
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 1

Optimized Edge Node Allocation Considering
User Delay Tolerance for Cost Reduction

Xiaoyu Zhang, Shixun Huang, Hai Dong, Senior Member, IEEE, Zhifeng Bao, Jiajun Liu, and Xun Yi

Abstract—With the rise of 5G technology, Mobile (or Multi-Access) Edge Computing (MEC) has become crucial in modern network
architecture. One key research area is the effective placement of edge nodes, which has attracted significant attention. Service
providers strive to minimize deployment costs for these nodes within a network. Although many studies have explored optimal
strategies for reducing these costs, most overlook the allocation of computational resources and the users’ tolerance for delays. These
factors add complexity, making previous methods less adaptable. In this paper, we define the Cost Minimization in MEC Edge Node
Placement problem. Our goal is to find the optimal strategy for deploying edge nodes that minimize costs while cater to users’ delay
tolerance limits. We prove the NP-hardness of this problem and provide a range of solutions, including Cluster-based Mixed Integer
Programming, Coverage First Search, and Distance-Aware Coverage First Search, to address this challenge effectively and efficiently.
Additionally, we propose a fine-grained optimization approach for allocating computational resources to edge nodes based on user
service requests, significantly lowering deployment costs. Extensive experiments on a large-scale real-world dataset show that our
solutions outperform the state-of-the-art in efficiency, effectiveness, and scalability.

Index Terms—Mobile (or Multi-Access) Edge Computing, Edge node placement, Cost minimization, User delay tolerance

✦

1 INTRODUCTION

MOBILE (or Multi-Access) Edge Computing (MEC)
emerges as a novel computing paradigm accompa-

nying the rise of 5G technology. In MEC, a large number
of servers with limited computing and storage capacity,
known as edge servers or edge nodes, are deployed to the
edge of a network in a distributed manner. Users with the
MEC technology are closer to computing resources, which
can not only significantly reduce their network latency but
also provision them with substantial and nearby computing
resources [1].

Problem. In this paper, we study the problem of optimal
edge node deployment, aiming to provide qualified and
low-latency services to massive mobile users citywide with
minimum cost. There are three primary factors that require
to be considered during the decision-making process of edge
node deployment:

First, guaranteeing the Quality of Service (QoS) is a
fundamental requirement of the network deployment [1].
For example, latency, as one of the most important QoS
factors, should not exceed users’ tolerance [2, 3, 4, 5, 6].

• Xiaoyu Zhang, Hai Dong (Corresponding Author), Zhifeng Bao and Xun
Yi are with the School of Computing Technologies, RMIT University,
Melbourne, VIC, Australia
E-mail: xiaoyu.zhang5@student.rmit.edu.au; hai.dong@rmit.edu.au;
zhifeng.bao@rmit.edu.au; xun.yi@rmit.edu.au

• Shixun Huang is with the School of Computing and Information Technol-
ogy, University of Wollongong, Wollongong, NSW, Australia
Email: shixun huang@uow.edu.au

• Jiajun Liu is with CSIRO’s Data61, Australia
Email: ryan.liu@data61.csiro.au

• Xiaoyu Zhang and Shixun Huang have contributed equally

Manuscript received 12 June, 2024; revised 30 September, 2024; accepted 16
October, 2024.

Second, minimizing the deployment cost is always priori-
tized and should not be neglected [7, 8, 9, 10]. There are
many factors that can affect the cost, including edge node
site selection, computation resource allocation, computation
task assignment, etc. Third, resource allocation is another
factor for MEC deployment, which is closely related to the
two aforementioned factors. MEC is designed to mitigate
the resource scarcity issue and should be optimized for
higher productivity [11, 12, 13, 14, 15, 16, 17]. To avoid
introducing extra network deployment costs, it is always
preferred to allocate edge nodes an appropriate amount of
computation resources that is able to not only satisfy the
current user’s QoS network requirements but also provide
high-quality services for the foreseeable future utilization.

Motivation. There is always a trade-off between the edge
node deployment cost and the delay experienced by mobile
users [18]. Such a trade-off is highly related to edge node
site selection and corresponding resource allocation. To be
more specific, a longer distance between edge nodes and
base stations would cause a longer transmission delay, while
a larger workload from the base stations would also cause
a larger computation delay. Deploying more edge nodes
can potentially reduce the transmission delay by decreas-
ing the average distance between base stations and edge
nodes. Also, adding more servers (i.e. computing resources)
into edge nodes can cut down the computation delay
as edge nodes would have higher computation capacity.
However, both cases will inflate the overall deployment
cost. Fortunately, users would never expect a zero-latency
network and instead have tolerance thresholds on the delay.
Thus, by leveraging the threshold, we have an opportunity
to optimize the edge node deployment strategy with the
minimum overall deployment cost. The following sample
scenario demonstrates how the edge node selection and the

© 20XX IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. X. Zhang, S. Huang, H. Dong, Z. Bao, J. Liu and X. Yi, "Optimized Edge Node Allocation Considering User Delay Tolerance
for Cost Reduction," in IEEE Transactions on Services Computing, doi: 10.1109/TSC.2024.3486174.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 2

TABLE 1: Example of fine-grained workload in BS and EN

s1 b3 b4 b5 s2 b6 b7 b8 b9 s3 b1
t1 1 4∗ 0 1 4∗ 0 0 3 1 0 0
t2 0 3 1 0 3 1 1 4∗ 3 0 1
t3 4∗ 0 1 0 2 1 0 3 4∗ 1 2
t4 3 2 2∗ 2 0 2∗ 2∗ 1 1 2∗ 3
t5 2 1 0 3∗ 1 0 2 0 3 1 4∗

C 13 16 6
F 9 12 5

1 C, F represent coarse-grained and fine-grained workload metric respectively

corresponding resource allocation matter to the deployment
cost under various user’s delay tolerance values.

To the best of our knowledge, few researchers attempted
to address the trade-off between cost and delay while con-
sidering the computation resource allocation [8, 19]. Despite
that, existing studies are subject to the following major limi-
tations. First, existing studies suffer from the scalability issue,
making it impractical to deploy their solution over large-
scale real-world datasets. In real-world cases, base stations
are large in amount and the number is still increasing (e.g.,
Shanghai is projected to build 50 5G base stations per km2

[20]). Designing a highly scalable and efficient solution is
therefore essential (the detailed discussions can be found
in Section 2). Second, the issue of delay has not been well
addressed. Specifically, it has been ignored by most existing
studies that the computation delay is supposed to decrease
if more servers are placed in edge nodes.

It is worth noting that this is an extension of our previous
short paper at ICSOC [21], which aims to address the trade-
off between the deployment cost and delay under a coarse-
grained scenario. In this paper, (1) inspired by our obser-
vation that the peak workload of each base station usually
appears at different times, we formulate our problem to sup-
port the fine-grained case and accordingly propose a fine-
grained optimization to further decrease the deployment
cost. (2) We propose a series of solutions to improve the
existing methods in terms of scalability and practice. All the
above contributions are newly made in this work.

Overall, our Main Contributions include:

• We formulate a novel yet practical problem to ad-
dress the trade-off between the deployment cost from
service provider’s perspective, and the transmission
and computation delay from the user’s perspective.
We propose a peak workload metric-based measure-
ment to guarantee the robustness of our deployment
strategies; Moreover, we define a practical delay
measurement to ensure its feasibility in real-world
cases. (Section 3)

• We prove that our problem is NP-hard. (Section 4)
• We develop a suite of approaches to address this

problem. Specifically, we propose a Cluster-based
Mixed Integer Programming (MIP) method and a
Distance Aware Coverage First Search (DA-CFS) al-
gorithm to address the efficiency and effectiveness
issue of MIP [8, 19] and Coverage First Search (CFS)
[21], respectively. In addition, we propose a fine-
grained optimization strategy to further improve the
effectiveness of CFS and DA-CFS. (Section 5)

• We conduct comprehensive experiments over a
large-scale real-world dataset to verify the perfor-

mance of our proposed solutions. It turns out that
our solutions have a great advantage in scalability
compared with the baseline methods in both effi-
ciency and effectiveness. (Section 6)

1.1 Example Use Case

Fig. 1 demonstrates how users’ tolerance of service delay
affects the optimal edge node deployment when considering
cost-efficiency. In this figure, the blue numbers along with
lines represent the distance while the black numbers with
the based stations and edge nodes represent the workload.
The workload and the distance together decide the trans-
mission latency, while the workload matters to the com-
putation delay. Basically, the larger workload would cause
a larger computation delay and transmission delay, while
the larger distance would further increase the transmission
delay. Fig. 1a shows the initial connections between base
stations which are candidate potential locations to deploy
edge nodes (i.e., edge nodes co-locate with base stations).
Our edge node deployment problem, given different delay
thresholds, we want to find the corresponding optimal plan,
which would not only guarantee that the workload in the
base station can be processed within the given delay thresh-
old but also the overall deployment cost can be minimized.

