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Abstract—Mobile Edge Computing (MEC)-based Internet of Things (loT) systems generate trust information in a real-time and
distributed manner. Predicting trustworthiness of loT services in such an MEC environment requires new prediction strategies that
cater for the aforementioned characteristics of trust information. More importantly, it is imperative to investigate how the real-time trust
information could be effectively integrated into trust prediction strategies in order to capture the ever-evolving nature of trustworthiness
of loT services. In turn, such a strategy allows loT service consumers to derive more relevant and accurate trust-based decisions. To
that end, our work models trust prediction in MEC-based loT systems as an online regularized finite-sum problem in a distributed MEC
environment with a given MEC topology. We then adopt the Online Alternating Direction Method (OADM) to effectively train trust
prediction models in parallel over the distributed MEC environment. OADM allows splitting the aforementioned finite-sum problem into
multiple sub-problems that correspond to different local MEC environments. These sub-problems can then be solved iteratively within

each local MEC environment by using the local trust data therein. This can avoid the movement of data across the core networks of
mobile network providers. Experiments on real-world and synthetic datasets demonstrate the effectiveness and scalability of the

proposed method.

Index Terms—Trust, Internet of Things, Mobile Edge Computing, Machine Learning, Online Learning

1 INTRODUCTION

Mobile Edge Computing (MEC)-based IoT systems are
characterized by IoT services deployed in geographically
distributed computing environments. These services pro-
vide useful functionalities to service consumers in close
proximity [1]. Co-located within the base stations of mobile
network providers, MEC environments provide computing
and storage resources to applications at the edge of the
network. This allows IoT services to be deployed at the edge
of the network providing faster access to their consumers
[2]. Such a system architecture also allows high-volume
and high-velocity IoT data to be processed within MEC
environments closer to where the data originates [3]. This
helps reduce the network stress on the core networks of
mobile network providers considerably.

Trust in such a system is an essential element. It im-
proves the confidence of service consumers towards achiev-
ing the desired outcomes when interacting with IoT ser-
vices. For instance, Fitness tracking applications collect
personal information from users such as social profile, be-
havioral and location data via wearable devices and other
means. This information is, then, shared with third party
services. In such a context, trust provides assurance that the
collected information will be used as agreed by all parties
[4]. In intelligent transport systems (ITS), trust allows au-
tonomous vehicles to locate services that provide credible
location and traffic information [5]. As such, trust can be
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deemed an integral part towards ensuring user acceptance
towards consuming services in IoT systems.

However, the dynamic and heterogeneous nature in MEC-
based IoT environments poses multiple challenges in the context
of determining the trustworthiness of IoT services.

1) Mobilizing IoT sensors and service consumers cause
the trustworthiness of IoT services to be constantly re-
evaluated: Let us take an example of autonomous vehicles
acting as navigation data providers for a navigation infor-
mation service in an ITS. An autonomous vehicle entering
and leaving the coverage area of a given MEC environment
can influence the QoS of the navigation services to vary
sporadically in real-time. In addition, the QoEs of one service
consumer towards a given IoT service may be different from
that of another, as well. As a result, the trustworthiness of
an IoT service as perceived by one service consumer may be
different from the other service consumers operating within
a given MEC environment. Therefore, the trust information
generated within a given MEC environment from the trans-
actions amongst mobilizing IoT sensors (e.g. navigation data
providers) and consumers can cause the trust dynamics of
IoT services observed within a MEC environment to change
in real-time. This requires the trust evaluation models to be
continuously updated.

2) Real-time trust information generated in distributed
MEC environments under heterogeneous operating con-
ditions demand real-time, context-aware and distributed
trust evaluation of IoT services: In a typical MEC-based
IoT system, trust information is generated in a distributed
manner due to its inherently distributed system architecture
[6]. In addition, such trust information is also generated
under different operating conditions from one MEC en-
vironment to another. These operating conditions include
network conditions (e.g. network congestion), computing
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and storage resource availability, the hardware and software
used to host IoT services amongst others [7]. We refer
to the aforementioned operating conditions as the context
for trust, which can vary from one MEC environment (i.e.
context-environment) to another [8]. This gives rise to multiple
context environments within a given MEC topology that are
prone to change over time in response to fluctuations in
the underlying operating conditions, as well. This demands
trustworthiness of homogeneous IoT services within different
MEC environments to be determined in a context-aware
manner subject to time-varying trust contexts.

3) Lack of trust information with sufficient diversity IoT
services may hinder the ability of MEC-local real-time
trust evaluation strategies to produce accurate trust deci-
sions: Due to the distributed system architecture of MEC an
individual MEC environment only sees a split view of the
entire IoT service ecosystem that exists across a given MEC
topology. Therefore, a trust evaluation model trained within
a given MEC environment may suffer from the lack of
trust information on some IoT services (i.e. trust information
sparsity) and lack of diversity in trust information (i.e. trust
information collected from a wider variety of homogeneous
IoT services). Consequently, such issues can cause an MEC-
local trust prediction model to lack generalizability, which
we refer to as the ability to perform well on unseen trust predic-
tion requests received from service consumers. This challenges
accurately determining the trustworthiness of particularly
the less popular IoT services deployed in a given MEC
environment.

To address the aforementioned challenges, we propose
an edge intelligence strategy to predict real-time IoT service trust
within MEC-based IoT environments. The specific contribu-
tions that address the challenges outlined previously are
summarized below.

1) We formulate the trust prediction problem in an MEC-
based IoT system as an online learning problem subject to
concept-drift over a set of distributed, time-varying and context-
dependent trust information distributions. we define concept-drift
as the change in trustworthiness of 10T services over time in
response to a change in the context-environment under which they
operate.

2) We also propose a parallel algorithm to train a context-
aware and real-time trust prediction model in a collabora-
tive manner within an MEC topology. The aforementioned
algorithm uses Online Alternating Direction Method (OADM)
to address challenge 1, 2 and 3. More specifically, the
proposed algorithm

e enables integrating temporally-ordered streams of
real-time trust information into MEC-local trust pre-
diction models to address challenge 1, thereby al-
lowing IoT service trust to evolve continuously.

o allows training a set of distributed and context-aware
MEC-local trust prediction models atop data accu-
mulated within each individual MEC environment
under heterogeneous operating environments that
best meet the trust characteristics in different MEC
environments, to address challenge 2. This also helps
significantly reduce the movement of high-volume
trust information across the core networks of mobile
networks thereby complimenting the goals of the

MEC paradigm.

e enables sharing knowledge amongst similar context-
environments for trust prediction collaboratively, to
address challenge 3. This tackles the issue of trust
information sparsity and helps improve the accuracy
of MEC-local trust prediction models in response to
trust queries from service consumers.

3) We report results of our exhaustive evaluation of the
proposed approach carried out against the state-of-the-art
distributed and centralized trust prediction approaches in
the current literature.

The rest of the paper is structured as follows: Section 2
reviews the prior research our work builds on. Section 3 de-
scribes a motivation scenario. Section 4 formally defines the
problem setting. Section 5 elaborates the proposed solution.
Section 6 comprehensively details out the experiments and
evaluation of the proposed solution. Section 7 concludes our
work and discusses possible future work.

