
IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 1

Dependency-Aware Task Offloading based on
Application Hit Ratio

Junna Zhang, Member, IEEE, Xinxin Wang, Peiyan Yuan, Member, IEEE, Hai Dong, Senior
Member, IEEE, Pengcheng Zhang, Member, IEEE and Zahir Tari

Abstract—Mobile devices commonly offload latency-sensitive applications to edge servers to meet low-latency requirements.
However, existing studies overlook dependency and application hit ratio considerations, hindering effective offloading for
multi-applications and multi-tasks. To this end, this paper proposes a Dependent task offloading and Service placement Optimization
(DSO) method to maximize the application hit ratio, thereby providing high-quality service. The proposed DSO includes Improved
Multi-Agent Q-Learning (IMAQL) and greedy algorithms. IMAQL optimizes service placement via Q-learning, while the greedy
algorithm schedules task offloading. Extensive experiments on public datasets demonstrate that the DSO method enhances the
application hit ratio by 4.7% to 11.7% and reduces the completion time by about 3.4% to 4.9% compared to alternative approaches.

Index Terms—Edge computing, service placement, dependency, application hit ratio, improved multi-agent Q-learning algorithm

✦

1 INTRODUCTION

THE rapid advancement of mobile communication tech-
nologies has led to a substantial increase in the number

of mobile devices [1]. Projections from IHS Markit anticipate
that the number of mobile devices is expected to exceed 75
billion by 2025 [2]. The proliferation of mobile devices has
facilitated the emergence of latency-sensitive applications,
such as intelligent driving and virtual reality [3]. However,
mobile devices are limited by their battery life, storage
capacity and computing power. It is impractical for mobile
devices to process these applications locally to meet low-
latency requirements [4]. Edge computing, which provides
computing and storage resources at the edge of the network,
has emerged as a crucial solution to reduce response delay. It
allows mobile devices to offload tasks to edge servers, which
enhances the processing capabilities of mobile devices and
alleviates the problem of resource shortages [5].

As a research hotspot in edge computing, task offloading
has drawn wide attention from both academia and industry.
However, existing studies on task offloading often overlook
the dependencies between tasks. In fact, the tasks of appli-
cations are often characterized by dependencies. Over 75
percent of applications exhibit inter-task dependencies, as
evidenced by Alibaba’s analysis of 4 million applications
[6]. The dataset used in our experiments confirms that
approximately 64 percent of the applications have tasks with

• Junna Zhang, Xinxin Wang and Peiyan Yuan are with the School of
Computer and Information Engineering, Henan Normal University, and
also with Engineering Lab of Intelligence Business & Internet of Things,
Xinxiang, Henan 453007, China.
E-mail: jnzhang@htu.edu.cn, 2108283081@stu.htu.edu.cn, peiyan@htu.cn.

• H. Dong and Z. Tari are with the School of Computing Technologies and
the Centre for Cyber Security Research and Innovation, RMIT University,
Melbourne, Australia. E-mails: {hai.dong, zahir.tari}@rmit.edu.au;

• Pengcheng Zhang is with the Key Laboratory of Water Big Data Tech-
nology of Ministry of Water Resources and the College of Computer and
Software, Hohai University, Nanjing, Jiangsu 211100, China.
E-mail: pchzhang@hhu.edu.cn

Manuscript received XX XXX, XXXX; revised XX XXX, XXXX.
(Corresponding author: Pengcheng Zhang.)

Fig. 1. The dependency task graph of a vehicular navigation application.
Depending on the alternative routes provided by the task map and the
current traffic conditions provided by the task traffic, the task path gives
the optimal navigation route. As a result, the task path has dependencies
on the task map and the task traffic.

dependencies [7]. Fig. 1 shows the dependency task graph
of a vehicular navigation application. The user first inputs
a destination on the navigation device, which activates the
task control to check the current GPS location. This informa-
tion is then transmitted to tasks map and traffic to obtain all
the alternative paths and traffic conditions along the direc-
tion to the destination. Depending on the available routes
and the current traffic conditions, the task path can provide
an optimal navigation route. Obviously, the execution of the
task path depends on the execution results of tasks map and
traffic. Therefore, the task path has dependencies on the task
map and the task traffic. Task dependency is articulated by
the reliance of a task’s execution on the outcomes of the
preceding task [8]. Existing offloading works [9], [10], [11]
treat the above four tasks as an “inseparable” unit. This
offloading may increase the overall execution time. In this
case, it makes more sense to offload tasks map and traffic
to separate edge servers. This separation allows the parallel
execution of these two tasks, thereby minimizing its latency.

Certain applications with low latency requirements ne-
cessitate offloading their tasks to edge servers rather than
the cloud. For example, autonomous driving requires ultra-
low latency and high reliability. If vehicle data is transmitted
to the cloud and stored in a data center, it increases the
chances of information leakage [12]. Meanwhile, latency ex-
ceeding anticipated thresholds can result in fatal accidents.
Due to the limited storage resources of edge servers, only

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. J. Zhang, X. Wang, P. Yuan, H. Dong, P. Zhang and Z. Tari, "Dependency-Aware Task Offloading based on Application Hit
Ratio," in IEEE Transactions on Services Computing, doi: 10.1109/TSC.2024.3495510.

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 2

a subset of services can be placed on each edge server.
Here services refer to the necessary programs to perform
computing tasks [13]. Therefore, tasks are executed on the
edge servers where the required services are available. For
instance, the feature extraction task in a face recognition
application will be successfully executed if it is offloaded to
those edge servers that deploy the machine learning model.

As shown in Fig. 2(a), three tasks are offloaded to two
edge servers. Tasks 2 and 3 can only initiate once task 1
has been successfully completed and the necessary data has
been transmitted to them. Edge server e1 can meet two
types of service requests (i.e., “green quad” and “yellow
diamond”) while e2 can meet one type of service request
(i.e., “purple triangle”). Therefore, tasks 1 and 2 are of-
floaded to e1, and task 3 is offloaded to e2. For simplicity,
the processing time for all tasks on edge servers is set to 1,
and the data transmission time for tasks on different edge
servers is set to 0.5. Assuming that the time to return the
calculated results to the mobile device is not taken into
account. The completion time of the application amounts
to 2.5, as illustrated in Fig. 2(c). Likewise, task 1 is offloaded
to e1, and tasks 2 and 3 are offloaded to e2 in Fig. 2(b). This
results in a completion time of 3.5, as depicted in Fig. 2(d).
Obviously, the service placement scheme in Fig. 2(a) is more
appropriate than Fig. 2(b) because it reduces the response
latency. In essence, the services deployed on edge servers
significantly influence task offloading decisions. This subse-
quently impacts the completion time of applications. Exist-
ing works [14], [15], [16] concentrate on dependency-aware
task offloading in edge computing. However, they over-
look the impact of service placement. Limited edge server
storage prevents deploying all required services, revealing
constraints in practical scenarios.

The existing studies [17], [18], [19] focus on task hit ratio
optimization. This task hit ratio is expressed as the propor-
tion of successful service requests to the total number of
service requests [17]. As illustrated in Fig. 3(a), edge server
e1 can deploy two types of services while e2 can deploy a
single service type. Each mobile device corresponds to a task
requesting a specific service. To maximize task hit ratios,
which is an aggregate measure across all participating edge
servers, edge servers should preferentially deploy services
with the highest number of requests. To this end, edge
server e1 provides the services of “blue square” and “yellow
diamond” while e2 offers the “purple triangle” service. In
this case, this hit ratio reflect the scenario where both e1 and
e2 are missing the red circle and green star services, leading
to 6 hits out of 8 requests. However, a typical application
usually comprises a series of tasks considering the growing
complexity of applications. As a result, the application hit
ratio needs to be considered, which is expressed as the
percentage of hit applications to all applications. Whether
an application is hit depends on two conditions. Firstly,
all its tasks have been executed. Secondly, the completion
time of the application does not exceed its deadline. This is
pivotal as, in entertainment applications, missing deadlines
translates into diminished service satisfaction, whereas in
industrial settings, it can incur financial losses [20]. As
shown in Fig. 3(b), each mobile device requests multiple ser-
vices. If we preferentially deploy services with the highest
number of requests on edge servers, the results of service

(a) (b)

(c) (d)

Fig. 2. Effect of service placement results on task offloading decisions.
Fig. 2(a) and Fig. 2(b) show task offloading decisions under different
service placement results. Fig. 2(c) and Fig. 2(d) show the completion
time of the application under corresponding offloading decisions.

(a) (b)

Fig. 3. Difference between task hit ratio and application hit ratio. Fig. 3(a)
shows the task hit ratio, and Fig. 3(b) shows the application hit ratio.

placement are consistent with Fig. 3(a). In this case, all
applications fail to execute successfully due to missing the
essential services. Consequently, the execution of a complete
application necessitates to deploy all the necessary services.

Although some studies have considered the application
hit ratio, they ignore the impact of dependency [21], [22]
or service placement [23]. Both dependency and service
placement play crucial roles in influencing the feasibility
and performance of task offloading. To address the afore-
mentioned limitations, this paper researches dependent task
offloading and service placement problems to maximize the
application hit ratio. The main contributions of this paper
are summarized as follows.