Developing an edge node within a base station will
introduce a setup cost while adding servers to an edge
node to increase its computing capacity will generate server
purchase costs (the number along with edge nodes represent
the number of server unit we deploy to each edge node).
Given users’ delay tolerance threshold and the goal of
cost minimization, placing edge nodes at appropriate base
stations with the right number of servers can significantly
reduce the overall cost.

EN site selection with coarse-grained workload estimation.
With the objective of minimizing the total cost, the optimal
edge node deployment strategy would vary under different
users’ delay tolerance. Fig. 1b illustrates an optimal edge
node placement in case the users’ delay tolerance threshold
is 22s, where the most cost-effective deployment is to de-
velop two edge nodes S1 and S2, with each having 3 server
units installed. In this case, developing one more edge node
is more expensive than simply adding more server units to
existing edge nodes. However, when we decrease the delay
tolerance threshold to 16s, the optimal placement becomes
what is shown in Fig. 1c. To satisfy this more rigorous delay
tolerance requirement, there are two intuitive options: (1)
continuously adding more servers to existing edge nodes
to further decline the computation delay, or (2) installing
a new edge node to decrease the transmission delay. Fig. 1c
shows that the optimal solution is to install a new edge node
instead of adding more servers.

Resource allocation with fine-grained workload estimation. Al-
locating appropriate resources to each edge node is another
important factor that can directly affect the deployment cost.
In Fig. 1c, the workload is measured in a coarse-grained
manner by taking the peak workload of each location. The
capacity required for s1, s2 and s3 is 13, 16 and 6 respec-
tively. Table 1 records the precise workload of each location
in a series of time scales (i.e., t1 to t5). It can be seen that the
peak workload (stared number) of each location appears at

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 3

(a) Initial network (b) OPT with 22s delay (c) OPT with 16s delay

Fig. 1: Example of optimal EN deployment under different delay tolerance

TABLE 2: Literature review of cost minimization problems

Ref Server Setting Delay Workload
Metric

of
BS Method

Capacity1 # in EN Usage2 Transmission
Delay

Computation
Delay

[19] HO ≥ 1 O ✓ ✗ AVG 20 MIP
[8] HO ≥ 1 T ✓ ✓ AVG – MIP
[9] HE 1 T ✓ ✗ AVG 10-50 Greedy
[7] HE 1 T ✓ ✗ AVG 200-1000 Greedy

[22] HE 1 O ✓ ✗ AVG ≤20 Genetic
[10] HE 1 T ✓ ✗ AVG 100-500 Greedy
[23] HE ≥ 1 T ✓ ✓ AVG ¡3042 Heuristic
[24] HE ≥ 1 T ✓ ✓ AVG ≤10 RL
Our HE ≥ 1 T ✓ ✓ Peak 200-3042 Cluster-based MIP, DA-CFS

1 HO, HE represent homogeneous and heterogeneous server capacity respectively.
2 O, T represent formulate delay as optimizing objective and threshold respectively.

different time. Let us see an example in the first big column
in Table 1 for the workload estimation for edge node s1 with
its connected base stations b3, b4, and b5. For the coarse-
grained case, with peak-based workload estimation, we take
the biggest workload from each edge node and base station
(the stared number), which is 4+4+2+3=13. However, when
we look into each timestamp, the peak actually appears at t4,
which is 3+2+2+2=9. It can be easily observed that the fine-
grained workload is always smaller than the coarse-grained
workload. Thus, a more accurate fine-grained workload
estimation can decrease the deployment cost dramatically.

2 RELATED WORK

Extensive studies have been carried out in the area of
deploying cloudlets and edge nodes (also known as edge
servers) to facilitate MEC in the past few years. The edge
nodes (ENs) and cloudlets are very similar concepts, which
are small-scale clouds with limited storage and computation
capacity. They usually co-locate with cellular Base Stations
(BSs) and WIFI Access Points (APs) [1]. Thus, we review the
literature related to edge nodes and cloudlets together for
the edge node deployment problem.

Most existing studies on edge node deployment ei-
ther focus on minimizing the delay experienced by mobile
users [2, 3, 4, 5, 6], or aim at minimizing the delay with the
balanced workload among edge nodes [11, 12, 13, 14, 15,
16, 17]. However, the deployment cost, as an essential factor
that limits the network QoS, has only been considered by
a limited number of studies [7, 8, 9, 10, 19, 22]. As shown
in Table 2, existing studies on cost-aware deployment can
be divided into two categories. The first category focuses
on placing flexible numbers of servers with homogeneous

computing capacity in each edge node [8, 19]. It aims to
minimize the cost of edge node setup and server purchase.
The second category is about placing a minimum set of
servers with heterogeneous computing capacity to edge
nodes and only a single server is allowed for each edge
node [7, 9, 10, 22].

Compared with the second category, the first category
has higher flexibility in manipulating edge node capacity
which depends on how many servers are placed. Server
placing is also a part of the edge node deployment. The
second category, however, is much simpler. It aims to pick
one server with the most fitting capacity from a given set
of servers with heterogeneous capacities. Thus, the first
category has a much higher solution space than the second
category.

Our work, as shown in Table 2, belongs to the first cat-
egory. Qiang and Nirwan [19] focus on achieving a balance
between cost and delay. They formulate the problem as a
multi-objective optimizing problem. Sourav et al. [8] aims
to find the optimal edge node deployment with minimized
cost, given a user delay tolerance threshold. However, both
of them have the following limitations: First, the scalability
of the solutions is not verified (as both are based on MIP).
They were only evaluated in small datasets, e.g., only 20
base stations used in [19]. Second, their delay models are
less realistic. In [8], computation delay is ignored. Although
the computation delay is considered in [19], it ignores the
fact that allocating higher computation capacity to an edge
node can shorten its computation time. To alleviate the
aforementioned limitations, in this paper, we define a more
practical delay measurement and propose an approximate
solution with remarkable strengths in scalability.

It is worth noting that, to measure the workload, all

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 4

TABLE 3: Table of Notations

Notation Description
s, S Edge node; Set of edge nodes
b, B Base station, Set of base stations
s.n Number of servers placed in edge nodes
r, U User request, Set of user requests
d Distance
CT Number of concurrent task
ξ Single task size
µ Single server computation rate
W Workload
A Assignment
Ctrans Transmission capacity of the channel
Ccomp Computation capacity of the edge node
B Channel bandwidth
SP Channel signal power
N Channel noise
D Delay
θ Delay threshold

previous work adopts an average based-workload met-
ric [7, 8, 9, 10, 19, 22, 23]. However, this measurement cannot
have a robustness guarantee, as it may not be capable of
handling rush hour cases. To address this issue, we propose
a peak-based workload measurement, which precisely esti-
mates the workload by considering the time.

Last, noting that many factors can be optimized for better
network performance; for example, precisely scheduling
tasks can further optimize the resource utilization [25, 26],
and in the meantime, save energy cost for the end de-
vice [27]. Although such factors are non-negligible during
network planning, similar to existing works in the field of
edge node site selection as we reviewed, e.g. [7, 8, 9, 10, 19],
these factors are not our focus. To be more specific, our goal
is to optimize the network deployment at the very early
planning stage by accurately selecting the edge node sites
and the corresponding resource allocation, while the former
targets for the post-planning stage.

3 PROBLEM FORMULATION

In this section, we define the MEC network and its compo-
nents. Also, we define the workload and delay measure-
ment. Then, we formulate our problem with the goal of
minimizing the deployment cost. For the frequently used
notations, please refer to Table 3.

3.1 Preliminaries

MEC network. An MEC network consists of a set B of base
stations (BSs) and a set S of edge nodes (ENs). Elements
in both B and S are denoted by a tuple (id, lat, lng, n)
where lat, lng and n represent latitude, longitude and
the number of allocated servers respectively. By following
existing convention [11, 13, 15, 17] that ENs are co-located
with BSs, we claim that a base station is upgraded to an
edge node if computation resources (i.e. servers) are added.
By following a closely related work [8], we adopt the setting
that multiple standard servers are allowed to be added into
an EN to supply sufficient computation capacity. Then, we
define our BS and EN formally as follows: (1) ∀ b ∈ B,
b.n = 0; (2) ∀ s ∈ S, s.n ≥ 1.
EN setup cost and server cost. We define two kinds of
costs incurred during the deployment: EN setup cost and

server cost. Let pr denote the setup cost, which is the cost of
upgrading a BS to an EN, such as infrastructure renting fee
and construction fee. Let ps denote the server cost, which
is the cost of purchasing new servers for ENs. For example,
installing a server to a base station will cost pr + ps, while
adding a server to an edge node will simply cost ps.
Connectivity and EN service range. Two BSs b1 and b2
are connected if they meet a certain delay threshold that is
constrained by transmission delay and computation delay
together. We define the service range of a EN s as all the
connected BS, which is denoted as R(s).
User Request. To complete a specific task, the mobile user
would send a user request to a base station to request a
stream of data. We define the user request r = (bi, ts, te),
where bi, ts, te represent the base station that receives the re-
quest r, request start time and request end time, respectively.
To access the computation resource in the network, mobile
users send their requests either to an EN directly, or to a
nearby BS which would further offload received requests
to an EN for computation resources. In later sections, we
use the terms user request and task interchangeably unless
specified otherwise.
Assignment. Given that ENs may have their service range
overlapped, the base stations may choose multiple sur-
rounding ENs to offload user requests. However, since a
user request needs continuous processing [28], each single
user request cannot be processed by multiple ENs. We
use the assignment to indicate whether the user requests
are allowed to be offloaded to specific edge nodes from
the designated base stations. The assignment relationship
between user requests, base stations and edge nodes follows
the criteria below: (1) One base station may offload its
incoming user requests to multiple ENs. Each user request,
however, can only be assigned to one EN for processing. In
other words, once an EN takes a user request, it should hold
the task until its end and should not migrate it to other ENs.
(2) The selected ENs cover all BSs in the network, and hence
are capable of handling all user requests.