2 RELATED WORK

This section primarily evaluates the existing literature that
precedes the proposed work across two key themes, in the
form of 1) Trust evolution in IoT systems and 2) Edge
Intelligence for trust prediction. We outline the key limita-
tions in these existing works in Section 2.1 and Section 2.2,
respectively.

2.1 Trust evolution in loT systems

Trust evolution remains a relatively understudied aspect
of trust in loT systems. Among the limited number of
studies that do focus on trust evolution, one noteworthy
classification proposes trust update approaches to be of
two folds. They can either be 1) event driven, or 2) time-
driven [9]. Event-driven trust updates are often driven
in response to important events triggered by transactions,
changes to the trust context, topological changes of the
underlying trust networks. On the other hand, time-driven
trust updates often take into account the intrinsic behaviour
of trust, which results in gradual decays of its value over
time. [10] investigated temporal evolution of trust. This
work proposed a time-aware trust prediction model based
on supervised learning approach to predict evolution of
trust, which uses an exponential weighting approach to give
more prominence to recent observations. Meanwhile, [11]
categorizes trust refreshment patterns into five main groups,
namely 1) stable, 2) abrupt, 3) incremental, 4) gradual, and
5) recurring. This categorization is primarily influenced by
the concept of drift, which aims to address changes in
relationships among entities over time.

In addition, [12] proposed a high-level trust manage-
ment framework to address the dynamicity in IoT systems
caused by new devices and services entering and leaving
the system unpredictably. While this approach also attempts
to model context-awareness in trust, the aforementioned
context is predominantly defined over an individual user.
[13] proposed another approach to detect dynamicity of
trustworthiness of IoT services. This approach, however, is
only applicable for centralized IoT systems as it does not



account for the first principles of trust information gener-
ation and processing in an MEC-based IoT environment.
Meanwhile, a dynamic trust model for collaborative appli-
cations in IoT systems was proposed in [14]. [15] proposed
an adaptive trust evaluation model for crowd-sourced IoT
services. This approach considers the dynamic changes in
the trustworthiness of crowd-sourced IoT services based on
consumers’ usage of them. This aligns with the fundamen-
tals of evolving trustworthiness of IoT services proposed
in our work. Apart from that, a framework is proposed
for crowdsourcing services to IoT devices based on their
mobility and trustworthiness [16]. [17], meanwhile, pro-
posed a dynamic trust management protocol to assess the
trustworthiness of misbehaving nodes based on honesty,
cooperativeness and community of interest. This approach
is capable of adjusting the trustworthiness of underlying
nodes based on the changing environmental conditions and
requires no centralized trust authority. Furthermore, two
conceptual frameworks to address the problem of trust
evaluation in dynamic IoT systems were proposed in [18]
and [16]. The aforementioned two approaches only address
the underlying problem at a high-level solution level, and
do not recommend concrete implementations to achieve
their proclaimed goals. In addition, they both have been
proposed predominantly in the context of centralized IoT
systems, and therefore, can be deemed less suitable to a
decentralized setting as that of an MEC-based IoT system.

2.2 Edge intelligence for trust prediction

As edge-oriented IoT systems have been taking traction
in the recent past, there has been an increasing interest
in using edge intelligence strategies for trust evaluation.
[1] proposed a distributed and collaborative edge intelli-
gence strategy for IoT service trust prediction that runs in
batch-mode atop historical trust information accumulated in
each MEC environment within a given MEC topology. [6]
proposed a data-driven, context-aware and stochastic edge
intelligence approach for trust prediction in MEC-based IoT
systems. This approach aimed to tackle the challenges posed
by the varying trust characteristics and high-volume trust
information accumulated within different MEC environ-
ments in growing IoT networks. Meanwhile, [19] proposed a
data-driven edge intelligence strategy for network anomaly
detection, whereas [20] proposed an approach to evaluate
trustworthiness of edge nodes in order to improve security
and privacy of edge-based IoT systems. However, none of
these approaches consider the evolutionary aspect of trust-
worthiness nor facilitate real-time prediction of IoT service
trust. In addition, these approaches also fail to allow efficient
trust prediction in the face of mobilizing IoT services and
consumers as well as address the sparsity of trust infor-
mation that can cause trust inferences to be less relevant.
[21] acknowledges the dynamicity and context-dependence
of trust within a collaborative edge computing environment
in relation to content cache placement. However, it does not
take into account the key requirements and characteristics of
IoT services and their consumers outlined before. Further-
more, [22] introduced a multi-criteria DoS attack detection
approach for MEC-based IoT systems. Not only does it fail
to counter the effect of trust information sparsity, but it also
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relies heavily on network-level parameters associated with
IoT devices for trust modelling, which might not always
be available to detect the trustworthiness of IoT services
deployed in a service oriented IoT environment.

3 MOTIVATING SCENARIO

We use the following motivating scenario to highlight the
relevance of this work in relation to the challenges outlined
in Section 1.

Let us take an example of an autonomous vehicle,
AV;, operating in an MEC-based IoT environment (see Fig.
1). AV; needs to obtain real-time navigation information
from trustworthy navigation information services to take its
passengers from the origin of the trip, X to the desired
destination, Y. This navigation information could be pro-
vided by automotive vendors themselves or third-parties
within this MEC-based IoT environment'. For simplicity,
we assume that these navigation services offer similar key
functionalities to their consumers, and therefore, form a
functionally homogeneous group of services. Meanwhile, the
navigation information provided by these services could be
supplied by other autonomous vehicles themselves, non-
autonomous vehicles with sensing equipment planted on
them via crowd-sourcing“, Unmanned Aerial Vehicles, or
stationary stationary roadway sensors and traffic surveil-
lance systems [23]. Each MEC environment provides a plat-
form for this data to be made available as services to AV; and
other interested consumers [24]. As AV; goes past multiple
adjacent MEC environments M av,;xy) = {M,..., My}
enroute to point Y from X, it interact with trustworthy
navigation information services that matches its QoEs. We
assume that these QoEs of AV} would remain the same as it
goes past MEC environments in M v, x,v)-

As AVy consumes the homogeneous navigation infor-
mation services exposed by M(av;;x,y), it will generate
information that characterizes the trustworthiness of these
services. This information can potentially include Quality
of Expectations (QoEs; e.g. expected service latency, fresh-
ness and accuracy of the navigation information provided.)
of AVj, Quality of Service (QoS) values of the service at
the time of consumption, environmental conditions under
which the service was operating, as well as user satis-
faction levels or ratings that determine if the interaction
yielded a positive or negative outcome for AV;. We propose
this trust information could take the shape of the tuple
<t,Q0E(AVht),QOS(ij ), OC (a1, 1), Res) where ¢ denotes
the time of the transaction, QoF(4v, ;) denotes the QoEs of
AVy at time t, QoS( Sar; b) denotes the QoS of the service
S1 deployed in the MEC environment M; consumed by
AVy at time ¢, OC(yy, +) denotes the operating conditions
of the MEC environment M; at time ¢ and Res denotes
the outcome of the interaction between AV; and Si, as
perceived by AV;.

