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SCAnoGenerator: Automatic Anomaly Injection
for Ethereum Smart Contracts
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Abstract—Although many tools have been developed to detect anomalies in smart contracts, the evaluation of these analysis tools has
been hindered by the lack of adequate anomalistic real-world contracts (i.e., smart contracts with addresses on Ethereum to achieve
certain purposes). This problem prevents conducting reliable performance assessments on the analysis tools. An effective way to solve
this problem is to inject anomalies into real-world contracts and automatically label the locations and types of the injected anomalies.
SolidiFI, as the first and only tool in this area, was developed to automatically inject anomalies into Ethereum smart contracts.
However, SolidiFI is subject to the limitations from its methodologies (e.g., its injection accuracy and authenticity are low). To address
these limitations, we propose an approach called SCAnoGenerator . SCAnoGenerator supports Solidity 0.5.x, 0.6.x, 0.7.x and enables
automatic anomaly injection for Ethereum smart contracts via analyzing the contracts’ control and data flows. Based on this approach,
we develop an open-source tool, which can inject 20 types of anomalies into smart contracts. The extensive experiments show that
SCAnoGenerator outperforms SolidiFI on the number of injected anomaly types, injection accuracy, and injection authenticity. The
experimental results also reveal that existing analysis tools can only partially detect the anomalies injected by SCAnoGenerator.

Index Terms—Ethereum, Solidity, Smart contract security, Anomaly injection.
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1 INTRODUCTION

COde anomalies are widely present and inevitable in
traditional software. Code anomalies usually refer to

abnormal behaviors of software code, which greatly restrict
the lifespan of software projects [1]. When an anomaly oc-
curs in the code, the program may crash, generate error mes-
sages, or perform incorrect operations. Smart contracts are
autonomous programs running on blockchain [2]. Ethereum
is currently the largest platform that supports smart con-
tracts [3]. Lots of applications based on smart contracts have
been developed and deployed on Ethereum. Similar to tradi-
tional computer programs, it is difficult to avoid anomalies1

in smart contracts. Code anomalies in smart contracts may
be caused by logical errors, memory overflows, resource
leaks, and other issues [4]. Recent years have witnessed
many attacks that exploit the anomalies in smart contracts
to cause severe financial loss [5]. Even worse, the deployed
contracts cannot be modified for anomaly patching, while
a logic contract can sometimes be replaced by a proxy
contract at runtime. Hence, it is essential to detect and fix
all anomalies in the contracts before deployment.

Recent studies have developed many tools for detecting
anomalies in smart contract [6], [7], [8], [9], [10], [11], [12],
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1. We use broader term anomalies to encompass any unexpected
behaviors of software code instead of bugs or vulnerabilities. Further
explanation is provided in Section 2.2.

[13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26]. However, it is difficult to conduct a thorough
evaluation of these tools due to the lack of large-scale
datasets of smart contracts with diverse anomalies. Note
that existing evaluations mainly rely on handwritten contracts
(i.e., contracts that are manually constructed by researchers
according to the characteristics of known anomalies) [27],
[28], [29], [30], [31]. Unfortunately, such anomalistic smart
contracts have the following problems:

• Lack of real business logic. Since these manually con-
structed contracts are only used for assessing the
performance of anomaly detection, they are usually
different from real-world contracts in terms of the
statement types, control structure types, and pro-
gramming patterns, etc. For instance, libraries are
widely used to create real-world contracts, whereas
they are rarely used in handwritten contracts. Conse-
quently, such handwritten contracts cannot be utilized
to truly verify the performance of analysis tools on
detecting anomalies in real-world contracts.

• The code size of contracts is generally small. By in-
vestigating 5 widely used datasets with handwritten
contracts (i.e., [27], [28], [29], [30], [31]) and a dataset
with 66,208 real-world contracts collected by us, we
find that the average number of loc (line of code)
per handwritten contract is 42, in comparison to 376
loc per real-world contract. Such small contracts may
lead to biased results when they are used to assess
the effectiveness and efficiency of analysis tools for
processing real-world contracts.