We use A and At to denote the assignment at a coarse-
grained base station level and a fine-grained user request
level, respectively. For example, at the coarse-grained base
station level, A(s1) = {b1, b2} represents that base station
b1 and b2 are assigned to edge node s1, while at the
fine-grained level, At(s1) = {r1, r2, r3} represents that at
timestamp t, user request r1, r2, r3 from their originated
base stations are offloaded to s1.

3.2 Workload Measurement
We propose a peak metric to measure the workload and
introduce the concept of Concurrent Tasks to facilitate our
peak workload measurement. We claim that two tasks are
concurrent if they have their processing time overlapped.
We use CT to denote the number of concurrent tasks.

A user request r will last a period of time, e.g. from
r.ts to r.te, for a specific task. We assume that users are all
requesting data-intensive computing tasks, e.g. HD videos,
and each r requests ξ of data at any timestamp. We make
this assumption to simulate an extreme case with which we
can guarantee that our deployed MEC network is capable of
dealing with an overwhelming workload.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 5

There are two kinds of workload during a time period,
e.g. from t1 to t2. We mainly focus on: (1) the peak transmis-
sion workload between bi and edge node sj (Equation. 1);
(2) the peak computation workload in an edge node sj
(Equation. 2). We define those in the following equations:

Wt1,t2(bi, sj) = ξ ·max{CTtrans(t, bi, sj) : t ∈ [t1, t2]} (1)

Wt1,t2(sj) = ξ ·max{CTcomp(t, sj) : t ∈ [t1, t2]} (2)

where max{CT (t, ·) : t ∈ [t1, t2]} is to find the maximum
number of concurrent tasks appearing between t1 and t2.

We can perform a coarse-grained workload estimation
for an edge node s at the base station level. We suppose
that for a b ∈ A(s), the largest count of concurrent tasks
appearing at a time point (timestamp ti), is CTti(b). The
corresponding workload of b can then be estimated as
Wpeak(b) = ξ · CTti(b). Thus, the workload of b at any
timestamp t′ ̸= ti should not have the workload exceed
the peak, i.e., Wt′(b) ≤ Wpeak(b). If we ignore the case that
for each connected base station, the appearance time of peak
workload is varying, we can do a coarse-grained workload
estimation for s as W (s) =

∑
bi∈A(s) Wpeak(bi).

3.3 Delay Measurement
There are two major types of delays to be addressed: the
transmission delay for the delay of transmitting a user request
between a BS and an EN, and the computation delay for the
delay of processing a user request in an EN [29]. Those two
delay types are related to the channel’s transmission capacity
and EN’s computation capacity respectively.
Transmission capacity. We adopt Shannon’s channel capac-
ity formula [28] to compute channels’ transmission capacity:

Ctrans = B log2 (1 +
SP

N
) (3)

In this equation, B represents the channel’s bandwidth,
SP represents the average received signal power over the
channel and N represents the average noise power over the
channel. We assume that the signal power is identical to all
channels. Considering that channel noise can be affected by
many factors, such as distance, environments and quality
of cable [30], we use a very common way in the literature
by assuming that the channel noise is only affected by the
distance [5, 11, 13, 15]. We define the noise as N = α ·d(s, b),
where d(s, b) denotes the distance between s and b, and α is
a coefficient between N and the distance.
Computation capacity. Adding servers to an EN grants it
more computation capacity as discussed in [8]. We assume
that servers placed to EN have the same computation capac-
ity µ bit/s. Then, for an EN s with s.n servers placed, the
computation capacity is:

Ccomp = s.n · µ (4)

Delay calculation. The delay calculation relies on the data
size and processing capacity [31]. By referring to our previ-
ously defined peak workload metric, we estimate the delay
for processing a user request r according to the maximum
workload in both transmission between BS bi and EN sj and
computation in sj , which is modeled as follow:

D(r) =
Wr.ts,r.te(r.bi, sj)

Ctrans
+

Wr.ts,r.te(sj)

Ccomp
(5)

where the first term represents the transmission delay for
task r from bi to sj , while the second term represents the
computation delay experienced by r in edge node si.

Similarly, we can also perform a coarse-grained estima-
tion of delay at the base station level by referring to the
coarse-grained workload measurement in Section 3.2. The
maximum delay incurred between a BS b and an EN s can
be modeled as:

D(b, s) =
Wpeak(b)

Ctrans
+

Wpeak(s)

Ccomp
(6)

3.4 Problem Definition
To make our problem definition clean and intuitive, we
first give the definition of the Qualified EN Placement Plan,
which precisely defines the constraints needed for a quali-
fied placement plan (as shown in Definition 1). Furthermore,
we pick the optimal placement plan from the qualified EN
placements with the goal of minimizing the cost, which is
defined in Definition 2.
Definition 1 (Qualified EN Placement Plan). Given a set B

of BSs in which each has a set of user requests attached
and a delay threshold θ, select a subset S ⊆ B as ENs
such that the following constraints hold:

(1) For each single user request r from a b ∈ B, the delay
experienced is always within the given threshold θ. i.e.
∀ r ∈ b.U b ∈ B, D(r) ≤ θ (see Equation 5 for the delay
calculation);

(2) One base station may have multiple designated ENs
to offload tasks, which means user requests from one BS
may be assigned to different ENs. However, one user
request can only be processed by one EN at a time t. i.e.,
∀si, sj ∈ S, si ̸= sj , At(si) ∩ At(sj) = ∅;
(3) Once a user request r has been offloaded to an EN
s at time tk, e.g. r ∈ Atk(si), it will not be assigned to
another EN later. That is, r is either completed at time tk,
i.e., r /∈

⋃
s∈S Atk+1

(s), or being continually processed
by the same EN at later timestamps, i.e., r ∈ Atk+1

(si).

Definition 2 (Cost Minimization in MEC Edge Node
Placement). The CMMENP problem is to find an optimal
EN placement plan S∗ which can minimise the total
deployment cost, i.e.,

F (S∗) = argmin
S⊆B

∑
s∈S

(pr + s.n · ps) (7)

where F (S∗) denotes the total cost incurred by selecting
S∗ as ENs, S is a qualified EN placement plan, pr is the
setup cost, and ps is the server cost.

4 HARDNESS ANALYSIS

In this section, we prove the NP-hardness of our problem
through a reduction from a NP-hard problem, namely the
Dominating Set (DS) problem [32].
Definition 3 (Dominating Set Problem). Given a graph G =

(V,E), where V , and E are the vertex set and the edge
set respectively, we aim to find the smallest dominating
set D∗ ⊆ V such that each v ∈ V \D∗ is adjacent to at
least one item in D∗.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 6

Theorem 1. CMMENP is NP-hard.

Proof: We prove that CMMENP is NP-hard through
a reduction from the Dominating Set (DS) problem. The
reduction is performed in three main steps:

(1) Let us consider a special case of CMMENP in which
the server cost ps = 0 and the construction cost pr = 1.
In such case, an edge node can have unlimited computa-
tion capacity without incurring any server placement cost.
Therefore, the total cost only depends on the number of
edge nodes being placed and the computation delay can be
ignored by adding a very large number of servers to edge
servers. In this case, θ is related to transmission delay only.

(2) We construct a graph for our CMMENP problem G =
(B,E′), where B is the set of base stations and E′ is the set
of connections/edges between base stations in B. For any
u, v ∈ B, there is an edge (u, v) between them, if and only
of the transmission delay between u and v is not greater
than θ. Since we set ps = 0, the effect of transmission delay
upon computation delay can be ignored such that we can
ignore the edge weight as well. Thus, the input graph is an
indirect unweighted graph, which is identical to the input of
DS. Therefore, for any instance of DS problem with V and
E, we can construct an instance of the CMMENP problem
by mapping V and E in DS to the base station set B and
connections E′ in CMMENP, respectively.