In this problem setting, the mobilizing autonomous
vehicles acting as navigation information providers can

https:/ /www.wired.com/story/your-next-gig-map-the-streets-
for-self-driving-cars/
Zhttps:/ /mapper.ai/

3https: / /www.esri.com/about/newsroom/publications/wherenext/crowdsour

location-intelligence-autonomous-vehicles/
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sporadically provision navigation sensor services within
a new context-environment for trust. This can cause the
underlying context-environment to change and the trust
prediction models established within M 4v,,x,y) to be re-
evaluated frequently. In addition, by nature, the values of
some of the parameters that the IoT service trust depends
on (e.g. QoS levels of a given service and environmental
conditions) can vary over time. This phenomenon causes the
trustworthiness of the underlying service to evolve over time.
Such dynamism challenges most existing trust prediction
approaches that predominantly rely on historical trust in-
formation. Furthermore, the lack of suitable and sufficiently
diverse trust information when a service is provisioned in a
new context-environment also prevents existing trust evalu-
ation approaches from being effective. The aforementioned
challenges demand alternative trust prediction strategies
that can withstand the dynamicity of trust and adhere to
the systems characteristics of MEC-based IoT systems.

4 PROBLEM FORMULATION

The trust between IoT services and their consumers is bound
to evolve over time as they interact with each other [17].
In other words, a positive and negative outcome of the
interaction between the IoT services and their consumers
will either strengthen or weaken the trust of the service
consumers towards IoT services, respectively. Therefore, a
real-time trust estimation strategy for IoT services has to
update itself based on the temporal order in which new
trust information becomes available. Accordingly, given a
sequentially arriving unbounded stream of real-time trust
information generated at a set of arbitrary time intervals
= {1,...,t} (where ¢ — ), we extend the aforemen-
tioned principle to our problem setting and formulate the
problem of predicting the trustworthiness of an IoT service
under temporal evolution of trust in real-time, as below.

§=f'(z;w) )

where z € R? (d represents the dimensionality of ) denotes
a requirement specification (e.g. expected QoS levels) of
an arbitrary service consumer looking to determine the
trustworthiness of a given service organized into a vector-
ized form, w € R? denotes a set of coefficients indicating
the impact of each trust feature towards the overall trust
value, and f* is a time-varying mapping function (a.k.a trust
prediction model) defining how each trust feature and their
respective weight coefficients can be consolidated to come
up with an overall trust value ¢ at time ¢. Here, f t represents
the best estimator in hindsight for IoT service trust at time ¢
within the underlying MEC environment, and is bound to
change as more and more new trust information is made
available at time intervals {t, ..., c0}.

A learner responsible for training a MEC-local trust pre-
diction model in a real-timely evolving trust system, at
time ¢, only has access to trust information generated in the
past at intervals {1,...,(t — 1)}. Therefore, we formulate
the problem of estimating f* at time ¢, as finding the best
estimator of w that minimizes the cumulative loss denoted
by ¢! over all past time intervals {1,..., (¢t — 1)}, as below.

(t—1)
minimize Z EZ

(AW

weR? i1 >7w) (2)
where ¢! denotes the loss function revealed by the nature
at time interval 4, (X, y') denotes a batch of data arrived
in the given MEC environment at the i‘" time interval. In
the aforementioned formulation, the learner engages in the
process of training the underlying trust prediction model
iteratively, as depicted in Algorithm 1 below.

As elaborated in challenge 1 and 2 in Section 1, it is
imperative that a trust evaluation system deployed within
an MEC-based IoT system consistently exhibits and is rep-
resentative of the most recent characteristics of underlying
IoT services. To realize this goal, we intend to modify
the problem (3) to treat the most recent trust information



Algorithm 1 Learner behaviour
1: fori=1,2,...,tdo

2: Learner receives trust information X* generated at
time ¢
3: Learner estimates w;

b

Nature provides the loss f‘uncti‘on[i and y.
Learner incurs the loss ¢*((X",y"); w) and updates
the underlying trust model

a9

collected from the transactions amongst the IoT services and
their consumers to be more influential towards determining
a trust prediction model for a given MEC environment, as
below.

(t=1)

h(t).L' (X", y"); 3
minimize ; ()L (X y');w) ®)
where h(t) = hg.e”* represents an exponential decay

function used to weigh the training examples gathered at the
145, time interval with respect to the other training examples
gathered during the time intervals {1,...,(t — 1)}. In A(%),
ho represents the initial weight at time ¢ = 0, and A(> 0) is
the decay constant.

In a typical MEC-based IoT system, the real-time trust
information generated from transactions between IoT ser-
vices and their consumers is persisted and processed in
an entirely distributed manner within local MEC-based
data-centres. Given the heterogeneous operating conditions
available in different MEC environments, we propose that
the attributes in the trust information defining IoT service
trust (i.e. trust features) x;, or the characteristics of the trust
information distributions in each MEC environment M;
could change from one MEC environment to another (i.e.
non-IIDness). This leads to multiple context environments for
trust prediction within different MEC environments. More-
over, we also propose that the aforementioned trust features
could be formulated as a combination of parameters that
are common across every MEC environment ., (e.g. QoS
parameters such as latency, availability, reliability) as well as
those that are specific to each individual MEC environment
Z;. However, for simplicity, we assume z; = ., with z;
representing non-IID trust information across different MEC
environments. We also assume that the context environ-
ments originate only from different characteristics of trust
information distributions caused by the varying operating
conditions available in different MEC environments. Given
the above, we formulate the problem of training a distributed
and context-dependent real-time trust prediction model over a
set of context environments, as below.

minimize
[wi,wa,...,w,]ER?

M T nf
> (XX rbttel i)
m=1 \i=1 j=1

m T
-5 (£ atw)

i=1 t=1

4)

where MEC environments within a given MEC topology
are indexed with m € (1,..., M); ¢; and L; denote the loss
and cost functions used to train a trust model in i** MEC
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environment within a given MEC topology, w; denotes ttle
weight vector associated with F; and £;, P} = {z],y]}}.,
denotes the dataset generated and used at time ¢ to train the
trust model used by the it" MEC environment M,. Problem
(4) easily parallelizable across different MEC environments
by letting each MEC environment train individual real-time
trust prediction models over the MEC-local trust informa-
tion.

Furthermore, in a typical MEC-based IoT system, sensor
data providers and consumers can mobilize among adjacent
MEC environments. Not only that, it is also possible that
same sensor provider or those that exhibit similar char-
acteristics can operate from MEC-environments in close
proximity to each other. As a result, we hypothesize that
adjacent or MEC environments that are close to each other
may accumulate overlapping trust information, and form
similar context environments for real-time trust prediction.
Therefore, allowing such MEC environments to collaborate
with each other may assist MEC environments with similar
context environments to counter the impact of sparse trust
information, thereby allowing them to derive more accurate
trust prediction models by borrowing strength from each other.
Consequently, problem (3) can be further modified to incen-
tivise knowledge sharing amongst the neighbouring MEC
environments that carry similar trust features, as below.

w = minimize £(w) + vG(w, {w; }w£w,)

we R4
s.t. ()

> lw —wil2

iEN(4)

g =

where G infuses the knowledge (i.e. model parame-
ters) extracted from the neighbours, 7 scales the impact
of knowledge acquisition against the knowledge derived
from MEC-local trust information and N (i) denotes the
neighbouring MEC environments taking part in knowledge
sharing. G encourages the parameters w of a trust prediction
model within an MEC environment to be selected from the
knowledge acquired from its neighbours either by adopting
their entire model or an aggregated form of (e.g. mean)
the model parameters of the neighbours, under different
circumstances.