• The number of contracts with diverse anomalies is inad-
equate. The datasets with handwritten contracts usu-
ally have a small number of samples (around 100
contracts). When it comes to each type of anomalies,
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the contracts that contain certain anomalies are much
sparser. Hence, the experimental results upon such
a small number of contracts with insufficient and
unbalanced types of anomalies would be biased.

The above problems greatly challenge users to find out
the true performance of analysis tools on real-world con-
tract anomaly detection. An effective way to address the
above problems is to inject anomalies into the real-world
contracts and automatically label the locations and types of
the injected anomalies. Researchers have made efforts in this
area [32], [33], among which Ghaleb et al. [33] proposed
the first and only Ethereum smart contract bug/anomaly
injection tool, SolidiFI. It uses three ways (i.e., insert full
anomalistic code snippets, code transformation, weakening secu-
rity mechanisms) to inject anomalies into all possible loca-
tions in a contract. By investigating SolidiFI, we found that
the SolidiFI methodology has the following three limitations:

1) The anomalies injected by SolidiFI lacks authenticity.
SolidiFI claims that it uses three ways to inject
anomalies into the contracts. However, according to
our investigation (we used SolidiFI to inject 10,627
anomalies into 323 randomly selected real-world con-
tracts), most of the anomalies are injected by insert-
ing pre-made full anomalistic code snippets into the
contracts, without taking into account the contracts’
original structures (the structures we refer to here are
the structures such as variables or parameters in the
contracts).

2) SolidiFI can only inject a limited number of anomalies.
Most of the anomalies injected by SolidiFI are du-
plicates of pre-made code snippets. For example,
our experiments (Section 4.4) found that, although
SolidiFI claimed that it injected 1,737 integer overflow
and underflow anomalies into 50 contracts, in fact
these anomalies are just duplicates of 40 pre-made
code snippets.

3) SolidiFI may fail to accurately inject anomalies. Cer-
tain anomalies injected by SolidiFI cannot be ex-
ploited by any attacker. For instance, in a code
snippet inserted by SolidiFI like Listing 1, Solid-
iFI does not insert any statement into the con-
tract to modify the value of the variable re-
deemableEther re ent11 (declared in line 1). This
makes redeemableEther re ent11[msg.sender] keep the
initial value (0) unchanged and the require-statement
(line 4) always throws an exception. It eventually
invalidates the injected anomaly (line 6).

To address the above limitations, we propose SCAnoGen-
erator2, an anomaly injection approach for Ethereum smart
contracts. SCAnoGenerator first collects real-world contracts
and extracts control and data flows from the real-world
contracts. Then, it checks whether the contracts are suitable
for anomaly injection by analyzing their control and data
flows. If that is the case, SCAnoGenerator identifies the
proper locations for anomaly injection in these contracts and
constructs the statements used to inject different types of

2. SCAnoGenerator means smart contract anomaly generator, https:
//github.com/Our4514444/SCAnoGenerator

anomalies. Eventually, up to 20 types of anomalies can be
injected into the contracts by SCAnoGenerator.

1 mapping ( address=>uint ) redeemableEther re ent11 ; // S o l i d i F I
l a b e l : 1oc −1 ,1 ength −8

2 func t ion claimReward re ent11 ( ) publ ic{
3 //ensure there i s a reward to give
4 requi re ( redeemableEther re ent11 [msg . sender ]>0) ;
5 uint t r a n s f e r v a l u e r e e n t 1 1 = redeemableEther re ent11 [msg

. sender ] ;
6 msg . sender . c a l l . value ( t r a n s f e r v a l u e r e e n t 1 1 ) ( ”” ) ; // t h i s

l i n e causes the anomaly
7 redeemableEther re ent11 [msg . sender ] = 0 ;
8 }
9

10 event Transfer ( address indexed from , address indexed to ,
u int value ) ;

Listing. 1:An example of incapability of SolidiFI to accurately
inject and precisely label anomalies, where the variable
redeemableEther re ent11 (line 1) is simply defined and cannot
be modified in the next statements, which leads to the
inaccuracy of the inserted anomaly (line 6).