• To the best of our knowledge, this study represents
the inaugural exploration of task offloading, specif-
ically emphasizing the application hit ratio in the
context of dependency and service placement.

• To improve the efficiency of service placement,
we propose an Improved Multi-Agent Q-Learning
(IMAQL) algorithm. Compared with the original Q-
learning algorithm, this algorithm mitigates the risk

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 3

Fig. 4. Network model. Shapes with different colors on edge servers
represent different services. The services requested by tasks are in the
boxes next to them.

of the model converging to local optima.
• Simulation results show that the proposed method

can converge to the optimal performance similar to
that of the enumerate method after training.

2 SYSTEM MODEL

2.1 Network Model
The network model is shown in Fig. 4, which is composed
of two layers of architecture. The first layer consists of
several base stations and edge servers. Base stations are
the communication nodes of the network, and edge servers
are the computing nodes of the network. It is assumed
that each base station is equipped with an edge server.
Consequently, edge servers and base stations have the same
index, denoted as E = {e1, e2, ..., em, ..., eM}. Due to the
limited storage and computation resources of edge servers,
the maximum computing and storage capacity of the edge
server em is given by Fm and Cm, respectively. The second
layer is comprised of a number of mobile devices, denoted
as U = {u1, u2, ..., un, ..., uN}. Each mobile device consists
of a series of dependent tasks, and each task requests a
kind of service. Let K represent the total number of service
types, indicating the presence of K distinct types of services.
As illustrated in Fig. 2(a), three different service types are
depicted, symbolized by a green quadrangle, a yellow dia-
mond, and a purple triangle, respectively, hence K=3. The
set of services is expressed as S = {s1, s2, ..., sk..., sK}.

2.2 Application Model
Each mobile device un ∈ U generates an application that
comprises multiple interdependent tasks. To represent the
logical sequence of these tasks, they are mapped to a Di-
rected Acyclic Graph (DAG) Gn =< An, Bn >, where
An represents the set of tasks and Bn denotes the set
of directed edges characterizing the dependencies between
tasks. Specifically, An = {an,1, an,2, ..., an,i, ..., an,I}, where
an,i means the i-th task of application un. Each tuple in Bn

is structured as (an,j , an,i, d
n
j,i), where an,j and an,i are the

source and destination nodes of the edge, respectively, and
dnj,i is the weight (or data size) associated with that edge.
If there exists an edge between tasks an,j and an,i, task
an,i will be executed only if task an,j is completed and the
corresponding data is transmitted to it. Task an,j is called
the immediate predecessor of task an,i, while task an,i is
called the immediate successor of task an,j . Each task an,i

Fig. 5. DAG model. Green circles represent dummy tasks. Purple circles
represent real tasks. The dotted lines with arrows indicate the amount
of data transferred between dummy tasks and real tasks. The solid lines
with arrows denote the amount of data transferred between real tasks.

is represented by a tuple (dn,i, wn,i), where dn,i denotes
the size of input data for the task, and wn,i denotes the
required total CPU cycles to complete the task. In addition,
the maximum deadline for application un is expressed as
Tmax
n , which indicates that the application should be com-

pleted under this time constraint. Since each mobile device
requests an application that is inherently associated with a
DAG, a common index is utilized to correlate the mobile
device, its application, and the corresponding DAG.

When an application is completed, its results must be
transferred back to the original mobile device. To model
the DAG more clearly, we add two dummy tasks with zero
workloads, called an,0 and an,I+1, at the beginning and the
end of the original DAG. They are forced to execute locally.
Fig. 5 shows an example of a DAG model, composed of
five tasks with two dummy tasks (an,0 and an,6). There is
a dependency between dummy task an,0 and all real tasks.
The amount of data transmitted between them expresses the
data size of each real task. As a result, the input data size
for any real task an,i is equal to the amount of data trans-
ferred from the dummy task an,0 to an,i (i.e., dn,i = dn0,i).
Similarly, there exists a dependency between real task an,5
(without successor) and dummy task an,6. The amount of
data between them represents the size of the application
result transferred back to the mobile device un.

3 PROBLEM FORMULATION

In this section, we research the service placement and task
offloading problems, aiming to maximize application hit
ratios and concurrently minimizing the completion time
for hit applications. We first define the decision variables,
then determine the optimization objective, provide the key
constraints and finally formulate the optimization problem.
3.1 Decision Variables

• xk
m ∈ {0, 1}: indicating whether service sk is placed

at edge server em. If service sk is placed at edge
server em, xk

m = 1; otherwise, xk
m = 0. Let X =

(xk
m ∈ {0, 1},∀k ∈ {1, ...,K},∀m ∈ {1, ...,M})

express the service placement strategy.
• ymn,i ∈ {0, 1}: indicating whether task an,i is of-

floaded to edge server em. If task an,i is offloaded
to edge server em, ymn,i = 1, otherwise, ymn,i = 0.
Let Y = (ymn,i ∈ {0, 1},∀n ∈ {1, ..., N},∀an,i ∈
An,∀m ∈ {1, ...,M}) express the offloading strategy.

3.2 Completion Delay
3.2.1 Communication Delay
According to Shannon’s formula [24], the uplink transmis-
sion rate from mobile device un to edge server em can be
obtained as

Rup
n,m = Wuplog2(1 +

pnhn,m

σ2
) (1)

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 4

where Wup represents the uplink channel bandwidth. pn is
the transmission power of mobile device un. hn,m means
the channel gain of the link between mobile device un and
edge server em. σ2 denotes the background noise power.

Likewise, the downlink transmission rate from edge
server em to mobile device un can be given as

Rdown
m,n = W downlog2(1 +

pmhm,n

σ2
) (2)

Specially, task an,i is forwarded to edge server em via the
directly connected edge server ey . At this point, this uplink
transmission time is the sum of the transmission time from
mobile device un to edge server ey and the transmission
time from edge server ey to em. The transmission rate
between edge servers ey and em is denoted as Ry,m. Hence,
the uplink transmission delay of task an,i is denoted as

Tup,m
n,i =

{ dn,i

Rup
n,m

, ey = em
dn,i

Rup
n,y

+
dn,i

Ry,m
, ey ̸= em

(3)

Similarly, the downlink transmission delay is denoted as

T down,m
n,i =


dn
i,I+1

Rdown
m,n

, ey = em
dn
i,I+1

Rm,y
+

dn
i,I+1

Rdown
y,n

, ey ̸= em
(4)

When two dependent tasks an,j and an,i are assigned to
edge servers ey and em respectively, the data transmission
delay between them is 0 if ey = em, otherwise it is

dn
j,i

Ry,m
.

However, in specific cases where task an,j is the dummy
task an,0, the transmission delay is equal to the uplink
transmission delay of task an,i. Similarly, if task an,i is the
dummy task an,I+1, the transmission delay is equal to the
downlink transmission delay of task an,j . As a result, the
data transmission time between them is expressed as

T tran
j,i =


0, ey = em
dn
j,i

Ry,m
, ey ̸= em

Tup,m
n,i , an,j = an,0

T down,y
n,j , an,i = an,I+1

(5)

3.2.2 Computation Delay
we define fm to represent the computing power of edge
server em, which reflects its capability to perform tasks
without exceeding its maximum computing capacity. The
computing delay of task an,i is denoted as

T exe,m
n,i =

wn,i

fm
(6)

3.2.3 Wait Delay
It is assumed that each edge server executes tasks serially,
so only one task can be performed at a time. The execution
order of tasks is determined by the arrival order of tasks.
Each edge server has a waiting queue to cache tasks that
need to be executed. A task starts to be executed when two
conditions are met. Firstly, its all immediate predecessors
have been completed, and the execution results are trans-
ferred to it. Secondly, all tasks that arrived earlier than it in
the waiting queue have been completed.

The set of immediate predecessors of task an,i is ex-
pressed as pre(an,i). The time when task an,i receives the
results of its all immediate predecessors is denoted by

T rec
n,i = max

an,j∈pre(an,i)
{T fin,y

n,j + T tran
j,i } (7)

Notably, if a predecessor task is the dummy task an,0
(typically used to signify the beginning of a task without
consuming actual time), its completion time is denoted as 0.

T fin,m

n′ ,q
is used to denote the completion time of the task

an′ ,q before task an,i in the waiting queue. Therefore, the
queuing time for task an,i is expressed as

T queue,m
n,i =

{
0, l = 1

T fin,m

n′ ,q
, l > 1

(8)

where l indicates the position of task an,i in the wait queue.
As a result, the wait time of task an,i is denoted as

Twait,m
n,i = max{T rec,m

n,i , T queue,m
n,i } (9)

The completion time of task an,i is determined by its
wait time and computation time, which can be expressed as

T fin,m
n,i = Twait,m

n,i + T exe,m
n,i (10)

After all tasks in the DAG are scheduled, the dummy
task an,I+1 receives the execution results of offloaded tasks,
so the completion time of application un is denoted as

T fin
n = T rec

n,I+1 (11)

For both linear and nonlinear DAGs, the uplink trans-
mission time of each task is calculated utilizing Equation
(3). This is because it solely considers the time required
to transmit the task from the original mobile device to
the target edge server, neglecting the time needed for the
edge server to receive the task. However, it is imperative
to ensure that the receiving time in Equation (7) accurately
reflects the longest path within the DAG.