However, G spoils the parallelism enjoyed by (4) as it
now force the trust prediction model trained with in the
MEC environment M; to depend on the model parameters
of its neighbours, which need to be determined at the same
time or before that of M. Therefore, we look to aggregate all
sub-problems denoted by problem (5) that are to be solved
by each MEC environment together as below, and attempt
to derive a parallelizable solution.

(w1, wa, ..., Wy =

[ee]
minimize > (

(w1, wa,...,wm]ERT ;27

M M
Yo Li(ws) + Z_l%'gi(wma

m=1

(6)
{w; bwitw;)

5 PROPOSED SOLUTION

This section provides a comprehensive overview of the pro-
posed solution and the theoretical foundation upon which



it is developed. Section 5.1 lays out an easy-to-comprehend
summary of the proposed solution void of rigorous math-
ematical notations. Section 5.2 comprehensively details our
proposed solution to address the key challenges in trust pre-
diction outlined in Section 1 together with a brief summary
of the important precursors that it relies upon.

5.1 Solution Overview

We propose a parallel and iterative distributed online pre-
dictive algorithm for trust prediction in MEC-based IoT
systems. From a communication perspective, the proposed
algorithm is designed to run atop a two-tier hierarchical
communication architecture. This hierarchical communica-
tion architecture predominantly consists of the global cloud
and MEC environments as its tiers. Furthermore, the in-
formation flows between the two aforementioned tiers via
the backhaul links connecting the global cloud layer and
the network layer of each distributed MEC environment.
The proposed algorithm runs in six key steps, which are
elaborated below.

Step 1: First, the streaming trust information generated from
the transactions amongst IoT services and their consumers
would be accumulated in real-time within MEC environ-
ments.This real-time trust information will be persisted in
suitable time-series data storesor streaming analytics plat-
forms to be used by the proposed iterative online trust
prediction strategy (see Fig. 2(a)).

Step 2: Then, simultaneously, a Global Model Coordinator
(GMC) running in the centralized cloud layer will bootstrap
each MEC environment with necessary metadata to train
trust prediction models. This metadata includes, 1) details
about the neighboring MEC environments, 2) auxiliary
model parameters of the trust prediction models trained by
the neighbors to enable knowledge-sharing. In case an MEC
environment is about to run its first iteration of the proposed
iterative online trust prediction strategy, it will be initialized
with suitable defaults of the corresponding metadata (see
Fig. 2(b)).

Step 3: Next, at each iteration of the proposed iterative
online trust prediction strategy, a family of online trust
prediction models will be derived. This is carried out based
on either a single training sample of trust information or
the entire batch (given the computing resource available) of
trust information accumulated within a given timeslice (see
Fig. 2(c)).

Step 4: Once trained, the model parameters of the trained
MEC-local online trust prediction models are, then, shared
with the GMC running in the centralized cloud layer (see
Fig. 2(d)).

Step 5: Now, the GMC accumulates all the model parame-
ters it has received from all the distributed MEC environ-
ments. It then enforces knowledge sharing among neigh-
boring MEC environments and relevant other metadata is
computed (see Fig. 2(e)).

Step 6: Once knowledge sharing and the computation of
the metadata is done, the GMC next shares the learnt
knowledge and metadata associated with each neighboring
MEC environments with every MEC environment (see Fig.
2(b)).

Step 7: The procedure formed by steps 2) to 6) are then
repeated iteratively at each timeslice of the associated time
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horizon, which marks the end of the learning process and
can be either finite (i.e. in case the trust prediction model
training stops after a finite number of iterations) or infinite
in case the learning process runs indefinitely.

5.2 Our Solution

This section is structured into two sub-sections. For com-
pleteness, in Section 5.2.1, we first provide a brief systematic
exposition below on OADM, which is used to parallelize the
key problem formulation we derived in Section 4. We then
comprehensively describe the proposed solution in Section
5.2.2.

5.2.1 Online Alternating Direction Method (OADM)

OADM is an online algorithm that promotes solving a
linearly-constrained optimization problem by attempting
only a single pass over a given arbitrary dataset [25]. The
speciality of OADM over its predecessor ADMM stems from
the former requiring only a single pass over a given set
of training examples, while ADMM attempts to do multi-
ple passes over the same set of training examples across
multiple iterations till it the algorithm eventually reaches
convergence. Therefore, OADM could be deemed a better fit
to solve a linearly constrained optimization problem in the
context of data-stream learning, which demands training a
prediction model incrementally over a dataset accumulated
in real-time.

OADM algorithm primarily intends to take on the prob-
lems of the following type.

T

> (ft(w) + g(Z)) st. Aw+Bz=c (7)

t=1

minimize

z€X,z€Z
where w € R",z € R™", A € RP*" B € RP*™ 1t is
assumed that the functions denoted by f(w) and g(z) are
convex and defined as f* : R"* and g : R™ and is a time-
varying loss function [26]. In most convex optimization
problems where OADM can naturally be applied, f(w)
corresponds to a loss function where as g(z) corresponds
to a regularization function that helps better generalize the
solution of the optimization problem being solved.

To solve the constrained optimization problem (7) as an
unconstrained problem, the augmented lagrangian associ-
ated with it L/ (w,z, u) is obtained at time ¢ [27]. Then,
by applying dual-ascent iteratively, OADM minimizes the
augmented Lagrangian L} (w, z, 1) with the following steps
at time ¢.

w'*! = argmin L;,(w, ) (8a)
weR‘n

2 = argmin L] (w', 2, 1) (8b)
ZGR"L

Pt = pt 4 pVpLl (w2 ) (8c)

When f!(w) and g(z) are separable into multiple sub-
problems each solved over a partition of the training data
population, the aforesaid time-based iterations can be car-
ried out to solve each sub-problem independently in paral-
lel. The solution proposed in this work utilizes this exact
behaviour to solve optimization problems on potentially
large graphs as a distributed online optimization problem.
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Fig. 2: A visualization of the information flow associated with the proposed solution.

5.2.2 OADM to derive a parallel solution

In this subsection, we present the proposed parallel solu-
tion to derive a mobility- and context-aware real-time trust
prediction model for MEC-based IoT services.

In a typical MEC topology, each individual MEC envi-
ronment accumulates real-time and continuous streams of
trust information originated from the transactions among
IoT services and consumers within geographically dis-
tributed MEC-local data centers. Furthermore, these indi-
vidual MEC environments also tend to operate indepen-
dently from others within their own network boundaries
[28]. This can hinder their ability to share knowledge with
each other. In addition, although direct communication
amongst the MEC environment for knowledge sharing is
possible [24], complexities in inter-MEC network commu-
nication coupled with lack of interoperability standards
encouraged us to utilize the centralized cloud to facilitate
knowledge sharing. Even though the MEC paradigm at-
tempts to overcome scalability challenges posed by central-
ized cloud-based infrastructure in the face of high-volume
IoT data, edge-cloud collaboration has attracted much at-
tention in order to simplify communication among MEC
environments [29]. In such a setting, each MEC environment
can be logically connected to multiple MEC environments via
the centralized cloud for collaborative training of trust pre-
diction models. The trust prediction problem in MEC-based
IoT systems formulated in Section 4 was then modelled over
the graph resulting from this topology and OADM was
applied to derive a parallel solution to train a distributed
trust prediction model giving rise to Algorithm 2.