1 pragma s o l i d i t y 0 . 5 . 1 ;
2

3 c o n t r a c t sGcanInjectThisAno Base{
4 uint256 publ ic number = 0 ;
5 func t ion overflowHere ( uint256 amount ) i n t e r n a l{
6 uint256 tempNumber = number + amount ;
7 //SCAnoGenerator changes the fol lowing statement to a

comment .
8 //requi re ( tempNumber >= number && tempNumber >= amount ) ;
9 number = tempNumber ; //So SCAnoGenerator i n j e c t s t h i s

anomaly .
10 }
11 }
12

13 c o n t r a c t sGcanInjectThisAno i s sGcanInjectThisAno Base{
14 func t ion e x p l o i t ( uint256 amount ) e x t e r n a l{
15 overflowHere ( amount ) ;
16 }
17 }

Listing. 2:An integer overflow and underflow anomaly injected
by SCAnoGenerator, turning the require statement on line 8 into
a comment, which invalidates the function overflowHere over
the variable tempNumber.

Our primary contributions are fourfold:

1) We propose an approach called SCAnoGenerator to
automatically inject anomalies into Ethereum smart
contracts. Based on this approach, we implement an
open-source tool which can inject up to 20 types of
anomalies into contracts. Given a contract, by ana-
lyzing the contract’s control and data flows, SCAno-
Generator can ascertain which types of anomalies
are suitable to be injected into the contract. In other
words, this functionality empowers SCAnoGenerator
to inject anomalies by slightly modifying the con-
tract. Besides, SCAnoGenerator leverages the struc-
tures (e.g., variables, functions, basic structures,
etc.) of the original contracts to construct the state-
ments to be inserted into the contract and identifies
the proper anomalistic statement injection locations
(this makes the locations and style of the anomalies
injected by SCAnoGenerator vary with the contracts).
Hereby, SCAnoGenerator can inject more logical and
hard-to-find anomalies into the contracts (e.g., the
integer overflow and underflow anomaly shown in
Listing 2).

2) We conduct extensive experiments to evaluate
SCAnoGenerator. The experimental results show that

https://github.com/Our4514444/SCAnoGenerator
https://github.com/Our4514444/SCAnoGenerator
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SCAnoGenerator can effectively inject more types of
anomalies with higher accuracy and authenticity,
compared to SolidiFI. For instance, SCAnoGenerator
shows equal or higher anomaly injection accuracy
than SolidiFI for all the 7 comparable types of
anomalies.

3) We evaluate a group of state-of-the-art analysis
tools [34], [35], [36], [37], [38], [39] by using the
anomalistic contracts generated by SCAnoGenera-
tor. The detection results show that these analysis
tools can only detect 37.3% anomalies injected by
SCAnoGenerator. In contrast, these detection tools
only missed 49.4% of anomalies injected by SolidiFI.
This validates that SCAnoGenerator can be used to
uncover more weaknesses in analysis tools.

4) By means of SCAnoGenerator, we generate and re-
lease the following 3 public datasets3.Table 3 in
Section 4 shows the basic statistics of the contracts
(i.e., average and media size (LoC), numbers of
functions, function modifiers and received transac-
tions per contract [40]. We also employ box-plots
to describe the distribution of received transactions
per contract among the datasets in Fig 2.

• Dataset 1: dataset 1 is a set of simulated
anomalistic contracts which has been manu-
ally evaluated by human experts. This dataset
consists of 964 anomalistic contracts cover-
ing 20 types of anomalies. These anomalistic
contracts have been thoroughly examined by
three contract debugging experts. Almost 74%
of the contracts in dataset 1 support Solidity
0.5.x and the median value of the contract
version is 0.5.2.