(3) The objective of our CMMENP problem is to min-
imize the cost. Given pr=1 and ps = 0, it is equivalent
to finding the smallest subset S∗ ⊆ B that can cover all
b ∈ B\S∗, where S∗ is also the optimal solution D∗ to
the DS instance. If there exists a polynomial time algorithm
which can find S∗ for the CMMENP instance, the DS
problem can also be solved in polynomial time, which is
not possible unless P=NP. Thus, our CMMENP problem is
NP-hard.

5 SOLUTIONS

Our solutions can be categorized into two streams: Mixed
Integer Programming (MIP)-based methods (in Section 5.1)
and heuristic methods (in section 5.2). The first stream
exhibits its advantage in effectiveness, while the heuristic
stream solutions have a great advantage in efficiency.

The first stream exhibits its advantage in effectiveness;
however, those methods are not scalable to large-scale data
due to the low efficiency. To be more specific, with the
MIP-based methods, we formulate CMMENP as a linear
optimization problem by following [21]. However, due to
the fact that this method is not scalable to large datasets, we
propose a cluster-based MIP to improve its efficiency. On
the other hand, while the cluster-based MIP can improve
efficiency to a large extent and still gains benefits from the
unsurpassable effectiveness of the MIP, it faces a trade-off
between efficiency and effectiveness brought by the cluster
size (please refer to our experiments in Section 6.2.1).

The heuristic stream solutions have a great advantage in
efficiency, e.g. Coverage First Search (CFS) [21] and Distance
Aware Coverage First Search (DA-CFS) in Section 5.2.1 can
solve the problem in cubic time. To further utilize their
high efficiency and to mitigate their disadvantage in ef-
fectiveness, based on our fine-grained workload and delay

Algorithm 1: Cluster-Based MIP
Input : Base Station set B, Minimum Cluster Size

β, User Requests U
Output: Cluster set C

1 C ← ∅;
2 while |B| > β do
3 Build hierarchy tree H of B;

// cut tree at various height
4 foreach h ∈ H do
5 C ′ ← cut H at height h;
6 flag ← false;
7 foreach c′ ∈ C ′ do
8 if |c′| ≥ β then
9 flag ← true;

10 C ← C ∩ c′;
11 B ← B\c′;
12 break;
13 if flag then
14 break;
15 C ← C ∩ B;
16 S ← ∅;
17 foreach r ∈ U do
18 Calculate workload W and delay D by U ;
19 S′ = MIP (W,D);
20 S ← S ∩ S′;
21 return S;

measurement as defined in Section 3.2 and Section 3.3, we
propose a fine-grained optimization in Section 5.2.2. With
the fine-grained resource allocation, we further decrease
the deployment cost which can even outperform MIP-based
solutions in terms of effectiveness.

5.1 Cluster-based MIP

In this stream, we utilize the MIP solution as our baseline
by following the formulation in [21].

Since the running time of MIP increases exponentially
with the growing size of the input set, we propose a cluster-
based MIP method to alleviate the scalability problem of
MIP while taking advantage of its high effectiveness. We
have the following three goals when partitioning the input
base stations into clusters: (1) The cluster should be inde-
pendent of each other. In other words, each cluster should
have a clear border that separates points inside and outside
the cluster. (2) The cluster should be balanced, which means
the size of each cluster should not differ too much. We
will never expect a very large or tiny cluster, as a large
cluster will also face the efficiency issue with MIP while
small clusters are potentially degrading the effectiveness. (3)
The partition should be achieved efficiently. Such a partition
can be achieved as a k-cut problem in graph theory, which
is known as NP-hard [33]. Thus, it is necessary to find an
approximate solution that can solve the problem efficiently.

To achieve the first goal, we adopt hierarchical agglomer-
ative clustering that forms clusters by gradually merging the
clusters nearby. This merging mechanism guarantees that
the formed clusters are independent and can avoid points
that span across clusters to the largest extent. However,

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 7

when it comes to the second goal, the original hierarchical
agglomerative clustering algorithm has no guarantee of
the balance between clusters, especially when the target
dataset has one single center like our case (please refer to
the data distribution in Fig. 7). Thus, we further modify
the hierarchical clustering to generate relatively balanced
clusters, whose details are presented in Algorithm 1.

Specifically, we first adopt a traditional way [34] to build
a hierarchy tree of cluster/data points (line 3). By cutting
the dendrogram at various heights, we can obtain different
agglomerative formations for clusters. Since we do not
expect to have extremely large or small clusters, we cannot
cut the tree directly to obtain clusters, as this would return
extremely unbalanced results in most of the cases. Instead,
we iteratively search each level of the tree in a bottom-up
manner to find a cluster that is larger than the threshold
we set (lines 8 to 12). Once we find a cluster that meets
the threshold, we remove this cluster of base stations from
the base station set (line 11). Next, we rebuild the hierarchy
tree with the rest of the base stations and iterate the above
process to find the next cluster until no enough base stations
being left (line 13). The remaining base stations then form
the last cluster (line 15).

In terms of the last goal of efficiency, we adopt an ef-
ficient hierarchical agglomerative clustering algorithm with
the time complexity O(n log2 n) [34] for our hierarchy tree
construction. The time spent searching for a cluster with
an appropriate size is O(n log n). Thus, the overall time
complexity of our clustering algorithm is O(n2 log3 n).

After we partition base stations into different clusters, we
apply MIP in each cluster, as shown in Algorithm 1 (lines 17
to 19). As a result of the reduced searching space, MIP is
capable of finding a sub-optimal solution in an acceptable
time period for each cluster locally. Then, we gather those
local solutions as the overall result (line 20). Although the
cluster-based MIP method slightly sacrifices the accuracy of
MIP, it increases the scalability dramatically.

5.2 Heuristic-based Methods
In this section, we take the Coverage First Search (CFS)
method in [21] as our baseline. Then, we improve its ef-
fectiveness by proposing a Distance Aware Coverage Search
(DA-CFS) method. Also, we introduce a fine-grained opti-
mization solution to further decrease the deployment cost.

5.2.1 Distance Aware Coverage First Search (DA-CFS)
As discussed in [21], although CFS can solve the problem in
polynomial time, its effectiveness is very limited. According
to our observation, the CFS has the following limitations:
(1) EN candidates are limited. A BS that has been assigned
will no longer be considered as an EN candidate. However,
those assigned BSs are potentially suitable EN candidates,
as they might well cover their neighboring BSs. (2) The
assignment between BSs and ENs has not been well ad-
dressed. Assigning a BS to a distant EN will cause high
transmission delay, which decreases the computation delay
tolerance, so excessive EN capacity is required. Thus, it is
always preferred to assign a BS to a nearby EN considering
cost minimization.

Hence, we propose a Distance-Aware Coverage First
Search (DA-CFS) method (Algorithm 2) to address those

Algorithm 2: DA-CFS Algorithm
Input : Base Station set B, Delay threshold θ,

Candidate number τ
Output: Edge Node set S

1 S ← ∅, C ← ∅,M← ∅, A← ∅; // C: candidate
set, M: inverted index of A, a set
of ⟨b : s⟩

2 while B ̸= ∅ do
3 B ← getConnection(B, θ);
4 bs ← argmax{|R(b)| | b ∈ {B,C}}; S ← S ∩ bs;
5 ifM[bs] ̸= ∅ then
6 s ←M[bs],M.remove(bs);
7 foreach b ∈ R(bs) do
8 if distance(b, bs) <distance(b, s) then
9 M[b]← bs; A[bs].add(b);

10 A[s].remove(b);
11 else
12 M[b]← bs;
13 Sort A[bs] by distance in a descending order;
14 Add the first τ BSs from A[bs] to C ;
15 Remove bs from B or C ;
16 Remove all the items in A[bs] from B;
17 return S;

limitations. In DA-CFS, we define a candidate set, which
collects BSs that are assigned to ENs but are potentially
competitive EN candidates. Once a new EN is selected, the
BSs that are distant from it is fed into the candidate set.
We define a threshold τ as the maximum number of BSs
selected into the candidate set from each EN’s selection. We
also introduce an inverted indexM of A, which maintains
a set of key-value pairs to record the assignment between
each pair of BS and EN.

In Algorithm 2, if a BS in the candidate set connects to
more unassigned BSs compared with other BSs in the input
BS set B, we will select it as an EN; otherwise, we will
select an EN from the set B by following the CFS method
(lines 3-4). If a new EN is from the candidate set, we will first
disconnect it from its previously assigned EN (lines 6). As
some BSs might locate in more than one ENs’ service area,
we will re-assign those BSs to the new EN if their distances
to it are shorter (lines 7-10). All the assigned BSs will be
registered in M (line 12). For each new EN, we will add
its τ most distant BSs into the candidate set (lines 13-14).
We conduct experiments to obtain an appropriate value of
τ in Section 6. Finally, we remove the selected EN and its
assigned BSs from the input set B (lines 15-16).
Time Complexity Analysis. The primary computation cost
of the DA-CFS method still arises from the BS connection
computing (O(n2)) and the sorting process (O(n log n)).
Thus, its overall time complexity is the same as the CFS
method, which is O(n(n2 + n log n)).