3.3 Application Hit Ratio
An application is hit only when both conditions are met.
Firstly, all tasks generated by the application are executed.
Secondly, the completion time of the application does not
exceed its deadline. Let Mn show whether the application
un is hit, and it is denoted as

Mn =

1,
I∏

i=1

M∑
m=1

ymn,i = 1&0 < T fin
n ≤ Tmax

n

0, otherwise
(12)

Therefore, the application hit ratio is expressed as

HR =

N∑
n=1

Mn

N
(13)

The completion time of hit applications is expressed as

T =
N∑

n=1

MnT
fin
n (14)

The application hit ratio ranges from 0 to 1. The com-
pletion time of hit applications is large compared to it. As
a result, the application hit ratio has little effect on the
optimization goal. To improve the application hit ratio, we
introduce a large variable ω. The value of this variable is
discussed in detail in the experimental section. In this case,
this optimization objective is expressed as

max
X,Y

ωHR− T (15)

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 5

This optimization objective is not expressed as max
X,Y

ωHR
T

for the following reasons. Assuming that there are three
applications and their completion time are 0.2s, 0.3s, 0.5s,
respectively. For simplicity, all applications are completed
within their deadlines. If the first application is hit, the
application hit ratio is expressed as ωHR

T = ω/3
0.2 = 5ω

3 . If the
first and second applications are hit, ωHR

T = 2/3ω
0.2+0.3 = 4ω

3 .
If three applications are hit, ωHR

T = ω
0.2+0.3+0.5 = ω. Obvi-

ously, this value decreases as the number of hit applications
increases. As a result, max

X,Y

ωHR
T does not meet the goal of

improving the application hit ratio.

3.3.1 Service Constraint
Let ck express the required storage size of service sk. The
service placement decisions are constrained by the storage
capacity of edge servers, which is expressed as

K∑
k=1

xk
mck ≤ Cm (16)

3.3.2 Offloading Constraint
Each task can be offloaded to only one edge server that
provides its required service. Let Mn,i denote the set of edge
servers that can process task an,i. Therefore, offloading a
task needs to satisfy the constraint:∑

m∈Mn,i

ymn,i = 1 (17)

3.3.3 Dependency Constraint
If there is an edge between tasks an,j and an,i, task an,i
starts to be executed only when task an,j is completed and
the data transmitted to it. Therefore, dependent tasks need
to meet the following constraint:

Twait,m
n,i ≥ T fin,y

n,j + T tran
j,i (18)

As a result, the research problem is formulated as

P1 : max
X,Y

ωHR− T

C1 : 0 < fm ≤ Fm

C2 : 0 ≤ T fin
n ≤ Tmax

n

C3 : xk
m, ymn,i ∈ {0, 1}

(16)− (18)

(19)

Constraint C1 ensures that the computing power of
each edge server does not exceed its maximum computing
capacity. Constraint C2 guarantees that the completion time
of each application does not exceed its deadline. Constraints
C3 specify that service placement and task offloading deci-
sion variables are binary.

3.4 Problem Hardness
Theorem 1. The P1 problem is an NP-hard problem.

Proof. As discussed in [20], once a special case of the original
problem is NP-hard, the original problem is also NP-hard.
Motivated by this insight, we undertake a comparative
analysis of the P1 problem with the well-known NP-hard
Traveling Salesman Problem (TSP) [6]. By demonstrating
that TSP is a special case of the P1 problem, we conclusively
establish that the P1 problem is NP-hard.

The definition of TSP: Given a set of cities and the
distance between every pair of cities, the problem is to find
the shortest route on which each city is visited exactly once
and return to the starting point.

We consider an arbitrary TSP instance with a set C =
{1, 2, ..., h} of h cities. The distance between each pair of
cities i, j ∈ C is denoted by di,j . Now, we construct a
special case of the P1 problem. It is assumed that there
are h identical edge servers equipped with all required
services, denoted by E = {1, 2, ..., h}, which are one-
to-one correspondence with the cities in the set C. The
available processing resources of edge servers are the same,
denoted by a. An application includes h+1 tasks, denoted by
V = {v1, v2, ..., vh+1}, and them are offloaded onto these h
edge servers. The DAG for tasks is v1 → v2 → ... → vh+1.
Task v1 and task vh+1 require a/2 processing resources,
respectively, while the other tasks require a processing re-
sources. Obviously, tasks v1 and vh+1 share one edge server
while other tasks separately occupy an edge server. The
execution time for any task on any edge server is t. The
communication delay between edge servers i, j ∈ E is equal
to the distance di,j between cities i and j (i.e.,T tran

i,j = di,j).
All tasks can be offloaded when each edge server provides
the services required by all tasks. At this point, the objective
is converted to finding a feasible offloading solution that
minimizes the completion time of applications within their
deadlines. The wait time of task v1 is 0 (i.e.,Twait

1 = 0), and
the wait time of other tasks vi ∈ V − {v1} are expressed as
Twait
i = Twait

i−1 + t + T tran
i−1,i. Therefore, the completion time

of the application is denoted as
T fin = Twait

h+1 + t
= Twait

h + t+ T tran
h,h+1 + t

= Twait
h + t+ dh,h+1 + t

= (h+ 1)t+ dh,h+1 + ...+ d1,2

That means, for each task vi ∈ V , the selection of an
edge server turns into the selection of a visited city. This is
exactly the TSP instance. Therefore, each TSP instance is a
special case of the P1 problem.

4 METHOD DESIGN

Due to the NP-hard nature of the P1 problem, it is difficult to
find an optimal solution. To address the problem, a Depen-
dent task offloading and Service placement Optimization
(DSO) method is proposed to seek the near-optimal solution.
Fig 6 shows an overview of the DSO method. It consists of
two steps. The first step is to deploy services on the edge
servers based on service requests from mobile devices. The
second step involves allocating tasks to the most suitable
edge server, considering both the scheduling sequence and
the services offered by the edge servers. The deployment
of services inherently restricts task offloading to those edge
servers that are capable of providing the services required
by the tasks. These two steps are then iterated repeatedly
until convergence.

Step 1: Firstly, edge servers collect services requested by
mobile devices, and then determine the action spaces based
on their storage capacities and the services. Secondly, the Q-
table is constructed and initialized according to the action
spaces and the number of edge servers. Thirdly, each edge

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 6

Fig. 6. The overview of the DSO method.

server selects an action from its action space or Q-table and
then deploys the services corresponding to that action.

Step 2: Firstly, the scheduling order of tasks in the
same application is determined by their dependencies. At
the same time, the scheduling order of tasks in different
applications is determined by their deadlines. Secondly,
tasks are sequentially offloaded to appropriate edge servers
based on their scheduling order and the specific services
demanded. Thirdly, the corresponding reward is obtained
after tasks are performed. Finally, the Q-table is updated
based on this reward.

In order to understand the DSO method more clearly, we
will describe the corresponding algorithms for Step 1 and
Step 2 in the following section.

4.1 Service Placement Optimization
To achieve the Step 1, we adopt an IMAQL algorithm based
on Q-learning techniques to solve the service placement
problem. The framework of the IMAQL algorithm is shown
in Fig. 7. Firstly, agents interact with the environment to
obtain services requested by users to determine their action
spaces. Here, agents refer to edge servers. Secondly, each
agent uses the ε-greedy policy to select an action from its
action space or Q-table. To avoid getting into local opti-
mum, each agent selects an action from its action space
in the exploration phase. After sufficient exploration, the
action with the largest Q-value is selected from the Q-
table. Thirdly, agents receive the same reward r from the
cooperative environment according to their actions. Finally,
the Q-table will be updated if the reward r is greater than
the Q-value of selected actions.

We explain the action space, reward function, Q-table
and the ε-greedy policy in the IMAQL framework below.

Fig. 7. IMAQL framework.

4.1.1 Action Space
Assuming that the number of edge servers and service
types are M and K, respectively. According to the service
placement variable xk

m, the action space size of the service
placement is 2M×K . As the number of edge servers and
service types increases, the action space size of the ser-
vice placement will increase exponentially. In order to im-
prove the training efficiency of the algorithm, the following
method is used to reconstruct a new action space.

Let a subset of services represent an action. All possible
subsets of services on an edge server represent its action
space. When a service is included in the subset, it is 1,
otherwise, it is 0. φm represents the action space of edge
server em. It consists of a series of actions, denoted as

φm = {[s1m, ..., skm, ..., sKm]} (20)

An example is provided to illustrate the generation
process of the action space on edge server em, as shown
in TABLE 1. It is assumed that the storage size of the
edge server is 8. There are five service types s1, s2, s3, s4, s5
with storage sizes of 1, 2, 3, 3, 4, respectively. The subset
is retained when the following two conditions are met.
Firstly, the total storage size of services in this subset is
no more than 8. Secondly, this subset is the largest subset
of services. For example, the subset [s1, s2, s3] is retained
rather than [s1], [s2], [s3], [s1, s2], [s1, s3], [s2, s3]. This is
because each edge server can only accommodate a limited
number of services and maximizing their utilization enables
more applications to be supported.

