a signal coverage of 50m radius (see Fig. 17). 20 students are
recruited to access up to 510 services when moving among the
coverage areas of those servers. Fig. 16 shows the number of
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Fig. 16: The number of service calls of each user

Fig. 17: Mobile edge environment in Hohai University

services accessed by each user. We collect the users’ service
access information, including User IDs, Server Addresses,
Access Time, Response Time (ms) and Service Transmission
Bytes, from the 6 edge servers and conduct the experiments.

2) Experimental results: Fig.18(a) shows the actual trajec-
tories of 5 randomly selected users. Fig.18(b) shows the partial
actual trajectories and the predicted trajectory of these users,
where a circle represents a user’s real position and a triangle
represents the user’s predicted position. It can be seen from
Fig.18(b) that the trajectory prediction is not predicted from
the initial position. In this regard, the DouLSTM-Den model
needs some training data for accurate prediction. It can be seen
that the predicted locations are relatively close to the actual
locations. The average absolute error of the prediction for all
the 20 users is less than 0.0012. This can be viewed as within
an acceptable range.

We also verify the accuracy of proactive monitoring. Fig.
19(a) visualizes the monitoring result of 93 services invoked
by 5 users selected from the previous population. Fig. 19(b)
demonstrates the proactive monitoring result of the services,
where the black icon indicates that the QoS meets a user
requirement, and the white icon indicates the opposite case. It
is obvious that most service statuses can be proactively tracked
and the accuracy of the monitoring results is ensured. The
error rate (i.e. the ratio that the monitoring results are opposite
to the actual service status) for the 20 users is 6.83%. The
results show that our method can effectively monitor most of
the service status in advance.

VI. CONCLUSION

This paper presents a proactive QoS monitoring in MEC en-
vironment based on the DouLSTM-Den model and a Gaussian
hidden Bayes classifier. Experiments are conducted on both
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Fig. 18: Comparison between (a) actual trajectories and (b)
predicted trajectories of 5 randomly selected users on the data
set of Hohai University
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Fig. 19: Comparison between (a) actual monitoring results and
(b) proactive monitoring results of 5 randomly selected users
on the data set of Hohai University

simulated and real data sets, and results show the effectiveness
and feasibility of the proposed method. For future work, the
following tasks will be considered: i) we will design solutions
to accurately predict users’ multi-lag moving paths; ii) we will
improve this method to adapt to multivariate QoS monitoring;
iii) we will consider user privacy protection when designing
future proactive QoS monitoring methods.
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