5.2.2 Fine-grained Optimization
To further optimize the cost generated by CFS and DA-CFS,
we introduce a fine-grained optimization solution to those
two methods for a more precise resource allocation.

We observe that our proposed peak workload metric (in
Section 3.2) inevitably produces higher deployment costs.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 8

We also find that the wildly adopted average workload
metric has no guarantee of the robustness of the network.
Under the average workload metric, the deployed EN may
not have enough computation resources to process all user
requests during rush hours. According to our observation,
in a city, the peak workload is more possibly to appear at
working hours for base stations located in the CBD area,
while it is more likely to appear in the residential areas
at off-work hours. Based on the above observation, we
perform a fine-grained re-assignment at the user request
level to delicately identify how much computation resources
are required for each EN and thus further decrease the
deployment cost.

We propose a fine-grained estimation of the real capacity
required for the EN as shown in Algorithm 3. Instead of
computing an exact result by looking into each of the user
requests, we perform an estimation for the result, which will
allocate a bit more computation resource to each EN. This
estimation results from the following two reasons: (1) Due to
the large volume of user requests in the network, it is time-
consuming to perform computation based on each of the
user requests. (2) We expect that our deployed network can
support future development where more users and data-
intensive apps may join this network. We control the cost in
a range that provides a robustness guarantee for the present
and foreseeable future.

Algorithm 3 demonstrates our fine-grained EN capacity
estimation. First, We reassign each user request to its near-
est edge node (line 1). Second, we perform a fine-grained
resource allocation to EN. As explained before, we work
on an estimated value rather than an exact value. In our
fine-grained resource allocation, we perform the estimation
based on two kinds of workload: the computation workload
in EN and the transmission workload between a BS and
an EN. We estimate the computation required of EN via
the following procedures: (1) To estimate the computation
workload in EN, we iteratively compute the peak workload
of each ENs by looking into each timestamp, including the
request start time and end time, of the user request (lines 3
to 6). (2) To estimate the transmission workload, we further
look into user requests in each assigned base station, e.g.,
b ∈ A(s) (lines 7 to 16). For each b, we find all the user
requests that are offloaded to the assigned EN (line 9).
Then, we calculate the maximum workload during the
transmission (lines 10 to 12). (3) With both the computation
workload and the transmission workload, we can estimate
the computation capacity required for s (line 13). Eventually,
we take the maximum value as our estimated capacity for s
(line 16). By optimizing with our fine-grained EN capacity
estimation and the corresponding resource allocation, the
cost generated decreases dramatically, which can be seen
from our experiment analysis in Section 6.

6 EXPERIMENT

In this section, we perform a set of experiments to explore
the following research questions:
RQ1. What is the efficiency, effectiveness and scalability
of the proposed methods? (Section 6.2.1, Section 6.2.2 and
Section 6.2.3) What are the reasons behind the performance?
(Section 6.2.4)

Algorithm 3: Fine-grained EN Capacity Estimation
Input : Edge Node set S, User Requests U
Output: Edge Node set S with capacity

// 1: assign user requests
1 Assign each r ∈ U to its nearest EN;
// 2: Fine-grained resource allocation

2 foreach s ∈ S do
3 Get all timestamps T from user requests to s;
4 Sort T in asc order;
5 ts ← T [0]; te ← T [|T | − 1];
6 ws ←Wts,te(bi, sj);

// Get the max required capacity c
7 c ← 0;
8 foreach b ∈ A(s) do
9 Get all timestamps T ′ from user requests to b;

10 Sort T ′ in asc order;
11 t′s ← T ′[0]; t′e ← T ′[|T ′| − 1];
12 wb ←Wt′s,t

′
e
(b);

13 c′ ← getCapacity(ws, wb, dist(b, s));
14 if c′ > c then
15 c ← c′;
16 s.capacity ← c;
17 return S;

RQ2. How does the value of delay threshold θ affect the
result (see Section 6.2.5)?
RQ3. What is the performance respectively with the average
workload and the peak workload? (Section 6.2.6)
RQ4. What is the performance of the proposed clustering
method (Algorithm 1) in terms of the three goals depicted
in Section 5.1? (Section 6.2.7)
RQ5. τ as maximum number of BSs selected into a candi-
date set of an EN for DA-CFS, what is its optimal value?
(Section 6.2.8)

6.1 Experiment Settings

6.1.1 Dataset
Our experiments are conducted on the Shanghai Telecom
Dataset1, which contains the user service records of 3042
base stations in Shanghai [11, 15, 35]. The experimental
dataset contains 1,048,576 valid user service requests re-
ceived by these base stations during a time period of 6
months. To support our proposed peak workload metric,
we conduct statistical analysis on the concurrent tasks. It
is found that the maximum number of concurrent tasks
received by a base station ranges from 0 to 23, which shows
high workload diversity.

6.1.2 Experiment Environment
All the experiments are conducted on a computer with
Linux system, Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz
and 512GB memory. The MIP approach is implemented
using the CPLEX2 library. All the other methods are im-
plemented in Java. Codes are publicly available at3.

1. Dataset: http://sguangwang.com/TelecomDataset.html
2. CPLEX: https://www.ibm.com/au-en/analytics/cplex-optimizer
3. https://github.com/PetalZh/MECExpJava

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 9

TABLE 4: Parameter Setting

Parameter Value
Standard Server Computing Capacity µ 100 bps
Channel Bandwidth B 5 Hz
Channel Signal Power SP -35 dBm
Single Task Size ξ 15 Mb
Default Delay Threshold θ 22.0 s
EN Construction Cost pr 400
Single Standard Server ps 100

TABLE 5: Estimated EN coverage with different θ value

θ 14.0 16.0 18.0 20.0 22.0 24.0 26.0
Coverage

(m) 396 618 880 1175 1497 1841 2204

6.1.3 Methods for Comparison
We compare the performance of the following methods:

• MIP [8, 19] – It solves the problem as a integer
programming problem. We set its maximum running
time to 1 hour in each run, considering the extremely
high time consumption of MIP on large datasets.

• CFS [21] – A heuristic solution that greedily selects a
BS with the maximum coverage as EN.

• Cluster-based MIP (MIP+Cluster) – It improves the
efficiency of MIP while maintaining its high effec-
tiveness.

• DA-CFS – A CFS with improved effectiveness by
introducing a candidate list.

• Fine-grained optimization for CFS (CFS-F) and
DA-CFS (DA-CFS-F) – Improved CFS and DA-CFS
by peforming user-request-level resource allocation
optimization.

6.1.4 Parameter Settings
Our parameter settings are summarised in Table 4. By fol-
lowing [8], we set the ratio between the construction cost of
an edge node and the installation cost of a standard server
to 4:1, and the computing capacity of a standard server to µ
= 100 bps. The bandwidth B is set to 5 Hz and the channel
signal power SP is set to -35 dBm4. The single task size ξ
is configured to 15 Mb5. For the delay threshold θ, we set
its value from 14.0s to 26.0s by referencing users’ average
delay tolerance on mobile applications [36]. With the set-
tings above, we estimate the coverage of an EN on different
delay thresholds, which is shown in Table 5. Furthermore,
all our experiments are conducted with a default delay
threshold θ = 22s based on the empirical studies depicted
in Section 6.2.5.

6.1.5 Evaluation Metrics
The effectiveness metrics include the deployment cost and
the number of selected ENs, while the efficiency is assessed
by the running time (with the average time of 5 runs).

We measure the effectiveness and efficiency of all the
candidate solutions on different BS input scale to verify their
scalability. We also evaluate the effectiveness and efficiency
of these candidate solutions with different delay threshold θ

4. https://www.securedgenetworks.com/blog/wifi-signal-strength
5. https://www.reviews.org/au/internet/data-usage/

to investigate how the dela y threshold value impacts their
performance. An exclusive scalability analysis is conducted
in terms of the effectiveness and efficiency.

6.2 Experimental Results

6.2.1 Effectiveness Analysis
First, we compare the effectiveness of these solutions based
on the deployment cost. As shown in Fig. 2a, MIP shows a
remarkable cost-saving advantage when the input BS scale
is small (when input BS scale ≤ 1500). However, MIP is
unscalable to larger input BS sets so that it fails to produce
high-quality solutions with the time limit (i.e., one hour). In
contrast, CFS generates a higher cost compared with MIP
in small BS input scales. However, since CFS is an efficient
algorithm, the problem can always be solved in a shorter
time period. From the figure, we can see that CFS can easily
beat MIP on BS inputs with larger scales (when input BS
scale ≥ 2000).

As explained in Section 5, our proposed cluster-based
MIP (MIP+Cluster) and DA-CFS focus on improving MIP
and CFS in terms of efficiency and effectiveness respectively.
In Fig. 2a, we can observe that MIP+Cluster has a very
similar performance with MIP when the size of the BS input
is less than 1000. With the further increase of the BS input
scale, MIP+Cluster maintains a steady rising trend with the
deployment cost staying at relatively low values. Thus, we
can claim that our strategy of breaking the input BS set into
small clusters and finding local solutions in each cluster is
an effective way to address the efficiency issue of MIP.