TABLE 1
The Formation Process of the Action Space on Edge Server em

Service Combinations Required Storage Size Actions

(1) s1, s2, s3 1+2+3=6 [1,1,1,0,0]
(2) s1, s2, s4 1+2+3=6 [1,1,0,1,0]
(3) s1, s2, s5 1+2+4=7 [1,1,0,0,1]
(4) s1, s3, s4 1+3+3=7 [1,0,1,1,0]
(5) s1, s3, s5 1+3+4=8 [1,0,1,0,1]
(6) s1, s4, s5 1+3+4=8 [1,0,0,1,1]
(7) s2, s3, s4 2+3+3=8 [0,1,1,1,0]

4.1.2 Reward Function
Generally, the agent’s goal is to maximize the reward. Since
this paper considers maximizing the optimization objective,
the reward function can be expressed in terms of the opti-
mization objective

r = ωHR− T (21)
4.1.3 Q-Table
The example is provided to illustrate the creation and initial-
ization of the Q-table, as shown in TABLE 2. It is assumed
that there exist three edge servers and three services with
storage sizes of 3,1,2 and 1,1,1, respectively. From the Action
Space part, the action spaces of edge servers are represented
as φ1 = {[1, 1, 1]}, φ2 = {[1, 0, 0], [0, 1, 0], [0, 0, 1]}, φ3 =
{[1, 1, 0], [1, 0, 1], [0, 1, 1]}, and their corresponding action
numbers are 1,3,3, respectively. Thereby, the action index
i can take the values 0, 1, 2, and the actions of edge servers
are denoted as φ1[0], φ2[0], φ2[1], φ2[2], φ3[0], φ3[1], φ3[2],
respectively. Firstly, the Q-table is constructed with edge
servers on the horizontal axis and action indexes on the
vertical axis. Secondly, we proceed to initialize the Q-table.
If edge server em has the action [i], Q(m, i) = 0, otherwise,

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 7

Q(m, i) = −1. Thirdly, each edge server em selects an
action [i], and the reward r is obtained by performing all
actions selected by edge servers. Finally, the Q(m, i) will be
updated, if Q(m, i) > r.

TABLE 2
Q-Table

Edge Action Indexes
Servers 0 1 2

edge server 1 0 -1 -1
edge server 2 0 0 0
edge server 3 0 0 0

4.1.4 ε-Greedy Policy
We introduce an exploitation-exploration method. The ex-
ploitation process selects the action with the highest Q-value
from the Q-table. The exploration process selects an action at
random from the action space. If the exploitation processes
are too extensive, the model will be prone to fall into local
optimization. If there are too many exploration processes,
the model will converge too slowly. Consequently, we need
to weigh exploitation against exploration processes. A vari-
able b ∈ [0, 1] is randomly generated. If ε < b, the agent
will enter the exploration process, otherwise, it enters the
exploitation process. In the training process, ε is set to 0 to
allow the agent to explore fully. Then ε gradually increases
so that the agent slowly selects the action with the highest Q-
value. The incremental and maximum values of this variable
are discussed in detail in the experimental section.

The IMAQL algorithm is detailed in Algorithm 1. Firstly,
each edge server uses the ε-greedy policy to select its action
from its action space or Q-table (lines 2-4). Secondly, edge
servers deploy services according to the chosen actions, and
receive the same reward r from the cooperative environment
after tasks are performed (line 5). Thirdly, the Q-table will be
updated if reward r is greater than the Q-value of selected
actions (lines 6-10). Finally, the above is repeated until the
number of iterations is completed (lines 1-11).

Algorithm 1 IMAQL Algorithm
Input:

action spaces, Q-table
Output:

service placement policy X
1: for episode = 1 to EPISODE do
2: for each edge server em ∈ E do
3: selects an action φm[i] based on the ε-greedy policy
4: end for
5: edge servers obtain the reward r based on their actions
6: for each edge server em ∈ E do
7: if r >Q(m, i) then
8: Q(m, i) = r
9: end if

10: end for
11: end for

4.2 Task Offloading Optimization
To achieve the Step 2, we design a greedy algorithm to
settle the task offloading problem. It mainly solves the
following issues. Firstly, the scheduling order of tasks in
the same application needs to be determined to ensure their

dependencies. Secondly, the scheduling order of tasks from
different applications requires to be determined to satisfy
time constraints. Thirdly, each task should be offloaded to
the most appropriate edge server according to the schedul-
ing order. Below we describe how to solve these problems.

4.2.1 Task Ranking
In order to efficiently schedule dependent tasks in the same
application, their order should be determined. There have
been some classic attributes for task ranking in the literature
[25], such as top level and bottom level. The top level of task
an,i is defined as the critical path from the dummy task an,0
to task an,i (excluding an,i). The critical path signifies the
longest path length from the start point to the end point
within the DAG. The length of a specific path is calculated
by the sum of the computation cost on each task node and
the communication cost on each directed edge over the path.
The bottom level of task an,i is the length of the critical path
from dummy task an,I+1 to task an,i.

We use the top level and the bottom level respectively to
calculate the ranking of each task in the application un, i.e.,

TLan,i
=

0, an,i=an,0

max
an,k∈pre(an,i)

{TLan,k
+

ωn,k

−
f

+
dn
k,i

−
R

}, otherwise

(22)

BLan,i =

0, an,i=an,I+1

max
an,k∈suc(an,i)

{BLan,k
+

dn
i,k

−
R

}+ ωn,i

−
f

, otherwise

(23)
where suc(an,i) denotes the set of immediate successors of

task an,i.
−
f and

−
R denote the average processing power and

transmission rate of all edge servers, respectively.
The DAG shown in Fig. 8 is taken as an example to deter-

mine the scheduling order of tasks in the same application.
The node weights represent the total CPU cycles required by
tasks, and edge weights represent the amount of data trans-
ferred between tasks. We leverage the parameter settings in
TABLE 3 to randomly generate the weights and processing
capacities of edge servers within the prescribed parameter
boundaries. Additionally, the transmission rates between
edge servers are also specified. Following this, we compute
the average processing power as 8 GHz and the average
transmission rate as 20 Mbps. When applying Equation (22),
the calculated values for the tasks are sequentially 0, 0.02,
0.03, 0.05, 0.095, 0.09, and 0.16, while those in Equation (23)
are sequentially 0.16, 0.095, 0.13, 0.0475, 0.065, 0.0475, and 0.
The priority of tasks is sorted by a non-ascending order of
their values in the bottom level, while the order is reversed
in the top level. Consequently, the scheduling order of tasks
in the bottom level is an,0, an,2, an,1, an,4, an,3, an,5, an,6.
The scheduling order of tasks in the top level is an,0, an,1,
an,2, an,3, an,5, an,4, an,6. The critical path is represented by
red lines, where an,0, an,2, an,4 and an,6 are the tasks on the
critical path. Obviously, the scheduling order determined
by the bottom level can satisfy the requirement that tasks on
the critical path are executed firstly. For example, task an,2 is
executed before task an,1 in the bottom level, but vice versa
in the top level. Since task an,2 is on the critical path, it
directly impacts the overall completion time of application
un. As a result, we use the bottom level method to obtain
the scheduling order of tasks within the same application.

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 8

Fig. 8. DAG instance. The node weights represent the total CPU cycles
required by tasks. The edge weights represent the amount of data
transferred between tasks. The red lines represent the critical path.

4.2.2 Ready List
In order to allow more applications to be completed within
their time constraints, the scheduling order of tasks from
different applications should be determined. We introduce a
list called readyList. According to the task ranking, the task
is put into the list when all its immediate predecessors have
been completed. There may be a number of tasks belonging
to different applications in this list. They are sorted in a non-
descending order by applications’ deadlines.

4.2.3 Edge Server Selection
Based on the scheduling order of tasks in the readyList, each
task is offloaded sequentially to the most appropriate edge
server for execution, which provides the required service
and has the shortest completion time.

Algorithm 2 Greedy Algorithm
Input:

service placement policy X
Output:

task offloading policy Y
1: Initialization readyList = ∅
2: for each mobile device un ∈ U do
3: obtains its task ranking using the bottom level
4: end for
5: for each mobile device un ∈ U do
6: tasks without immediate predecessors are put into

readyList
7: while readyList ̸= ∅ do
8: tasks in readyList are sorted by a non-descending

order of applications’ deadlines
9: for each task an,i ∈ readyList do

10: is offloaded to the edge server with minimum
completion time and removed from readyList

11: if all immediate predecessors of task an,j ∈
suc(an,i) have been completed then

12: an,j → readyList
13: end if
14: end for
15: end while
16: end for

The greedy algorithm is detailed in Algorithm 2. Firstly,
the scheduling order of tasks in each application is obtained
by using the bottom level (lines 2-4). Secondly, according
to the task ranking, tasks whose immediate predecessors
have been all completed are put into the readyList (line
6). Subsequently, tasks in the list are sorted by a non-
descending order of applications’ deadlines (line 8). Thirdly,

each task in this list is offloaded to the edge server with
the shortest completion time and then removed from this
list (line 10). Finally, this list is updated until all tasks are
scheduled (lines 11-13).