• Dataset 2: This dataset comprises 4,744
anomalistic contracts covering 20 types of
anomalies, which have not been manually
verified. Although the contracts in dataset 2
have not been manually verified, according to
our experimental results on dataset 1 (the con-
tracts of which are randomly selected from
dataset 2), more than 97% of the anomalies
injected by SCAnoGenerator are accurate Al-
most 68% of the contracts in dataset 2 support
Solidity 0.5.x and the median value of the con-
tract version is 0.5.3. Researchers may employ
datasets 1 and 2 as the benchmark to assess
the performance of analysis tools for anomaly
detection.

• Dataset 3: This dataset contains 66,208 real-
world contracts without injected anomalies.
Users can use the contracts in dataset 3 as the
source for anomaly injection, that is, gener-
ating anomalistic contracts without worrying
about real-world contracts collection. Almost
30% of the contracts in dataset 3 support So-
lidity 0.5 x or higher and the median value of
the contract version is 0.4.23.

3. Users can access these three datasets by visiting https://github.
com/Our4514444/SCAnoGenerator-benchmark

The rest of this paper is organized as follows: Section 2
introduces the background. Section 3 presents our approach,
SCAnoGenerator. Section 4 describes the experimental re-
sults of SCAnoGenerator. We outline discussion including
limitations and potential threats to the validity of SCAno-
Generator in Section 5. After introducing the related work
in Section 6, we conclude the paper with future work in
Section 7.

2 BACKGROUND

This section introduces the basic concepts used in the paper.
First, the concepts of Ethereum smart contract and Solidity
are described in Section 2.1. Then, Section 2.2 introduces
anomaly, bug and vulnerability. Additionally, smart contract
anomaly detection criteria is introduced in Section 2.3. Fi-
nally, the 20 types of anomalies handled by SCAnoGenerator
are detailed in Section 2.4.

2.1 Ethereum smart contract and Solidity
Users deploy smart contracts by sending contract bytecode
to Ethereum through transactions. A transaction is a mes-
sage that is sent from one account to another account (which
might be the same or empty). In Ethereum, each contract or
user is assigned a unique address as their identifiers. Ether is
the default cryptocurrency of Ethereum. Both contracts and
users can trade Ethers. Solidity [41] is the most widely used
programming language for developing Ethereum smart
contract. Users can employ Solidity to develop contracts. A
compiler is then utilized to generate the contracts’ bytecode.
Solidity is a fast-evolving language. New versions of Solid-
ity with breaking changes are released every few months.
When developing a contract, developers need to specify the
employed Solidity version, so as to use the proper compiler
to compile the contract. Solidity assigns a function selector
to each function. The function selector is the first four bytes
of the keccak-256 hash of the signature of the function, it is
used to identify the function to be called. It is worth noting
that in a few cases, different functions will be assigned the
same function selector (i.e., hash collision). The overridden
function has the same function selector value as the over-
riding function. Solidity supports (multiple) inheritance. Its
official compiler (solc) can specify linear inheritance orders
from base contracts to derived contracts. Solidity provides
require-statement and assert-statement to handle errors. When
the parameters of these two types of statements are false,
require-statement or assert-statement will throw an exception
and rollback the results of program execution.

2.2 Anomaly, bug and vulnerability
An anomaly refers to an unusual situation that does not
conform to expected behavior or norms [42]. It can be
caused by software errors, hardware failures, atypical user
actions, or other unexpected factors. The scope of anomalies
is relatively broad, which can include various situations that
do not match the expected behavior. A bug refers to a known
problem or defect in computer software or systems that
prevents the program from working as expected. It can be
caused by programming errors, logic errors, syntax error, or
other implementation problems. Compared to an anomaly,
a bug is usually caused by human error or negligence and
have a more specific scope. A vulnerability refers to a flaw

https://github.com/Our4514444/SCAnoGenerator-benchmark
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in computer software, systems, or networks that may be
exploited by an attacker to gain unauthorized access, obtain
sensitive information, or perform malicious operations [42].
Compared to anomalies and bugs, vulnerabilities involve
system security and potential malicious exploitation [43],
thus having a more specialized scope. Here we use anomaly
as an umbrella term to encompass any unexpected behavior
instead of bug or vulnerability in this paper.