DA-CFS aims at improving the effectiveness of CFS. CFS
is incapable of finding all potentially suitable EN locations
and optimizing the assignment between BSs and ENs. This
causes the problem that its selected ENs may not be in
the optimal locations and the ENs would require high
computation capacity to serve distant BSs. DA-CFS solves
this issue with a candidate list and assignment optimization.
From Fig. 2a, we can find that, DA-CFS always outperforms
CFS in cost-saving. This advantage becomes increasingly
obvious when the number of participated BSs rises. How-
ever, the cost produced by DA-CFS is still relatively high
compared with MIP+Cluster.

Second, we investigate the number of ENs selected by
each method to analyze the reason behind the high cost of
CFS and DA-CFS, as shown in Fig. 2b. We can see that DA-
CFS always selects fewer EN locations compared with CFS
and thus generates lower costs. This matches the design in-
centive of DA-CFS that aims to select fewer ENs. We can also
observe that the number of ENs selected by MIP+Cluster is
not the lowest and sometimes higher than CFS and DA-CFS.
Considering that MIP+Cluster incurs comparatively low
cost in total, we can conclude that decreasing the number
of selected ENs is not the only way to minimize the cost. An
elegant and precise assignment also plays an important role
(a further discussion on the quality of the assignment can be
found in Section 6.2.4). Therefore, it inspires us to improve
CFS and DA-CFS by elegantly optimizing the assignment
to further decrease the cost. That is why fine-grained opti-
mization is essential to CFS and DA-CFS with the goal of
cost-saving. As we can see from Fig. 2a, by applying our
fine-grain algorithm (Algorithm. 3) to precisely address the

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 10

500 1000 1500 2000 2500 3000
Number of BS

0

50

100

150

200

EN
 d

ep
lo

ym
en

t c
os

t(k
) CFS-PEAK

DA-CFS-PEAK
CFS-AVG
DA-CFS-AVG
CFS-F
DA-CFS-F
MIP+Cluster
MIP

1216215

(a) Deployment cost

200 300 400 500 600 800 10001500200025003042
Number of BS

0

20

40

60

80

100

of

 E
N

se
le

ct
ed

CFS
DA-CFS
MIP+cluster
MIP

213 494 3011

(b) # of EN selected

500 1000 1500 2000 2500 3000
Number of BS

10 1

100

101

102

103

Ru
nn

in
g

tim
e(

s)
 -

lo
g

sc
al

ed

CFS
DA-CFS
CFS-F
DA-CFS-F
MIP+Cluster

(c) Running time

Fig. 2: Effectiveness and efficiency with different BS input scale

10 12 14 16 18 20 22 24 26
Delay threshold

50
100
150
200
250
300
350
400

EN
 d

ep
lo

ym
en

t c
os

t(k
) CFS

DA-CFS
CFS-F
DA-CFS-F
MIP+Cluster

(a) Deployment cost

10 12 14 16 18 20 22 24 26
Delay threshold

0

50

100

150

200

250

of

 E
N

se
le

ct
ed

CFS
DA-CFS
CFS-F
DA-CFS-F
MIP+cluster

(b) # of EN selected

10 12 14 16 18 20 22 24 26
Delay threshold

101

102

103

Ru
nn

in
g

tim
e(

s)
 -

lo
g

sc
al

ed

CFS
DA-CFS
CFS-F
DA-CFS-F
MIP+Cluster

(c) Running time

Fig. 3: Effectiveness and efficiency with different θ value

0.0 0.2 0.4 0.6 0.8 1.0
 Proportion of transmission delay

0
50

100
150
200
250
300
350

of

 B
S

(a) CFS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of transmission delay

0
50

100
150
200
250
300
350

of

 B
S

(b) DA-CFS

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of transmission delay

0
50

100
150
200
250
300
350
400

of

 B
S

(c) MIP+Cluster

Fig. 4: Distribution of BSs with different transmission delay proportions on θ

assignment and the resource allocation, the costs of CFS
and DA-CFS drop remarkably, which are even lower than
MIP+Cluster.

6.2.2 Efficiency Analysis
Fig. 2c shows the running time of those methods in log scale.
MIP+Cluster shows the highest running time (according to
our experiment data, it requires about 90 minutes for the full
dataset). In contrast, the running time for CFS and DA-CFS
is significantly shorter, which is only around 10 seconds.
Since CFS and DA-CFS have the same time complexity, the
running time for these two methods is quite close. We also
find that the running efficiency highly relies on the speed
of draining the base stations in the dataset. In other words,
the less EN selected, the faster the algorithm. For the CFS,
we can observe an abnormal increase when the size of BS
input is 500. From Fig. 2b we can also find the number of

500 1000 1500 2000 2500 3000
Number of BS

10

20

30

40

50

60

EN
 d

ep
lo

ym
en

t c
os

t(k
) MIP+Cluster (10 min)

MIP+Cluster (1h)

Fig. 5: Cost generated by MIP+Cluster with running time
limit of 10min and 1h per cluster

ENs selected by CFS is also a relatively large value when
the number of BSs is 500. Thus, it verifies our analysis that

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 11

the actual running speed of the algorithm depends on the
BS coverage speed, to a large extent. Also, by combining
Fig. 2b and Fig. 2c, we can see that DA-CFS is more stable
than CFS in terms of the EN selection.

It is noteworthy that we exclude MIP in the previous
comparison since we have to terminate it when the time
limit (i.e., one hour) is reached. Furthermore, we set the
time limit of 10 minutes for running MIP in each cluster.
We also conduct an experiment to verify whether the longer
running time can produce a better result for MIP+Cluster.
As demonstrated in Fig. 5, we set the time limit of MIP in
each cluster to 10 minutes and 1 hour respectively. Even
though the problem in each cluster cannot be fully solved
in 10 minutes, running one hour does not contribute too
much on saving the cost. Thus, considering that the design
objective of MIP+Cluster is to improve the efficiency, we
adopt 10 minutes running time limit for each cluster.

We optimize CFS and DA-CFS by conducting a fine-
grained resource allocation. Since it is implemented in the
user request level that needs to deal with a large volume of
data, the running time becomes inevitably longer. However,
the running time is still in an acceptable range, as the
problem can be solved within 30s and 1 min for CFS-F and
DA-CFS-F respectively.

6.2.3 Discussion on Scalability

Recall our discussion in Section 6.2.1 and Section 6.2.2,
MIP+Cluster shows a great advantage in cost-saving among
all the proposed methods due to its outstanding perfor-
mance in EN selection and BS assignment. Although the
cluster-based method reduces the running time to a large
extent, it still requires relatively long running time. If we
further increase the size of the BS input set, the running
time will be inevitably further boosted and the effective-
ness will also be compromised, since more clusters will
be introduced. In contrast, our DA-CFS has extraordinary
efficiency. Even though it performs moderately in terms of
the cost-saving objective, the overall trend shows that the
performance does not degrade when the BS input scales up.
Furthermore, because of its fast processing speed, the fine-
grained optimization can be integrated, which addresses
the effectiveness issue without sacrificing too much ef-
ficiency. Overall, DA-CFS-F shows better scalability than
MIP+Cluster in both the effectiveness and the efficiency.

6.2.4 Transmission and Computation Delay in θ

Fig. 4 illustrates the distribution of BSs with different trans-
mission delay ratios (to the total delay) for CFS, DA-CFS,
and MIP+Cluster. The experiments are conducted on the
whole BS set (i.e. 3,042 base stations) to investigate how our
proposed methods reach the goal of cost minimization in
terms of the quality of assignment conducted by each of the
proposed methods. In those graphs, we evenly divide the
transmission delay ratio in θ from 0 to 1 into 15 bins. The
higher the bar, the more BSs fall into this specific bin. For
example, in Fig 4a, the number of BSs that fall into the trans-
mission delay proportions of 0 to 0.2 is 75+190+210=475.

To achieve the goal of cost minimization, a BS is always
expected to be assigned to its nearest EN. As a result, the
transmission delay can be lower and have more space left

for the computation delay. Consequently, the computation
resource required from the assigned EN is decreased.

By observing the distribution illustrated in Fig. 4, we
can analyze how the assignment affects the cost generated.
As shown in the figure, CFS generates a high transmission
delay for a large proportion of BSs. Compared with CFS,
we can see that the overall distribution of the BSs in DA-
CFS shifts left. It verifies that the candidate list in DA-
CFS and the corresponding BS assignment adjust strategy
can decrease the overall proportion of transmission delay.
It also explains why DA-CFS can always generate a lower
cost than CFS. As aforementioned, MIP+Cluster has a great
advantage in elegantly addressing BS assignments. From
Fig. 4c, we can observe that most of the BSs fall into lower
transmission proportions, which means most of the BSs
generate lower transmission delay and θ is mostly taken
by computation delay.