Algorithm 2 runs in multiple key steps in harmony with

the cloud and MEC layers. First, the model parameters of
trust prediction models trained by each MEC environment
are initialized by a GMC running in the cloud layer (see lines
[2-3]). After that the OADM procedure runs its three key
steps denoted by problems (8a), (8b) and (8c) alternatingly
between the cloud and MEC layers, as below.
w;-update: Separable across each local MEC environment,
w;-update is solved iteratively in parallel atop MEC-local
trust information (see Fig. 2(c)). Utilizing the z;;- and ;-
updates from the previous iterations shared by the GMC
during the initialization phase (see Fig. 2(b)), each local
MEC layer then independently trains its own local trust
prediction model (see lines 7, [14-17]). Once done, all MEC
environments share their resulting model parameters w; as
well as the loss incurred on using the trust prediction model
trained at time horizon ¢ atop the data accumulated at time
horizon t + 1, with the GMC (see line 17 and Fig. 2(d)).
Zij= %ji- and wu;j-updates: In contrast to w;-update, z;;-
, Zji- and u;;-updates are carried out within the cloud
layer. Out of the aforementioned steps, z;;-, zj;- perform
knowledge sharing by forcing the model parameters of the
trust prediction model trained by a given MEC environment
to be similar to the mean of the cluster it belongs to (see lines
9, [18-20]), while u;;-updates concerns with updating dual
variables used by the OADM framework (see lines 10, [21-
23] and Fig. 2(e)).
Output: The evolving output produced by the OADM pro-
cedure (see line 13) at each time horizon ¢ consists of the
model parameters of each individual MEC environment
corresponding to their trust prediction models.

We used a soft-margin Support Vector Machine (SVM)



Algorithm 2 Mobility- and context-aware real-time trust
prediction of MEC-based IoT services

1: parameters: M-MEC environments, F-Connectivity among
MEC environments for knowledge sharing, p-Penalty pa-
rameter, u(= 10), v(= 2)-Residual balancing parameters, k-
Sliding window length for model averaging.

2: for all m € M do > Loop over MECs in Cloud layer
3: Send initial z;;, z;; and u;; to m

4: procedure OADM(uwy}, 2{;, uf;)

5: fort =1to T do

6: for all m € M do > Loop over MEC:s in parallel
7: wit , O3+ W-UPDATE(w}, zj;, ui;)

8: foralle € E do >

Loop over edges among MECs, in cloud layer
9: ? , 251! < Z-UPDATE(w{ ™t uf;)
10: 1« U-UPDATE(w]™, /1)
11: Compute loss CH'1 — |lzij — 2jill2
12: Compute loss Cpft « > Cift+ > it
mem ' G.kee
13: Compute total constraint violations - r*
14: Compute dual residual - s*
15: p < RHO-UPDATE(r!, s, p)
t
16: return + > W
(t—k)
17: procedure W-UPDATE(w}, 2;, ul;)
with e argmin (fi(w) + 5 glwi — 2+l

18: JEN(3)

Nu(wi wiuzy

19: Compute loss C}“ = it (i)
20:  Send wi™,C7H to cloud layer
21: procedure Z- UPDATE(th,uij)
22: zf;rl, ;jl + argmin ( as;||z:; — zjil|2 +
[

Sl = 2y ubsllf + ol = 250+ i)
23:  return z', z;jl
24: procedure U-UPDATE(w; ™", 2/1™)
25: H'l — u” + (u)f'*'1 ztj'l)
2  return uft

27: procedure RHO—UPDATE(rt7 st p)
28:  ifr' > px s’ then

29: p—Vkp

30: else if s* >y * r' then
31: p <+ plv

32: return p

[30] as the reference implementation of our Network-Lasso
based machine-learning architecture for MEC-based IoT
environments. SVM had already been widely used and
shown to work well in prior trust research for developing
classification- and regression-based trust prediction models
[31], [32]. In fact, [33] proposes an SVM based classification
model for predicting trustworthiness in IoT services as well,
which aligns quite well with the primary scope of this study.
This background provided us with a rational basis to adapt
SVM as the local trust prediction problem to be solved
as part of each sub-task running in the local MEC layers
of the reference implementation. In that, each local MEC
environment trains its own SVM-based binary classifier to
predict untrustworthy IoT services. Each trained classifier
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classifies an input as either “benign” or “harmful” (denoted
by “1” and ”-1” respectively) indicating whether the IoT
service in concern is trustworthy or not.

The task of obtaining the optimal separating hyperplane
of the underlying soft-margin SVM, which separates the
two classes that the classifier is trained for can be formally
modelled as a minimization problem, as below.

minimize

L, o -

i—
st yi(zFw+b)>1—¢, i=1,.,n

where w denotes a weight vector corresponding to the
model parameters to be learnt, z; identifies the feature
vector associated with 4, training sample fed into the
learning model, y; corresponds to the label associated with
it, b is a bias while A is a regularization parameter that
determines the balance between widening the margin and
ensuring x; is classified accurately.

6 EVALUATION

This section is divided into four parts. Section 6.1 describes
the experiments designed to evaluate the suitability of the
proposed approach to address the challenges outlined in
Section 1. Section 6.2 provides a technical summary of the
state-of-the-art approaches that the proposed model was
compared against while Section 6.3 briefly describes the
datasets used. Finally, Section 6.4 shows and discusses the
results of the experiments carried out. The source code of
the proposed solution (depiected in Algorithm 2) and the
simulations associated with the experiments is available in
https:/ / github.com/prabathabey/online-mec-trust.

6.1 Experiments

We conducted a series of experiments to comprehensively
evaluate the effectiveness of the proposed approach to pre-
dict trustworthiness of real-time IoT services in MEC-based
IoT systems. These experiments were aimed at justifying the
ability of the proposed method to address the key challenges
in predicting the trustworthiness of MEC-based IoT services
outlined in Section 1 as well as comparing its performance
against the state-of-the-art trust evaluation methods out-
lined in Section 6.2. The aforementioned experiments are
organized into the following categories.

1) Ability of the proposed approach to derive the most
relevant trust decisions under the presence of mobilizing
service data providers and consumers (Challenge 1): This
experiment focused on evaluating the adaptability of our
approach to derive the most suitable trust decisions in the
face of mobilizing IoT services and their consumers across
neighboring MEC environments. The experimental results
are presented and discussed in Section 6.4.1.