5 PERFORMANCE EVALUATION

The experiments are conducted on a computer with the
following configuration: Intel(R) Core(TM) i5-1240P CPU
@ 1.70 GHz, 16 GB RAM and Windows 11 OS. All the
experimental models are developed in Python 3.9.

5.1 Research Questions
We conduct extensive simulation experiments to explore the
following research questions.

• Q1: What are the best parameters for the IMAQL
algorithm model training?

• Q2: How do parameters such as the value of variable
ω and the number of collaborating edge servers affect
the optimization performance?

• Q3: What is the performance of the proposed method
compared to other methods?

5.2 Simulation Settings
5.2.1 Data Set Description
The experimental data in this paper are mainly from two
datasets. The first is the EUA dataset [26], containing the
location distribution of edge servers and users. The second
is the dataset of industry clusters made public by Alibaba in
2018 [7], containing the DAG structure of dependent tasks.

The first dataset includes the geographical locations of
125 edge servers and 816 users (e.g., longitude and latitude)
provided by the Australian Communications and Media
Authority. In the experiment, we select a 6.2 km2 CBD area
in Melbourne, Australia [27], and set the coverage radius
of each base station to be uniformly distributed within
[150, 400] meters [28]. The second dataset includes 3,175,025
types of batch workloads, with 2,031,910 of these batch jobs
composed of tasks that exhibit dependencies. The number
of tasks in a job ranges from 2 to 142. In the experiment,
we select an appropriate number of jobs to represent the
applications, where the task dependencies in a job are used
to represent the task dependencies in an application.

5.2.2 Parameters Settings
Similarly to [24], there are five types of tasks request-
ing services. Meanwhile, the uplink channel gain hn,m =
(distn,m)

µ, where distn,m is the distance between mobile
device un and edge server em, and the path loss factor µ is
set to 4. We set the values of the following parameters by
referring to [24], [29], [30], which is shown in TABLE 3.

5.2.3 Communication Delay
In the experimental setup, we incorporate the communica-
tion delay equations outlined in Section 3.2.1 to accurately
model the behavior of the system. Specifically, during the
simulation of task transmission from a mobile device to
an edge server, we utilize Equation (3) to quantify the
uplink transmission delay, which includes the forwarding
time from the mobile device to the indirectly connected
edge server. Furthermore, when tasks disseminate their
computation results to dependent tasks within the system,
we apply Equation (5) to calculate the transmission delay

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 9

TABLE 3
Simulation Parameters

Parameters Value

The input data size of each task [0.2, 1] Mb
The size of data transferred between tasks [0.1, 0.4] Mb
The CPU cycles of each task [0.1, 0.5] GHz
The storage size of each service [1, 5] Mb
The total storage capacity of each edge server 10 Mb
The maximum processing power of each edge server 10 GHz
The transmission rates between edge servers 20 Mbps
Wup 20 MHz
W down 100 MHz
σ2 50 dBm
pn 23 dBm
pm 30 dBm
Tmax
n [0.5, 1] s

between them. This includes the delay between virtual tasks
and real tasks to facilitate the representation of data inputs
and execution results outputs. After scheduling all tasks
within a DAG, the execution outcomes of offloaded tasks
are transmitted back to the original mobile device. For this
transmission, we employ Equation (4) to calculate the delay,
which takes into account the forwarding time from the
indirectly connected edge server to the mobile device.

5.2.4 Wait Delay
In the experimental setup, we use the wait delay equations
outlined in Section 3.2.3 to quantify the wait time a task
experiences before executing on the edge server. Specifically,
when a task receives execution results from all its immediate
predecessors, we use Equation (7) to calculate this part of
the wait delay, which encapsulates the completion time
of precursor tasks and inter-task communication delays.
Furthermore, due to the serial execution nature of the edge
server, the task must wait for all preceding tasks in the
queue to complete before it can commence execution. We
use Equation (8) to calculate this queue waiting delay.
Combining the above two parts of delay (i.e. the delay in
receiving results from precursor tasks and the queue wait
delay), we use Equation (9) to calculate the total wait time
a task experiences from the moment it is ready to execute
until it receives a processing opportunity.

5.3 Comparison Methods

To verify the performance of our proposed method, we
introduce the following four methods for comparison.

• Q-Learning algorithm + Greedy algorithm (QLG).
The method leverages the Q-learning algorithm to
place services, while employing our proposed greedy
algorithm for task offloading. In this method, the
Q-learning algorithm identifies the action with the
highest Q-value from the Q-table with a 90% chance,
and randomly explores other actions from the action
space with the remaining probability.

• Multi-Agent Deep Deterministic Policy Gradient
(MADDPG) algorithm [31] + Greedy algorithm
(MADDPGG). The method uses the MADDPG al-
gorithm to place services, and adopts our proposed
greedy algorithm to offload tasks.

• IMAQL algorithm + Convex Programming (CP) al-
gorithm [6] (ICP). The method adopts the IMAQL
algorithm for service placement and employs the CP

algorithm for task offloading. The CP algorithm re-
formulates the task offloading into a convex problem
and resolves it through random rounding. Subse-
quently, tasks are offloaded based on their schedul-
ing order determined by the obtained solutions.

• MSO method [22]. This method adopts the IMAQL
algorithm to place services, and utilizes the load-
balancing algorithm to offload independent tasks.

5.4 Statistical Validation
To ensure the robustness and credibility of our experimental
findings, we implement the hypothesis testing for simula-
tion results, which is an important tool in statistical analysis.

The primary hypothesis of this study examines whether
there exists a statistically significant difference in the im-
pacts of our method and the comparative methods on re-
wards and application hit ratios. Firstly, we collect data from
two distinct methods, such as the rewards generated by our
method and the QLG method. To reduce the influence of
randomness, each experiment is conducted 30 times, assign-
ing a unique random seed for each iteration. Secondly, lever-
aging the central limit theorem, we use Python software to
compute the mean values and standard deviations for the
collected data. Subsequently, the two-independent sample
t-test method is used to calculate the t-statistic (t-value).
Thirdly, following the computation of the t-statistic, the
corresponding p-value is calculated using Python’s scipy
library. By setting the significance level at α = 0.05, we
determine the critical value for rejecting the null hypothesis.
If the computed p-value is less than the significance level
of 0.05, we have sufficient statistical evidence to reject the
null hypothesis, which states that there is no significant
difference in the effects of our method and the QLG method
on rewards. This outcome supports our alternative hypoth-
esis, indicating their significant differences in enhancing
reward effects. Finally, we delve into the magnitude of this
difference, estimating the effect size using Cohen’s d. This
metric provides a quantitative assessment of the size of the
difference between the two sample sets.

5.5 Parameter Analysis
5.5.1 The Effect of the Increment of ε
In the ε-Greedy Policy section, the introduction of the variable
ε aims to mitigate the risk of the model getting trapped
in a local optimum and experiencing sluggish convergence.
During the training process, ε is initially set to 0, enabling
agents to fully explore their action spaces. Subsequently, ε is
gradually increased, causing agents to slowly select actions
from the Q-table. The determination of the suitable incre-
ment and maximum value for ε is crucial. In this section, we
discuss the increment of ε and assume that the maximum of
ε is 1. In the experiment, we introduce an enumerate method
that explores all possible service placement policies and
chooses the most optimal one. Since the time complexity of
this algorithm is too high, we use it as a criterion to evaluate
the performance of our proposed method.

To ensure clarity and conciseness in the presentation,
Fig. 9 integrates both the average reward and the application
hit ratio into a single graph featuring two distinct y-axes:
the left axis represents the average reward, while the right
axis corresponds to the average application hit ratio. As

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 10

evident from Fig. 9, with the increment of ε, the average
reward and application hit ratio of our method exhibit a
consistent decrease. This is because a large increment in
ε hinders agents’ ability to adequately select actions from
their action spaces, which may result in the model getting
trapped in a local optimum. Obviously, when the increment
of ε is set to 0.0001, the average reward and application
hit ratio closely resemble those achieved by the enumerate
method. We employ statistical validation to substantiate our
conclusion. With regards to the average reward, the com-
puted t-statistic is 0.71, accompanied by a p-value of 0.24,
which exceeds the significance level of 0.05. This indicates
that the observed difference is not statistically significant.
Consequently, the appropriate increment of ε should be set
to 0.0001 for subsequent experiments.

Fig. 9. The effect of the increment of ε on average reward and application
hit ratio.

5.5.2 The Effect of the Maximum of ε
In this section, we discuss the maximum of ε. Similarly,
Fig. 10 also integrates the average reward and application
hit ratio into a single graph with dual y-axes. As evident
from Fig. 10, as the maximum of ε increases, the average
reward and application hit ratio of our method exhibit
a corresponding upward trend. This is because when the
maximum of ε is set to a lower values, agents tend to select
actions with the largest Q-value from the Q-table earlier,
resulting in a lower value for model convergence. For in-
stance, if the maximum of ε is set to 0.9, agents will begin
selecting actions solely from the Q-table once ε reaches this
threshold. Notably, when the maximum of ε is set to 1, the
average reward and application hit ratio closely align with
those achieved by the enumerate method. Regarding the
average reward specifically, statistical analysis yields a t-
statistic of 1.06 and a corresponding p-value of 0.147, which
surpasses the conventional significance threshold of 0.05.
Consequently, in subsequent experiments, we establish the
maximum of ε as 1 to guarantee optimal performance.