From all the observations above, it can be concluded
that both EN selection and BS assignment play important
roles in achieving the objective of the deployment cost
minimization.

6.2.5 The Impact of θ
We evaluate the effectiveness and efficiency of the four
candidate solutions by varying θ from 14s to 26s [36]. We
can roughly estimate a value as the EN coverage range
(radius) for reference by taking θ completely as the trans-
mission delay. Considering the parameters we set for the
channel transmission capacity, including bandwidth and
noise-distance coefficient, and taking the largest workload
in the network, we can calculate an estimated coverage
range. For the θ value we take, the coverage spans from
396m to 2204m (see Table 5). Specifically, we study how θ
affects the deployment cost, EN selection, and running time
by conducting our experiment on all 3042 base stations.

It can be seen from Fig. 3a that higher θ values generate
lower costs. This is because a loose delay constraint expands
the service area of an EN so that the number of required ENs
decreases (see Fig. 3b). However, as observed in Fig. 3a, the
effect of θ on the deployment cost becomes weak when it
reaches 22.0. That is because the number of selected ENs
is relatively stable but the number of servers required by
the ENs is increasing to cover their rising BS assignment.
Therefore, we set θ to 22.0s in our experiments. In addition,
it can be seen that the relative positions among the candidate
solutions are unchanged along with the increasing threshold
value for both the deployment cost and the running time.
This indicates the weak impact of the threshold value on
their relative performance comparison.

6.2.6 Peak vs. AVG
As mentioned in Section. 5.2.2, the peak workload metric
may generate extra cost in the coarse-grained case compared
with the average workload metric. However, from Fig. 6,
we can observe that the costs generated by the peak work-
load metric are even smaller than the average workload
metric by precisely considering the offloading time of each
user request (i.e., the fine-grained methods). Also, the peak
workload metric is more robust to dynamic variation of the
workload in each server. We do experiment to verify the
rate of violation on fulfilling all users’ latency requirement

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 12

TABLE 6: Cluster results on different BS input scale

BS # C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Time (s)
1500 317 315 228 222 245 172 – – – – 6.21
2000 248 291 297 228 370 306 259 – – – 13.08
2500 247 352 288 341 321 264 300 386 – – 20.22
3042 331 327 303 336 247 256 327 329 245 340 54.43

TABLE 7: Cost and # of EN selected with different τ in DA-CFS

τ 6 8 10 12 14 16 18 20 22 24 26
EN # 164 164 163 162 163 162 162 162 162 162 162
Cost(k) 362.0 343.4 360.5 358.4 357.2 354.1 353.1 346.8 235.9 232.7 230.5

400 800 1000 1500 2000 2500 3042
Number of BS

10

15

20

25

30

35

40

EN
 D

ep
lo

ym
en

t C
os

t (
k) CFS-AVG

DA-CFS-AVG
CFS-F
DA-CFS-F

Fig. 6: Deployment cost: Peak vs. AVG

for both average and peak workload metrics. According
to our result, with the average workload metric, it causes
10% violation rate, while generates zero violation with peak
workload metric.

6.2.7 Clustering Results for MIP+Cluster
We show the clustering results of Algorithm 1 in Table 6.
Specifically, we set the expected cluster size β = 200, which is
a moderate input size for MIP, such that it can compute the
solution within a reasonable time. We evaluate its clustering
quality from three perspectives, namely the independence
between clusters (aggregation quality), the balance of the
partition, and clustering efficiency, as we have explained in
Section 5.1.

Fig. 7 visualizes the result of Algorithm 1 with all the
3,042 base stations. Overall, the result satisfies our aggrega-
tion quality requirement, as there are clear borders between
the clusters. In Table 6, we list the number of BSs in each
cluster with the total BS number from 1,500 to 3,042. The
smallest and largest clusters are underlined and bold re-
spectively. With the threshold β = 200, the cluster size can
be controlled within the range of 150 to 400 BSs, which
guarantees that the problem can be solved by MIP within
an acceptable time range. As shown in Fig. 2c, even with
the input of all the BSs, the problem can be solved in an
acceptable time (about 90 minutes). Moreover, we list the
clustering time (i.e., Time) in the last column of Table 6. It
can be solved in 6.21 seconds with 1500 BSs, and less than 1
min with all the 3,042 BSs, which can be deemed as efficient
in comparison to the running time of MIP.

6.2.8 Ablation Study on τ for DA-CFS
Table 7 demonstrates how τ (i.e., the maximum number of
BS added into the candidate set from each EN’s selection)

++
−−

Leaflet | Map tiles by Stamen Design, under CC BY 3.0. Data by © OpenStreetMap, under ODbL.

Fig. 7: Visualise clusters on Shanghai Telecom Dataset
(the color indicates different clusters)

affects the performance of DA-CFS. We conduct experiments
with different τ values ranging from 6 to 26. It can be seen
that the number of selected ENs is relatively low and stable
when we set τ ≥ 16. In terms of its effect on the deployment
cost, 22 is an elbow point as it shows a sharp decrease in the
deployment cost (from 346.8k to 235.9k).

To alleviate the computation resource requirement, we
always select the BS that are more distant from their origi-
nally assigned ENs as candidates. If τ is small, although the
selected BS can release more computation capacity pressure
from their previously assigned ENs, these BS might not be
advantageous in covering more unassigned BS. In addition,
a small τ value leaves less flexibility for the BS assignment.
In contrast, an unreasonably high τ value would cause that
the candidates might not contribute to either BS coverage or
computation capacity relaxation of ENs. Therefore, we set τ
to 22 in DA-CFS.

6.3 Summary

We summarise our experimental findings:

• Cluster-based MIP. While MIP shows a great ad-
vantage in the cost-saving objective, it is not scal-
able due to its efficiency. Thus, for small datasets,
MIP is always the best choice, while it would not
be recommended when the solution space is large.
The cluster-based MIP sacrifices some accuracy to
improve efficiency. Specifically, due to the high ef-
fectiveness of MIP, cluster-based MIP still greatly
outperforms CFS and DA-CFS in effectiveness. With

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 13

the partition strategy, the running time has been
decreased into an acceptable range compared with
MIP. However, if the size of dataset further increases,
more clusters will be introduced and inevitably cause
longer running time as well as further decrease its
effectiveness.

• DA-CFS, CFS-F, and DA-CFS-F. CFS baseline and
DA-CFS have strengths on the efficiency, but weak-
ness on the effectiveness. Although DA-CFS opti-
mizes CFS on the EN selection strategy, the generated
cost is still higher than MIP-based methods. How-
ever, with the fine-grained optimization to delicately
address the resource allocation in the user request
level, the cost generated can be decreased into a com-
petitively low level. DA-CFS-F is undoubtedly the
champion in our experiment, achieving remarkable
advantages in all the perspectives, i.e., the effective-
ness, the efficiency and the scalability.

7 CONCLUSION

In this paper, we define a Cost Minimization in MEC Edge
Node Placement Problem to address the trade-off between
deployment cost and users’ delay tolerance. Within this
problem, we define a practical and delicate delay measure-
ment and propose a peak workload metric. We prove this
problem to be NP-hard and propose a range of approximate
solutions, including Cluster-based MIP, DA-CFS, and fine-
grained optimization for the CFS-based methods, that can
efficiently and effectively handle large-scale real-world use
cases. Extensive experiments are conducted on a large real-
world dataset. Our proposed solutions show significant ad-
vantages on scalability compared with the existing solutions
including MIP and CFS.

In the future, we hope to further explore the methods to
improve the estimation of the workload for the fine-grained
case by learning the mobility pattern within those ample
user requests data. It provides the opportunity to accurately
estimate and foresee the workload of base stations, and thus
can more delicately allocate the resources. Furthermore, we
will address inter-server communication within the edge
node more precisely, resulting in a more accurate workload
estimation.

ACKNOWLEDGMENTS

This research was supported partially by the Australian
Government through the Australian Research Council’s Dis-
covery Projects funding scheme (projects DP220101434 and
DP220101823).

REFERENCES
[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A

survey on mobile edge computing: The communication
perspective,” IEEE Commun. Surv. Tut., vol. 19, no. 4, pp.
2322–2358, 2017.

[2] M. Jia, J. Cao, and W. Liang, “Optimal cloudlet placement
and user to cloudlet allocation in wireless metropolitan
area networks,” IEEE Trans. Cloud Comput., vol. 5, no. 4,
pp. 725–737, 2017.

[3] L. Ma, J. Wu, L. Chen, and Z. Liu, “Fast algorithms for
capacitated cloudlet placements,” in CSCWD. IEEE, 2017,
pp. 439–444.

[4] J. Meng, W. Shi, H. Tan, and X. Li, “Cloudlet placement
and minimum-delay routing in cloudlet computing,” in
BIGCOM. IEEE, 2017, pp. 297–304.

[5] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo, “Efficient al-
gorithms for capacitated cloudlet placements,” IEEE Trans.
Parall. Distr., vol. 27, no. 10, pp. 2866–2880, 2015.