2) Effectiveness of the real-time and context-dependent
trust prediction under heterogeneous environmental and
operating conditions (Challenge 2): This experiment was
designed to evaluate how the proposed approach predicts
the trustworthiness of IoT services in a context-dependent
manner. As part of it, we compared the results of our ap-
proach against both state-of-the-art trust prediction strate-
gies that promote context-dependent trust prediction in a



distributed setting as well as centralized approaches that as-
sume the entire MEC topology to be a single global context-
environment for trust prediction. The evaluated centralized
trust prediction approaches were used to train

e a single global model resembling a global trust pre-
diction model trained in a typical centralized cloud
environment with centrally accumulated trust infor-
mation.

e a family of MEC-local trust prediction models
atop locally accumulated trust information within
each MEC environment resembling a set of non-
communicative trust prediction models.

The results of these experiments are presented and dis-
cussed in Section 6.4.2.

3) Ability of the proposed approach to accurately derive
trust decisions by sharing knowledge among neighboring
MEC environments (Challenge 3): To assess this aspect, we
compared the performance of the proposed model against
that of a family of MEC-local trust prediction models trained
atop locally accumulated trust information. These predic-
tion models are non-communicative, and thus, by extension,
not made to share knowledge amongst each other. The
average accuracy returned by all MEC-local trust prediction
models across the entire MEC topology in each approach
was used as a key performance indicator to quantitatively
assess and compare the performance returned by the eval-
uated approaches. The results of these experiments are
presented and discussed in Section 6.4.3. To allow a fair
analysis of the knowledge sharing ability of the proposed
approach, only the baseline approaches that trained SVMs
were evaluated and compared. To that end, the MEC-local
non-communicative SVMs, global SVM, proposed approach
with knowledge sharing enabled as well as disabled were
compared.

Furthermore, each of the aforementioned experiments
was also evaluated to assess the applicability into MEC-
based IoT systems under the following key aspects.

4) Computational efficiency: We primarily considered total
running until the considered time horizon T elapsed as the
primary KPI of the computational efficiency. To that end,
we have compared the total wall-clock time taken by the
proposed approach as well as the other state-of-the-art trust
prediction models until the time horizon 7' elapsed. The
aforementioned metric is comprised of two key components
in the form of 1) the total time taken to train the underlying
trust evaluation model (in the context of predictive ap-
proaches) or evaluate a given trust decision, and 2) the time
taken for the communication between the MEC layer and
the centralized cloud layer (in the context of the distributed
and collaborative approaches). The experimental results are
presented and discussed in Section 6.4.4.

5) Communication efficiency: To evaluate this, the number
of rounds of communication needed during the end-to-end
process that includes trust information accumulation and
prediction model training between the centralized cloud
and distributed MEC layers was measured and analysed.
Here, the aforementioned metric takes into account the
number of times the data has been transmitted between the
MEC environments and centralized cloud layer during the
end-to-end process that spans across data accumulation as
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well as trust prediction model training. Therefore, it was
assumed to be indicative of the network stress on core
mobile networks of mobile network providers. The results
of these experiments are presented and discussed in Section
6.4.5.

6) Scalability: This experiment was designed to evaluate the
ability of our approach to realize the goals announced in 1
scalably as the size of the underlying MEC topology and
trust information accumulated increases.

o To assess the ability to scale well to growing topology
sizes, we monitored the average prediction accuracy
across all the distributed trust prediction models
in a given MEC topology and the average number
of communication rounds required till convergence
when the number of MEC environments in the un-
derlying MEC topology is gradually increased. The
other non-distributed state-of-the-art models were
left out from this experiment as they used only a
single model, which is either trained in a MEC-local
or global manner. Consequently, these models do not
scale across a given MEC topology.

o To assess the ability to efficiently process large datasets
accumulated across MEC environments, we monitored
and compared the total time taken to train the trust
prediction models by each compared state-of-the-art
trust prediction models.

The results of these experiments are presented and dis-
cussed in Section 6.4.6.

6.2 Compared Models

We compared our approach against a comprehensive
set of state-of-the-art dynamic and/or online machine
learning-based trust prediction models that honor the
concept of trust evolution. A detailed summary of their
implementations, simulations as well as the relevant
assumptions and interpretations made while using them in
our experiments is provided below.

CTRUST [14]: This approach shares the same notion of
features contributing to trustworthiness of IoT services.
Therefore, we seamlessly used the same trust features, upon
which the proposed approach trains their corresponding
MEC-based trust prediction models, to implement the trust
evaluation model proposed in this particular work. As
elaborated in Section 1, however, our solution has been
derived on the assumption that IoT service consumers are
less likely to communicate with each other. Therefore, the
components in this particular approach that correspond to
using reputation metrics to derive the indirect trust of an IoT
service have been ignored. Two variants of this approach
were implemented, one emulating a single global CTRUST
model resembling one deployed in a centralized cloud
environment, and a family of MEC-local CTRUST models
resembling a non-communicative set of trust prediction
models deployed within each MEC environment.

SC-TRUST [34]: This approach can be considered as an ex-
tended version of CTRUST described above, which focuses
predominantly on service trust evaluation in the context
service composition. Therefore, we cherry-picked the com-
ponents related to the underlying trust evaluation model



used, and implemented in our experiments. This resulted in
a trust evaluation model similar to that of CTRUST [14].
Similar to its predecessor, we implemented two variants
of this trust evaluation model resembling its use within a
centralized cloud environment and a non-communicative
family of MEC environments in a given MEC topology.
Adaptive Trust [15]: We used this approach to establish
a trust evaluation model for a community of homogeneous
services within MEC environments. This approach uses a hy-
brid strategy to establish a trust evaluation model in which
only the partial trust inference is done online, by default.
However, to allow a fairer comparison, we attempted to
do both trust evaluation model training and inference both
in an online environment. In addition, since we focus only
on homogeneous services, we also assumed that there is
only one usage available, and therefore, omitted the usage-
to-factor estimation. Two variants of this approach were
implemented, one emulating a single global adaptive trust
model resembling one deployed in a centralized cloud envi-
ronment, and a family of MEC-local adaptive trust models
resembling a non-communicative set of trust prediction
models deployed within each MEC environment.

6.3 Datasets

For the experiments described above, we used multiple
public IoT datasets in our simulations. A comprehensive
overview of the structure of these datasets is given below.

N-BaloT*: This dataset consists of network traffic data
previously used to detect Mirai and BASHLITE attacks
within an IoT setting [35]. Under each family of attacks,
there were multiple individual attack types of which the
records (€ R'!%) were consolidated under the label harmful.
In addition, the records related to legitimate network traffic
(€ R'5) were classified under the label benign. The result-
ing dataset was normalized and split into 100 randomly-
sized (n € [25000, 100000]) splits simulating 100 MEC-local
datasets.

WS-Dream®: This dataset consists of time-aware QoS data
used for web service recommendation collected from 339
users against 5826 web services. This data has originally
been collected at 15-minute interval over 64 timeslices. To
generate a significantly sized dataset for our experiments,
we transformed the original dataset where each tuple of
<response time, throughput> as a single transaction be-
tween a user and service. This resulted in an aggregated
dataset where each record in the dataset is of R'?”) dimen-
sionality, and altogether, there has been of 1974675 training
examples available. The resulting dataset was normalized
and split into 100 randomly-sized (n € [10000, 20000]) splits
simulating 100 MEC-local datasets.