Fig. 10. The effect of the maximum of ε on average reward and applica-
tion hit ratio.

5.5.3 The Effect of the Variable ω

Equation (13) shows that the application hit ratio varies
between 0 and 1. Notably, the completion time of hit ap-
plications is larger compared to this hit ratio. As a result,
the application hit ratio has minimal influence on the ex-
perimental outcomes. However, our goal is primarily to
elevate the application hit ratio, followed by minimizing
the completion time of hit applications. We propose the
method in (15) to improve the application hit ratio, where
the value of the variable ω needs to be determined. Let
ωHR/T represent the difference between ωHR and T. As
shown in Fig. 11, the difference of all methods increases as
the value of ω increases. Specifically, when the value of ω
equals 25, ωHR/T ≈ 1.1. We set the value of the variable ω
to 200 so that ωHR >> T . Consequently, the application hit
ratio is increased by 200 times in subsequent experiments.

Fig. 11. The effect of ω on ωHR/T.

5.5.4 The Effect of the Number of Cooperative Edge
Servers

In the experiment, we set the number of applications to 40,
and each application includes 5 to 10 tasks. As illustrated
in Figs. 12(a) and 12(b), as the number of cooperative edge
servers increases from 8 to 18, there is a noticeable surge
in both the average reward and application hit ratio for
all methods. The reasons are as follows. With more edge
servers available, a higher number of tasks can be processed.
Additionally, tasks are more likely to be offloaded to the
edge server with the shortest completion time, thereby
minimizing the overall completion time. As the number
of cooperative edge servers increases from 18 to 22, the
average application hit ratio for the QLG and MSO methods
experiences a slight increase before plateauing, whereas
the other methods remain unchanged at 1. However, the
average reward for all methods experiences a slow increase.
This is because the completion time of the hit applications
has a lesser impact on the experimental results, causing the
average reward to increase slowly. Logically, the number of
cooperative edge servers should be 18. In view of the little
difference in performance among the methods with 18 coop-
erative edge servers, we choose to decrease the number of
collaborative edge servers to 14 for subsequent experiments.
This adjustment is aimed at enhancing the discriminability
of performance among the different methods.

While we do not conduct standalone experiments for the
wait delay model, the experiment implicitly validates the
model’s effectiveness. For instance, in Fig. 12(b), as the num-
ber of cooperative edge servers increases, more resources are
available for task processing, resulting in reduced waiting
time in queues, reflected in a higher application hit ratio.

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 11

This observation aligns with our wait delay model’s predic-
tion that queuing time decreases with increased resources.

(a) Average reward (b) Average application hit ratio

Fig. 12. The effect of the number of cooperative edge servers on average
reward and application hit ratio.

5.6 Experimental Results
5.6.1 The Effect of Task Scheduling Order
In the Task Ranking section, we introduce two approaches for
determining the scheduling order of dependent tasks, and
illustrate the superiority of the bottom level method over
the top level approach through an example. In this section,
our goal is to meticulously validate this finding through
rigorous experiments. As shown in Figs. 13(a) and 13(b),
with an increasing number of epochs, both the top level and
bottom level schemes exhibit convergence towards a stable
performance. Notably, the results underscore the superiority
of the b-level scheme over the t-level method, as evidenced
by a 10.3% higher average reward and a notable 9.4% im-
provement in the average application hit ratio. Furthermore,
in average reward, their t-statistic is 25.26, with a p-value <
0.001, indicating highly significant differences. The Cohen’s
d value of 0.326 suggests a medium effect size, indicating a
notable superiority of b-level over the t-level.

(a) Average reward (b) Average application hit ratio

Fig. 13. The performance comparison of task scheduling schemes.

5.6.2 The Convergence of Methods
In the experiment, 150 epochs are executed, each encom-
passing 100 episodes, with the epoch’s value derived from
the average outcome across these episodes. As illustrated
in Fig. 14(a), our proposed method, ICP and MSO methods
converge to a stable performance after approximately 100
epochs. Notably, our method achieves a 5.2% improvement
in average reward compared to the ICP method, with sta-
tistical significance supported by the p-value of 0.03 and
Cohen’s d of 0.26. This suggests that our proposed greedy
algorithm enhances the application hit ratio relative to the
CP task offloading algorithm. Furthermore, our method out-
performs the MSO method by 9.7% in average reward, with
a highly significant p-value of less than 0.001, emphasizing
the impact of optimal task scheduling order on improving
the hit ratio. The MADDPGG method converges earlier but
levels off at a lower performance. Additionally, the QLG

method exhibites fluctuating results due to the random
nature of action selection. By observing the trends, it gets
stuck in a local optimum as a result of insufficient action
space exploration. Our method exhibits the improvement in
average reward, surpassing MADDPGG by 7% and QLG by
12.1%, respectively. This advantage is robustly confirmed
through statistical analysis, with p-values of 0.004 and
<0.001, accompanied by substantial effect sizes (Cohen’s
d = 0.37 and 1.05, respectively). These results underscore
the advantages of our IMAQL algorithm compared to the
service placement algorithms, MADDPG and Q-learning.

(a) Average reward (b) Average application hit ratio

Fig. 14. The convergence of methods on average reward and application
hit ratio.

5.6.3 The Effect of the Number of Applications

As the number of applications increases from 10 to 30, the
average application hit ratio for all methods keeps 1 in
Fig. 15(b). However, Fig. 15(a) reveals a steady decline in the
average reward for all methods. This decline is attributed
to the escalating processing requirements of tasks, coupled
with the serial processing nature of edge servers, which
collectively lead to longer task completion time. As the
number of applications increases from 30 to 80, both the
average reward and application hit ratio decline consistently
for all methods, as evidenced in Figs. 15(a) and 15(b).
This decline stems from an increased number of applica-
tions failing to meet deadlines, lowering the application
hit ratio. When the number of applications is small, our
method displays no obvious advantage compared with the
other four methods. Nevertheless, as the number of ap-
plications increases, our method distinctly surpasses them,
with statistical significance confirmed by p-values from the
t-test consistently below 0.001 and substantial effect sizes
exceeding 0.8, firmly underpinning the superiority of our
approach. This advantage arises from two key factors: our
method ensures priority execution for tasks on the critical
path, expediting overall application completion, and our
service deployment strategy closely resembles the solution
of the enumerate method, which can be proven in Section
5.5.1, yielding a superior application hit ratio compared to
alternative approaches.

(a) Average reward (b) Average application hit ratio

Fig. 15. The effect of the number of applications on average reward and
application hit ratio.

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 12

5.6.4 The Effect of the Storage Capacity of Edge Servers

As the storage capacity of edge servers increases from 4 to
10, all methods exhibit an upward trend in both average
reward and application hit ratio, as illustrated in Figs. 16(a)
and 16(b). This is attributed to the increasing capacity of
edge servers to accommodate more services, resulting in
more tasks to be executed. Notably, the proposed method
outperforms its counterparts due to its more effective ser-
vice deployment strategy. In the Section 5.5.1, we conducted
a comparative experiment, revealing that the proposed ser-
vice deployment approach closely aligns with the policy
derived from the enumerate method. Furthermore, all p-
values are below 0.001 from the t-test and Cohen’s d values
exceed 0.8, underscoring the statistical significance of our
findings. Specifically, as shown in Fig. 16(b), when the
storage capacity of edge servers reaches 10, the average
application hit ratio for our method is higher than that of the
ICP, MADDPGG, MSO and QLG methods by about 5.8%,
8.8%, 11.7% and 12.3%, respectively.

(a) Average reward (b) Average application hit ratio

Fig. 16. The effect of the storage capacity of edge servers on average
reward and application hit ratio.

5.6.5 The Effect of the Deadline of Applications

As the deadline of applications increases from 0.5 to 1, the
average reward and application hit ratio for all methods
exhibit an upward trend, as depicted in Figs. 17(a) and 17(b).
This is because one of the conditions for an application to be
hit is to be completed within its deadline. Therefore, as the
deadline for applications is extended, the likelihood of an
application being hit also increases, as it provides applicants
with additional time to meet this crucial criterion. As the
deadline of applications increases from 1 to 1.2, the average
reward and application hit ratio for all methods exhibit a
sluggish increase or remain unchanged. This is primarily
because the majority of applications have been processed
within the deadline of 1. For instance, Fig. 17(b) reveals that
when the deadline of applications is 1, the average appli-
cation hit ratio for our proposed method, ICP, MADDPGG,
MSO and QLG methods are 1, 0.97, 0.95, 0.946 and 0.925
respectively. As the deadline of applications increases to 1.2,
the average application hit ratio for all methods reaches 1.
However, interestingly, even when the storage capacity of
each edge server is maximized, the average application hit
ratio in Fig 16(b) does not reach 1. This observation under-
scores the significant influence of the application deadline
on the application hit ratio.

When all the applications are hit, (i.e., application hit
ratio reaches 1), the application completion time for each
method can be determined based on the reward and appli-
cation hit ratio. Specifically, the application completion time
for our proposed method, ICP, MADDPGG, MSO and QLG
methods are 23, 23.79, 24.08, 24.1 and 24.13, respectively.