[6] X. Zichuan, L. Weifa, X. Wenzheng, J. Mike, and G. Song,
“Efficient algorithms for capacitated cloudlet placements,”
IEEE Trans. Parall. Distr., vol. 27, no. 10, pp. 2866–2880,
2015.

[7] L. Chen, J. Wu, G. Zhou, and L. Ma, “Quick: Qos-
guaranteed efficient cloudlet placement in wireless
metropolitan area networks,” J. Supercomput., vol. 74, no. 8,
pp. 4037–4059, 2018.

[8] M. Sourav, D. Goutam, and W. Elaine, “Ccompassion: A
hybrid cloudlet placement framework over passive optical
access networks,” in INFOCOM. IEEE, 2018, pp. 216–224.

[9] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, “Heteroge-
neous cloudlet deployment and user-cloudlet association
toward cost effective fog computing,” Concurr. Comput.
Pract. Exp., vol. 29, no. 16, p. e3975, 2017.

[10] F. Zeng, Y. Ren, X. Deng, and W. Li, “Cost-effective edge
server placement in wireless metropolitan area networks,”
Sensors, vol. 19, no. 1, p. 32, 2019.

[11] Y. Guo, S. Wang, A. Zhou, J. Xu, J. Yuan, and C. Hsu,
“User allocation-aware edge cloud placement in mobile
edge computing,” Softw. Pract. Exp., vol. 50, no. 5, pp. 489–
502, 2020.

[12] S. K. Kasi, M. K. Kasi, K. Ali, M. Raza, H. Afzal, A. Lasebae,
B. Naeem, S. u. Islam, and J. J. P. C. Rodrigues, “Heuristic
edge server placement in industrial internet of things and
cellular networks,” IEEE Internet Things, vol. 8, no. 13, pp.
10 308–10 317, 2021.

[13] Y. Li and S. Wang, “An energy-aware edge server place-
ment algorithm in mobile edge computing,” in EDGE.
IEEE, 2018, pp. 66–73.

[14] B. Li, P. Hou, H. Wu, R. Qian, and H. Ding, “Placement of
edge server based on task overhead in mobile edge com-
puting environment,” Trans. Emerg. Telecommun. Technol.,
p. e4196, 2020.

[15] S. Wang, Y. Zhao, J. Xu, J. Yuan, and C. Hsu, “Edge server
placement in mobile edge computing,” J. Parall. Distr.
Comput., vol. 127, pp. 160–168, 2019.

[16] Y. Hao, Z. Xu, L. H. H, L. Yan, T. Chen, Z. Shuoyao, and
L. Feng, “Edge provisioning with flexible server place-
ment,” IEEE Trans. Parall. Distr., vol. 28, no. 4, pp. 1031–
1045, 2016.

[17] X. Xu, Y. Xue, L. Qi, X. Zhang, S. Wan, W. Dou, and
V. Chang, “Load-aware edge server placement for mobile
edge computing in 5g networks,” in ICSOC. Springer,
2019, pp. 494–507.

[18] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, “Mobile
edge computing network control: Tradeoff between delay
and cost,” in GLOBECOM. IEEE, 2020, pp. 1–6.

[19] F. Qiang and A. Nirwan, “Cost aware cloudlet placement
for big data processing at the edge,” in ICC. IEEE, 2017,
pp. 1–6.

[20] “5g base station deployments,”
https://techblog.comsoc.org/2020/08/07/5g-base-
station-deployments-open-ran-competition-huge-5g-bs-
power-problem/, accessed: 2022-01-20.

[21] X. Zhang, S. Huang, H. Dong, and Z. Bao, “Edge node
placement with minimum costs: When user tolerance on
service delay matters,” in ICSOC. Springer, 2021, pp. 765–
772.

[22] D. Bhatta and L. Mashayekhy, “Generalized cost-aware
cloudlet placement for vehicular edge computing sys-
tems,” in CloudCom, 2019, pp. 159–166.

[23] Z. He, K. Li, and K. Li, “Cost-efficient server configuration
and placement for mobile edge computing,” IEEE Trans.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX NO. X, XXX 2024 14

Parall. Distr., vol. 33, no. 9, pp. 2198–2212, 2021.
[24] X. Jiang, P. Hou, H. Zhu, B. Li, Z. Wang, and H. Ding,

“Dynamic and intelligent edge server placement based on
deep reinforcement learning in mobile edge computing,”
Ad Hoc Netw., vol. 145, p. 103172, 2023.

[25] S. Liu, Y. Yu, X. Lian, Y. Feng, C. She, P. L. Yeoh, L. Guo,
B. Vucetic, and Y. Li, “Dependent task scheduling and of-
floading for minimizing deadline violation ratio in mobile
edge computing networks,” IEEE J. Sel. Area. Commun.,
vol. 41, no. 2, pp. 538–554, 2023.

[26] W. Zhou, L. Fan, F. Zhou, F. Li, X. Lei, W. Xu, and
A. Nallanathan, “Priority-aware resource scheduling for
uav-mounted mobile edge computing networks,” IEEE
Trans. on Veh. Technol., vol. 72, no. 7, pp. 9682–9687, 2023.

[27] R. Yadav, W. Zhang, I. A. Elgendy, G. Dong, M. Shafiq,
A. A. Laghari, and S. Prakash, “Smart healthcare: Rl-based
task offloading scheme for edge-enable sensor networks,”
IEEE Sen. J., vol. 21, no. 22, pp. 24 910–24 918, 2021.

[28] H. Taub and D. L. Schilling, Principles of communication
systems. McGraw-Hill Higher Education, 1986.

[29] G. Li, J. Wang, J. Wu, and J. Song, “Data processing delay
optimization in mobile edge computing,” Wirel. Commun.
Mobile Comput., vol. 2018, 2018.

[30] L. Kish and C. Granqvist, “Noise in nanotechnology,”
Microelectron. Reliab., vol. 40, no. 11, pp. 1833–1837, 2000.

[31] A. S. Tanenbaum, D. Wetherall et al., “Computer net-
works,” pp. I–XVII, 1996.

[32] J. Alber, M. R. Fellows, and R. Niedermeier, “Polynomial-
time data reduction for dominating set,” J. ACM, vol. 51,
no. 3, pp. 363–384, 2004.

[33] D. Wagner and F. Wagner, “Between min cut and graph
bisection,” in MFCS. Springer, 1993, pp. 744–750.

[34] D. Eppstein, “Fast hierarchical clustering and other ap-
plications of dynamic closest pairs,” J. Exp. Algorithmics,
vol. 5, pp. 1–es, 2000.

[35] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen,
“Delay-aware microservice coordination in mobile edge
computing: A reinforcement learning approach,” IEEE
Trans. Mobile Comput., vol. 20, no. 3, pp. 939–951, 2021.

[36] R. Zhou, S. Shao, W. Li, and L. Zhou, “How to define
the user’s tolerance of response time in using mobile
applications,” in IEEM. IEEE, 2016, pp. 281–285.

Xiaoyu Zhang received the Master degree in
Information Technology from University of Mel-
bourne. She is currently a Ph.D student in RMIT
University. Her current research interests include
data mining and combinatorial optimization.

Shixun Huang received the Bachelor degree
from Nanjing University, Master Degree from
University of Melbourne and Ph.D. degree from
RMIT University. He is currently a Lecturer at
University of Wollongong. His current research
interests span across combinatorial optimization
and mining in graph data.

Hai Dong is a senior lecturer at School of Com-
puting Technologies in RMIT University, Mel-
bourne, Australia. He received a Ph.D from
Curtin University of Technology, Australia and
a Bachelor’s degree from Northeastern Univer-
sity, China. His research interests include Ser-
vice Oriented Computing, Distributed Systems,
Cyber Security, and Machine Learning. He is a
senior member of the IEEE.

Zhifeng Bao received the Ph.D. degree in com-
puter science from the National University of
Singapore. He is currently a Professor with the
RMIT University and an Honorary Senior Fellow
with The University of Melbourne. His current
research interests span across big data man-
agement and algorithm.

Jiajun Liu is a Principal Research Scientist
at CSIRO’s Data61, Australia. He received his
Ph.D/BEng from the University of Queensland,
Australia, and Nanjing University, China, in 2013
and 2006, respectively. His research focuses on
Machine Learning, in particular in Multimedia
Analytics and Graph Learning. Recently he is
also driving a strong research effort for Edge
AI-related topics, such as Knowledge Distilla-
tion, Neural Architecture Search, and Distributed
Learning.

Xun Yi is currently a Professor in Cyber Se-
curity with School of Computing Technologies,
RMIT University, Australia. His research inter-
ests include Cloud and IoT Security and Privacy,
Distributed System Security, Blockchain Applica-
tions, and Applied Cryptography. Currently, he is
an Associate Editor with IEEE Transactions on
Knowledge and Data Engineering. He has been
an ARC College Expert from 2017 to 2019.