6.3.1 Simulating continuous streams of trust information

To simulate a continuous stream of trust information ar-
riving at each MEC environment, 7' randomly-sized mini-
batches were drawn from each simulated MEC-local dataset

4https: / /archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_
attacks_N_BaloT
5ht’rps: // github.com/wsdream/wsdream-dataset
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sequentially and without replacement to simulate an incom-
ing stream of arbitrarily-sized groups of trust information
over a I' number of timeslices. T" here represents a finite
time horizon, and was assigned to be 250 and 1000 for N-
BaloT and WS-Dream datasets, respectively. In addition, for
simplicity, we assumed the quantity h(t)=1 indicating that
each trust record used by the proposed approach for train-
ing the underlying trust prediction models carries similar
weight.

All the simulations were developed in Python (v3.10/6),
and carried out within an Amazon EC2 instance (c3.8xlarge)
running Ubuntu 22.04 (64-bit) with 32vCPUs and 60GiB
memory.

6.4 Results and Discussion

6.4.1 Effectiveness of real-time trust prediction under mo-
bilizing loT services and consumers

The results of our experiments confirmed that the proposed
online and distributed trust prediction approach outper-
formed most state-of-the-art dynamic trust evaluation and
the other baseline approaches evaluated, atop both N-BaloT
and WS-Dream datasets (see TABLE 1). However, the global
SVM approach was observed to be 1.06% better in accuracy
than the proposed approach atop N-BaloT dataset, although
the latter outperformed the former by 0.38% atop the WS-
Dream dataset. These observations can be explained by
pointing to the ability of the global SVM model to see a
complete and an aggregated view of the concept of IoT
service trust represented by the accumulated data, whereas
MEC environments only see a split view of the world.
Observed to be on part with the performance of the global
SVM model in the aforementioned setting, we conclude that
the performance of the proposed approach to be satisfactory.
In addition, the superior communication efficiency of our
proposed approach as discussed in Section 6.4.5 together
with on-par performance with the global SVM approach
can be deemed to make our approach more suitable to the
problem setting announced in Section 1.

Furthermore, in comparison to the non-collaborative
local SVMs, our approach was observed to be perform
significantly better with a positive accuracy difference of 3%
and 5.46% atop N-BaloT and WS-Dream datasets. This could
be attributed to the ability of the proposed approach to
tackle the task of training a distributed family of MEC-local
trust prediction models adhering to the context-specific trust
characteristics also with the help of knowledge sharing.
These aspects are analysed comprehensively in Section 6.4.2
and 6.4.3.

6.4.2 Effectiveness of real-time and context-dependent
trust prediction under heterogeneous environmental condli-
tions

The results of the experiments affirmed that the proposed
approach is best suited to the problem at hand compared to
most of the existing centralized as well as all the context-
dependent trust evaluation strategies. In other words, the
proposed approach outperformed most of the non-context-
aware, centralized trust evaluation models by a considerable
margin (see TABLE 1). In addition, it was observed that
the proposed approach also outperformed the simulated



Model N-BaloT WS-Dream

Local SVMs 83.9 50.26
Global SVM 87.96 55.34
CTRUST (Local) 82.28 50.19
CTRUST (Global) 82.28 59.19
SC-TRUST (Local) 82.28 50.19
SC-TRUST (Global) 82.28 50.19
Adaptive Trust (Local) 42.11 49.3
Adaptive Trust (Global) 54.12 52.37
Proposed approach 86.9 55.72

TABLE 1: Average prediction accuracy (%) of the evaluated
models atop N-BaloT and WS-Dream datasets on a simu-
lated MEC topology containing 100 MEC environments.

context-aware trust evaluation strategies formed by running
the existing centralized trust evaluation strategies within
each MEC environment of a given MEC topology atop MEC-
local datasets representing a family of contexts for trust
prediction (see TABLE 1).

To further evaluate the finer characteristics of context-
awareness supported by the proposed approach, we also
observed the percentage of MEC environments in consensus
in terms of their model parameters. In this setting, MEC en-
vironments in consensus reflect the similarity of their trained
trust prediction models, and consequently, the similarity
of their respective contexts for trust prediction. For this,
we compared the MEC-local trust prediction approaches
used in the evaluation against the proposed trust prediction
strategy. These compared approaches included the local
SVMs and the local variant of Adaptive Trust. The global
variants of the aforementioned approaches were left out of
the comparison as they implicitly consider a single global
context-environment for trust prediction by design. Mean-
while, CTRUST and SC-Trust approaches too were omitted
as they do not train any trust prediction models and only
evaluate trustworthiness of services on-demand.

The results of this comparison revealed that the pro-
posed approach was able to not only train a family of
context-aware trust prediction models, but also identify sim-
ilar context-environments for knowledge sharing. In Fig. 3,
a non-zero value for the percentage of MEC environments in
consensus indicates that some MEC environments produced
similar trust prediction models whereas 100% indicates
some similarity amongst all trained trust prediction models.
In contrast, a zero percentage of MEC environments in
consensus indicates that all 100 MEC-local trust prediction
models trained by the 100 simulated MEC environments are
different from each other. Such similarity corresponds to
similar context-environments for trust prediction. As seen
in Fig. 3, as the proposed approach progressed towards its
time horizon 7', the percentage consensus amongst MEC
environments too indicated movement beginning with 100%
down to smaller values, also reaching 0% at times. This
corresponds to a higher degree of similarity at the begin-
ning, and as individual MEC environments gradually learn
the characteristics of their individual context environments,
they also in turn, gradually establish their own context
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Fig. 3: Change in percentage consensus over progressive
timeslices of the proposed approach atop N-BaloT and WS-
Dream datasets with a topology of 100 simulated MEC
environments

environments for trust prediction, towards the time horizon
T'. As we later discuss in Section 6.4.3, the ability of our ap-
proach to adaptively identify similar context environments
also allows sharing knowledge with other similar neighbor-
ing MEC environments to train comparatively more gener-
alizable trust prediction models.

6.4.3 Effectiveness of knowledge sharing

The average prediction accuracy recorded of the collabora-
tive SVMs trained by the proposed approach and the non-
collaborative local SVMs (i.e. trained by the proposed ap-
proach with knowledge sharing among MEC environments
disabled) showed 2.36% and 0.72% higher accuracy against
the N-BaloT and WS-Dream datasets, respectively (see TA-
BLE 2). In addition, in comparison the non-collaborative
local SVMs trained independently from the proposed ap-
proach showed a difference in accuracy of 3% and 5.46%
atop N-BaloT and WS-Dream datasets, respectively. Given
both the collaborative and non-collaborative SVMs were
run under identical environmental settings and similar im-
plementations, the above accuracy gain of the collabora-
tive SVMs can be attributed to the effect of collaboration
through knowledge sharing enforced by the proposed ap-
proach. Conversely, it could be deemed that MEC-local
non-communicative trust prediction models trained by the
state-of-the-art approaches could be overfitted on the MEC-
local datasets, which the proposed approach was able to
counter thereby allowing the collaborative SVMs to be more
generalizable and achieve higher accuracies.