(a) Average reward (b) Average application hit ratio

Fig. 17. The effect of the deadline of applications on average reward and
application hit ratio.

6 RELATED WORK

In recent years, task offloading has been a popular research
topic in edge computing. Many scholars have proposed var-
ious task offloading methods and have achieved satisfactory
research results. We analyze some of the studies that are
closely related to our research below.

Feng et al. [4] investigated task partitioning and user
association problems to minimize the average latency. They
proposed the dual decomposition and matching methods
to obtain near-optimal solutions for user association. Mean-
while, the task partitioning problem was solved by math-
ematical calculation. Wang et al. [32] studied the joint task
offloading, power assignment and resource allocation prob-
lem. They developed an evolutionary algorithm to minimize
the response time, energy consumption and cost. Jiang et
al. [33] leveraged the game theory to determine the optimal
task offloading strategy for improving the quality of service.
Meanwhile, they applied a reinforcement learning to realize
the dynamic resource allocation of edge servers. Chen et
al. [34] investigated resource allocation and task offloading
problems to minimize the energy consumption. The prob-
lem was solved by using the multi-agent deep deterministic
policy gradient reinforcement learning algorithm. Liu et al.
[35] proposed a semidefinite relaxation approach with an
adaptive adjustment procedure to minimize the weighted
sum of execution time and computation cost of all tasks.

The aforementioned works focus on offloading indepen-
dent tasks. Considering the increasing complexity of appli-
cations, an application usually consists of dependent tasks.
Wang et al. [14] investigated the dependent task offloading
problem optimizing the latency and energy consumption.
An offloading scheme embedded with deep reinforcement
learning and inference procedures was proposed to adapt
dynamic scenarios. Liu et al. [15] investigated the dependent
task offloading problem to reduce the application execution
delay. A heuristic algorithm was designed to solve the re-
search problem. Li et al. [36] proposed a deep reinforcement
learning based on dependent task offloading scheme to
minimize the average cost of energy and time. Ming et al.
[37] proposed a heuristic scheme to iteratively optimize the
delay of processing a series of tasks with dependencies un-
der the constraints of edge servers. Zhou et al. [38] proposed
an improved non-dominated sorting genetic algorithm-II to
minimize the latency and energy cost.

The above studies assume that each edge server can
perform any type of offloaded task. In fact, deploying all
types of services at each edge server is challenging due to
limited storage resource. To this end, the above issues are
addressed by considering the impact of service placement.
Zhao et al. [6] studied the offloading of dependent tasks

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 13

to edge servers under limited service caching. A convex
programming algorithm was proposed to minimize the
makespan of applications. Bi et al. [13] considered a single
edge server that assisted a user in executing a sequence of
computation tasks. An alternating minimization technique
was devised to minimize the computation delay and energy
consumption. Shen et al. [29] studied the jointly problem of
dependency-aware task offloading and service caching, and
proposed a semi-distributed algorithm based on dynamic
programming to maximize the offloading efficiency. Zhang
et al. [39] studied the dependent task offloading problem
with limited service caching constraints. A cloud-edge-
device collaborative algorithm was proposed to minimize
the completion time of applications. Oskoui et al. [40] de-
signed a distributed method based on deep reinforcement
learning to optimize the completion time of applications by
offloading dependent tasks to edge servers.

The above research overlooks the application hit ra-
tio, which is crucial as applications become more compli-
cated, containing multiple interdependent tasks. Neverthe-
less, some studies have addressed this issue. Chen et al.
[21] investigated the joint caching and service placement
problem to maximize the reward relevant to the number
of accepted applications and corresponding service latency.
Our previous work investigated the service placement and
multi-task offloading problems to maximize application hit
ratios [22]. Nevertheless, a notable limitation in the above
studies is the neglect of task dependency. Liao et al. [23] op-
timized the application assigning and scheduling problems
to ensure that more applications are completed before their
deadlines. Nevertheless, they overlooked the influence of
service placement. Addressing the above limitations, this
paper investigates dependent task offloading and service
placement problems to maximize the application hit ratio.

7 CONCLUSION AND FUTURE WORK

In this paper, we investigate service placement and depen-
dent task offloading problems to maximize the application
hit ratio. The DSO method is proposed to address this
research problem. Firstly, it utilizes the IMAQL algorithm
to obtain the optimal service placement strategy. Secondly,
tasks are greedily offloaded to the appropriate edge servers
according to their scheduling order. Finally, sufficient exper-
imental results coupled with rigorous statistical validation
demonstrate that the DSO method surpasses other methods
in performance. However, the escalating complexity of edge
computing environments, driven by the proliferation of
edge servers and diverse service types, poses challenges.
Specifically, the Q-table size significantly expands, lengthen-
ing the reinforcement learning training phase. This restricts
our method’s scalability in large-scale environments. To
mitigate this, we envision incorporating advanced reinforce-
ment learning techniques, such as deep and hierarchical
methods, to enhance scalability and accelerate convergence.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China (Nos. 62472147, 62272145,
62072159 and U21B2016), and partially by the Australian
Government through the Australian Research Council’s
Discovery Projects funding scheme (project DP220101823).

REFERENCES

[1] J. Chen, Y. Yang, C. Wang, H. Zhang, C. Qiu, and X. Wang,
“Multitask offloading strategy optimization based on directed
acyclic graphs for edge computing,” IEEE Internet of Things Journal,
vol. 9, no. 12, pp. 9367–9378, 2021.

[2] G. Yang, L. Hou, X. He, D. He, and S. Chan, “Offloading time opti-
mization via markov decision process in mobile-edge computing,”
IEEE internet of things journal, vol. 8, no. 4, pp. 2483–2493, 2020.

[3] Z. Ning, P. Dong, X. Wang, X. Hu, J. Liu, and L. Guo, “Partial
computation offloading and adaptive task scheduling for 5g-
enabled vehicular networks,” IEEE Transactions on Mobile Comput-
ing, vol. 21, no. 4, pp. 1319–1333, 2020.

[4] M. Feng, M. Krunz, and W. Zhang, “Joint task partitioning and
user association for latency minimization in mobile edge comput-
ing networks,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 8, pp. 8108–8121, 2021.

[5] H. Tang, H. Wu, Y. Zhao, and R. Li, “Joint computation offload-
ing and resource allocation under task-overflowed situations in
mobile-edge computing,” IEEE Transactions on Network and Service
Management, vol. 19, no. 2, pp. 1539–1553, 2022.

[6] G. Zhao, H. Xu, Y. Zhao, C. Qiao, and L. Huang, “Offloading tasks
with dependency and service caching in mobile edge computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 11,
pp. 2777–2792, 2021.

[7] J. Zhang, G. Zhang, X. Bao, C. Ding, P. Yuan, X. Zhang, and
S. Wang, “Dependent application offloading in edge computing,”
IEEE Transactions on Cloud Computing, 2023.

[8] X. Li, T. Chen, D. Yuan, J. Xu, and X. Liu, “A novel graph-based
computation offloading strategy for workflow applications in
mobile edge computing,” IEEE Transactions on Services Computing,
vol. 16, no. 2, pp. 845–857, 2022.

[9] H. Zhang, Y. Yang, B. Shang, and P. Zhang, “Joint resource alloca-
tion and multi-part collaborative task offloading in mec systems,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 8, pp. 8877–
8890, 2022.

[10] D. Zhang, W. Dong, T. Zhang, J. Zhang, P. Zhang, and G. Sun,
“New computing tasks offloading method for mec based on
prospect theory framework,” IEEE Transactions on Computational
Social Systems, 2022.

[11] H. Xiao, J. Huang, Z. Hu, M. Zheng, and K. Li, “Collaborative
cloud-edge-end task offloading in mec-based small cell networks
with distributed wireless backhaul,” IEEE Transactions on Network
and Service Management, 2023.

[12] S. Lin, K. C. Chen, and A. Karimoddini, “Sdvec: software-defined
vehicular edge computing with ultra-low latency,” IEEE Commu-
nications Magazine, vol. 59, no. 12, pp. 66–72, 2021.

[13] S. Bi, L. Huang, and Y. A. Zhang, “Joint optimization of service
caching placement and computation offloading in mobile edge
computing systems,” IEEE Transactions on Wireless Communications,
vol. 19, no. 7, pp. 4947–4963, 2020.

[14] J. Wang, J. Hu, G. Min, W. Zhan, A. Y. Zomaya, and N. Georgalas,
“Dependent task offloading for edge computing based on deep
reinforcement learning,” IEEE Transactions on Computers, vol. 71,
no. 10, pp. 2449–2461, 2021.

[15] J. Liu, J. Ren, Y. Zhang, X. Peng, Y. Zhang, and Y. Yang, “Efficient
dependent task offloading for multiple applications in mec-cloud
system,” IEEE Transactions on Mobile Computing, vol. 22, no. 4, pp.
2147–2162, 2023.

[16] L. Chen, J. Wu, J. Zhang, H. Dai, X. Long, and M. Yao,
“Dependency-aware computation offloading for mobile edge com-
puting with edge-cloud cooperation,” IEEE Transactions on Cloud
Computing, vol. 10, no. 4, pp. 2451–2468, 2022.