6.4.4 Computational efficiency

The results of our experiments to assess the computa-
tional efficiency of the proposed approach against the other
baselines and state-of-the-art solutions are summarized in
TABLE 3. As it is evident, the total running time taken for
the proposed approach until the considered time horizon T'
elapsed was observed to be comparatively higher than most
approaches evaluated. This could be attributed to the com-
putational complexity of the underlying implementation
arising from the solving of multiple sub-problems at a given



Model N-BaloT =~ WS-Dream
Local SVMs 83.9 50.26
Global SVM 87.96 55.34
Proposed model w/o knowledge sharing 84.54 55.0
Proposed model with knowledge sharing 86.9 55.72

TABLE 2: Average prediction accuracy (%) of the evaluated
models atop N-BaloT and WS-Dream datasets on a simu-
lated MEC topology containing 100 MEC environments.

iteration of the algorithm as well as the overhead associated
with knowledge sharing. In contrast, most other evaluated
approaches employ a strategy where they solve a single
optimization problem in an iterative manner within the
course of their respective execution cycles. Notably, though,
CTRUST and SC-TRUST approaches require significantly
less time to run as, in our context, they only depend on
default partial trust values that are data independent to
compute trustworthiness. Consequently, although the com-
putational time required is significantly less, the accuracy of
the results produced is also significantly low (see TABLE 1),
which makes them less suitable to our problem setting.

Model N-BaloT =~ WS-Dream
Global SVM 20.91 2.66
CTRUST (Global) 8.84 423
SC-TRUST (Global) 8.84 423
Adaptive Trust (Global) 25.2 8.54
Proposed approach 15.29 3.31

TABLE 3: The average running time observed (in seconds)
per timeslice per trust prediction model with a MEC topol-
ogy of 100 simulated MEC environments.

6.4.5 Communication-efficiency

The results of our experiments showed that the number
of communication iterations across the core networks of
mobile networking providers required by the proposed ap-
proach is 107.28 and 5.89 times less than that of the central-
ized and global state-of-the-art trust prediction approaches
we used in our evaluation (see TABLE 4) atop N-BaloT and
WS-Dream datasets. This stems predominantly from the fact
that all the other global and centralized trust evaluation
approaches require trust information to be typically sent to
cloud-based data centers across the core networks of mo-
bile network providers. In contrast, the proposed approach
processes trust information locally within each MEC envi-
ronment and only send information (i.e. model parameters
of each MEC-local trust prediction model) to the global
knowledge aggregator running in a cloud-based data center
once per timeslice per MEC environment. Consequently,
amongst all the evaluated approaches, the proposed model
could be deemed to cause the least amount of network stress
on the core networks of mobile networking providers.

6.4.6 Scalability

Our experiments on the scalability yielded interesting re-
sults. From a prediction performance point of view, it was
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Model N-BaloT  WS-Dream
Global SVM 2682033 588775
CTRUST (Global) 2682033 588775
SC-TRUST (Global) 2682033 588775
Adaptive Trust (Global) 2682033 588775
Proposed approach 25000 100000

TABLE 4: The number of rounds of communication required
across the core networks until the the point of achieving the
maximum accuracy evaluated in an MEC topology of 100
simulated MEC environments.
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Fig. 4: Change in accuracy when the number of MEC envi-
ronments in the underlying MEC topology is increased by
50 within the interval [100, 400].

evident that the maximum accuracy produced by the pro-
posed approach on top of both the datasets stayed rela-
tively stable with minor movements when the number of
nodes in the underlying MEC topology was increased (see
Fig. 4). The aforementioned observation could be explained
by referring to the fact that, at the point of reaching the
considered time horizon T, the knowledge sharing among
the underlying nodes would have transferred all shareable
knowledge amongst the individual MEC environments to
produce generalizable models at their respective maximum
capacities. However, it was also seen a minor accuracy drop
in all simulated topologies compared the one with 100 nodes
in it. This can be attributed to the increasing tension that can
at times be introduced when propagating knowledge over a
given MEC topologies with the increasing number of MEC
environments causing some MEC environments to adapt
efficient yet slightly less optimal models at each timeslice
of the algorithm. Choosing more optimal hyperparameter
values for A, p and ~; based on the characteristics of the un-
derlying MEC-local datasets and other relevant properties
can potentially counter this effect.

Meanwhile, from a computational efficiency perspective,
the computational time required until reaching the time
horizon T" was observed to be near-linearly increasing with
the number of MEC environments (see TABLE 6). In other
words, as the number of MEC environments in the under-
lying simulated MEC topology was gradually increased by
50 between the interval [100,400], the proposed approach
required naturally more computational time till convergence
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No. of MEC environments

Dataset 100 150 200

N-BaloT 869  86.93

86.41

WS-Dream  55.72 55.15

54.85

250 300 350 400
86.34 86.27 86.22 86.22
55.15 54.95 54.77 54.92

TABLE 5: Average prediction accuracy (%) of the evaluated distributed trust prediction models atop N-BaloT and WS-
Dream datasets with the number of MEC environments in the MEC topology gradually increased.

No. of MEC environments

Dataset 100 150 200 250 300 350 400
N-BaloT 15.29 2243 33.25 36.1 42,58 50.11 57.39
WS-Dream  3.31 5.53 7.03 946 1044 16.24 14.57

TABLE 6: Average computational time observed (in seconds) per timeslice N-BaloT and WS-Dream datasets with the
number of MEC environments in the MEC topology gradually increased.

60

—— N-BaloT
Ws-Dream

50 1

40 1

30

204

Average Computation Time (s)

10 4

160 lSIG 260 250 SCIFU 350 460
# MEC Environments
Fig. 5: Change in the computational time required until
the considered time horizon 7' elapsed when the number
of MEC environments in the underlying MEC topology is
increased by 50 within the interval [100, 400].

as evident in Fig. 5. This behaviour could be explained
by referring to an interesting characteristic associated with
the ability of the proposed approach to perform knowledge
sharing. With an increasing number of MEC environments,
the underlying knowledge sharing functionality could force
the MEC environments to adapt sub-optimal models during
different iterations of the underlying algorithm slowing
down convergence.

7 CONCLUSIONS AND FUTURE WORK

We proposed an edge intelligence-based strategy to predict
the trust of the IoT service in real-time within the MEC-
based IoT environment by using OADM. Specifically, we
modelled the training of a set of distributed trust prediction
models in an MEC-based IoT system as an online learn-
ing problem subjected to the dynamicity caused by the
mobility of IoT services and their consumers as well as
the heterogeneous operating conditions of different MEC
environments that lead to multiple heterogeneous contexts
for trust prediction. Further, we investigated making using

of knowledge sharing across MEC environments to address
the issues suffered by building a local trust prediction model
by using merely the local data within an MEC environment.
Our proposed method was evaluated in comparison to the
state-of-the-art trust prediction approaches working in the
centralized as well as distributed settings. The results verify
the outstanding performance of the proposed method.

Our future work includes but is not limited to investi-
gating the effective and efficient distributed hyperparameter
tuning strategies for the proposed approach, incorporating
lightweight dimension reduction techniques, e.g., [36], to
further improve the computational efficiency of the pro-
posed method, designing a method based on our previous
work [37] for automatically finding the most suitable MEC
topologies to pursue the best learning of the distributed
prediction models, and conducting a theoretical analysis on
the convergence of the proposed method.
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