[17] J. Deng, B. Li, J. Wang, and Y. Zhao, “Microservice pre-deployment
based on mobility prediction and service composition in edge,”
in Proceedings of the IEEE International Conference on Web Services
(ICWS), 2021, pp. 569–578.

[18] C. Chen, B. Bhargava, V. Aggarwal, B. Tonshal, and A. Gopal, “A
hybrid deep reinforcement learning approach for jointly optimiz-
ing offloading and resource management in vehicular networks,”
IEEE Transactions on Vehicular Technology, pp. 1–12, 2023.

[19] Y. Zhang, Y. Zhou, S. Zhang, G. Gui, B. Adebisi, and H. Gacanin,
“An efficient caching and offloading resource allocation strategy
in vehicular social networks,” IEEE Transactions on Vehicular Tech-
nology, pp. 1–13, 2023.

[20] H. Xiao, C. Xu, Y. Ma, S. Yang, L. Zhong, and G. Muntean, “Edge
intelligence: A computational task offloading scheme for depen-

IEEE TRANSACTION ON SERVICES COMPUTING, VOL. XXX, NO. XX, XXXXXX 14

dent iot application,” IEEE Transactions on Wireless Communications,
vol. 21, no. 9, pp. 7222–7237, 2022.

[21] Y. Chen, Y. Sun, B. Yang, and T. Taleb, “Joint caching and com-
puting service placement for edge-enabled iot based on deep
reinforcement learning,” IEEE Internet of Things Journal, vol. 9,
no. 19, pp. 19 501–19 514, 2022.

[22] J. Zhang, X. Wang, C. Ding, X. Zhao, and S. Wang, “Task offloading
based on application hit ratio,” in Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS), 2023, pp. 36–42.

[23] H. Liao, X. Li, D. Guo, W. Kang, and J. Li, “Dependency-aware
application assigning and scheduling in edge computing,” IEEE
Internet of Things Journal, vol. 9, no. 6, pp. 4451–4463, 2022.

[24] Y. Chen, S. Zhang, Y. Jin, Z. Qian, M. Xiao, and J. Ge, “Locus:
User-perceived delay-aware service placement and user allocation
in mec environment,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 7, pp. 1581–1592, 2021.

[25] Y. Kwok and I. Ahmad, “Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors,” ACM Computing
Surveys (CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[26] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, and J. Grundy,
“Optimal edge user allocation in edge computing with variable
sized vector bin packing,” in Proceedings of the Service-Oriented
Computing, 2018, pp. 230–245.

[27] Q. Peng, Y. Xia, Z. Feng, J. Lee, C. Wu, and X. Luo, “Mobility-aware
and migration-enabled online edge user allocation in mobile edge
computing,” in Proceedings of the IEEE International Conference on
Web Services (ICWS). IEEE, 2019, pp. 91–98.

[28] H. Zhao, S. Deng, C. Zhang, W. Du, Q. He, and J. Yin, “A
mobility-aware cross-edge computation offloading framework for
partitionable applications,” in Proceedings of the IEEE International
Conference on Web Services (ICWS). IEEE, 2019, pp. 193–200.

[29] Q. Shen and B. Hu, “Dependency-aware task offloading and
service caching in vehicular edge computing,” IEEE Transactions
on Vehicular Technology, vol. 71, no. 12, pp. 13 182–13 197, 2022.

[30] S. Zhong, S. Guo, H. Yu, and Q. Wang, “Cooperative service
caching and computation offloading in multi-access edge comput-
ing,” Computer Networks, vol. 189, p. 107916, 2021.

[31] Y. Zhu, H. Yao, T. Mai, W. He, N. Zhang, and M. Guizani,
“Multiagent reinforcement-learning-aided service function chain
deployment for internet of things,” IEEE Internet of Things Journal,
vol. 9, no. 17, pp. 15 674–15 684, 2022.

[32] P. Wang, K. Li, B. Xiao, and K. Li, “Multiobjective optimization for
joint task offloading, power assignment, and resource allocation
in mobile edge computing,” IEEE internet of things journal, vol. 9,
no. 14, pp. 11 737–11 748, 2021.

[33] Q. Jiang, X. Xu, Q. He, X. Zhang, F. Dai, and L. Qi, “Game
theory-based task offloading and resource allocation for vehicular
networks in edge-cloud computing,” in Proceedings of the IEEE
International Conference on Web Services (ICWS), 2021, pp. 341–346.

[34] X. Chen and G. Liu, “Energy-efficient task offloading and resource
allocation via deep reinforcement learning for augmented reality
in mobile edge networks,” IEEE Internet of Things Journal, vol. 8,
no. 13, pp. 10 843–10 856, 2021.

[35] L. Liu, M. Zhao, M. Yu, M. A. Jan, D. Lan, and A. Taherkordi,
“Mobility-aware multi-hop task offloading for autonomous driv-
ing in vehicular edge computing and networks,” IEEE Transactions
on Intelligent Transportation Systems, vol. 24, pp. 2169–2182, 2022.

[36] J. Li, Z. Yang, K. Chen, Z. Ming, and X. Li, “Dependency-aware
task offloading based on deep reinforcement learning in mobile
edge computing networks,” Wireless Networks, pp. 1–13, 2023.

[37] Z. Ming, X. Li, C. Sun, Q. Fan, and X. Wang, “Dependency-aware
hybrid task offloading in mobile edge computing networks,” in
Proceedings of the IEEE 27th International Conference on Parallel and
Distributed Systems (ICPADS), 2021, pp. 225–232.

[38] C. Zhou, M. Zhang, Q. Gao, and T. Jing, “A dependency-aware
task offloading strategy in mobile edge computing based on
improved nsga-ii,” in Proceedings of the International Conference on
Wireless Algorithms, Systems, and Applications, 2022, pp. 638–647.

[39] J. Zhang, J. Chen, X. Bao, C. Liu, P. Yuan, X. Zhang, and S. Wang,
“Dependent task offloading mechanism for cloud–edge-device
collaboration,” Journal of Network and Computer Applications, vol.
216, p. 103656, 2023.

[40] M. R. Golzari Oskoui and B. Sansò, “Online dependency-aware
task offloading in cloudlet-based edge computing networks,” in
Proceedings of the International ACM Symposium on Mobility Man-
agement and Wireless Access, 2023, p. 91–97.

Junna Zhang received the Ph.D. degree in Insti-
tute of Network Technology from Beijing Univer-
sity of Posts and Telecommunications in 2019.
She is currently a professor in the College of
Computer and Information Engineering, Henan
Normal University, China. Her research interests
include Edge Computing and Service Comput-
ing, and she authored or coauthored more than
thirty papers in these fields. She received the
Best Paper Award of CCF NCSC in 2022. She
is a member of the IEEE.

Xinxin Wang received the bachelor’s degree
in Computer and Information Technology from
Xinyang Normal University in 2021. She is cur-
rently working toward the master’s degree with
the College of Computer and Information Engi-
neering, Henan Normal University, China. Her
research interests include Edge Computing and
Service Computing.

Peiyan Yuan received the Ph.D. degree in com-
puter science from Beijing University of Posts
and Telecommunications. He is currently a pro-
fessor of Computer Science, Henan Normal Uni-
versity, China. He also worked as a post doc-
toral researcher at the University of Texas at
Dallas, USA. His research interests include fu-
ture networks and distributed systems, and he
authored or coauthored more than fifty papers
and one book in these fields. He won the national
scholarship for Ph. D students from Ministry of

Education of the P. R. China in 2012, and he received the Best Paper
Award of IEEE CSE in 2014. He is a senior member of CCF and a
member of ACM and IEEE.

Hai Dong received a PhD from Curtin University,
Perth, Australia. He is currently a senior lecturer
at the School of Computing Technologies, RMIT
University, Melbourne, Australia. He was previ-
ously a Vice-Chancellor’s Research Fellow at
RMIT University and a Curtin Research Fellow
at Curtin University, Perth, Australia. His primary
research interests include Services Computing,
Edge Intelligence, Blockchain, Cyber Security,
Machine Learning, and Data Science. His publi-
cations appear in CSUR, TIE, TIFS, TMC, TSC,

TSE, etc. He is a Senior Member of the IEEE.

Pengcheng Zhang received the Ph.D. degree
in computer science from Southeast University
in 2010. He is currently a full professor in the
College of Computer and Information, Hohai
University, Nanjing, China, and was a visiting
scholar at San Jose State University, USA. His
research interests include software engineering,
service computing and data science. He has
published research papers in premiere or fa-
mous computer science journals, such as TBD,
TCC, TETC, TR, TSE, TSC, TMC, and TKDE.

He was the co-chair of IEEE AI Testing 2019 conference. He served
as a technical program committee member on various international
conferences. He is a member of the IEEE.

Zahir Tari is a Full Professor of Distributed Sys-
tems and the Research Director of the Cen-
tre of Cyber Security Research and Innovation
(CCSRI) at RMIT University, Australia. His main
expertise is in the areas of system performance
(e.g., P2P, cloud, and IoT/Edge) as well as sys-
tem security (e.g., SCADA, SmartGrid, Cloud,
and IoT). Zahir is or has been an Associate
Editor of CSUR, TC, TPDS, and IEEE Cloud
Computing.