2.3 Smart contract anomaly detection criteria

A number of smart contract anomaly/bug classification
frameworks and corresponding detection criteria have been
proposed [16], [44], [45], [46], [47], [48]. Among them, our
previous work [45] proposes a comprehensive smart con-
tract anomaly classification framework by extending the
IEEE Standard Classification for Software Anomalies [48], which
summarizes 49 types of bugs and their severity levels.
Besides, this work [45] also proposes a set of anomaly
detection criteria, i.e., a specific type of anomalies can be
found in a contract as long as the contract matches certain
characteristics. In this paper, we focus on how to inject
the 20 most severe anomaly types, such as re-entrancy and
integer overflow and underflow. Section 2.4 shows the name
of each anomaly type. The specific description and anomaly
detection criteria of each anomaly type can be found in [45].

2.4 Smart contract anomaly type

In this section, we describe the 20 types of anomalies tar-
geted by our study.

Transaction order dependence. Miners (individuals or
organizations that maintain the bitcoin network for the
benefit of bitcoin, in terms of confirming transactions and
package data) can decide which transactions are packaged
into the blocks and the order in which transactions are
packaged. This anomaly primarily impacts on the approve
function in the ERC20 token standard. It enables miners to
influence the results of transaction execution. If the results
of the previous transactions have an impact on the results
of the subsequent transactions, miners can influence the
results of transactions by controlling the order in which the
transactions are packaged.

Results of contract execution affected by miners. A
miner can control the attributes related to mining and
blocks. If the functions of a contract depend on these at-
tributes, the miner can interfere with the functions of the
contract. This anomaly causes miners to gain a competitive
advantage, which makes the contract’s function inconsistent
with the developer’s expectations.

Unhandled false exception. A contract can use low-level
call statements such as send, call, and delegatecall to interact
with other addresses. When a call built upon these low-
level call statements is abnormal, the call is not terminated
and rollback. Instead only false is returned. This anomaly
can cause a contract to be unable to learn and handle the
exceptions generated during the call, which may affect the
function of the contract.

Integer overflow and underflow. When a result exceeds
the boundary value, the result will overflow or underflow.
This anomaly can cause erroneous calculation results. If
these calculation results are used to represent the amount
of tokens (ethers), it will cause economic losses.

Use tx.origin for authentication. Solidity provides the
keyword tx.origin to indicate the initiator of a transaction.
It is not recommended to use tx.origin for authentication.
When an attacker deceives a user’s trust, the attacker can
trick the user into sending a transaction to a malicious
contract deployed by the attacker, and then the malicious
contract forwards the transaction to the user’s contract. At
this point, the originator of the transaction is the user, so the
attacker can be authenticated. This anomaly will allow the
attacker to pass the identity verification, which may affect
the function of the contract or cause economic losses.

Re-entrancy. When a call-statement is used to call other
contracts, the callee can call back the caller and enter the
caller again. This anomaly is one of the most dangerous
smart contract anomalies, which will cause the contract
balance (ethers) to be stolen by attackers.

Wasteful contracts. A contract that anyone can with-
draw the ethers is called a wasteful contract. The reason for
this anomaly is that the contract does not have authority
control over the withdraw ethers. This anomaly can cause
any user to take ethers from a contract, which would cause
economic losses.

Short address attack. When Ethereum packs transaction
data if the data contains the address type and the length of
the address type is less than 20 bits, subsequent data will
be used to make up the length of the address type. This
anomaly may cause the attacker to withdraw tokens (ethers)
equivalent to several times the number he requested.

Suicide contracts. Authority control must be performed
before a self-destructing operation; otherwise, the contract
can be easily killed by an attacker. This anomaly can cause
the contract to be killed by anyone, and affect the function
of the contract and cause economic losses.

Locked ether. If the contract can receive ethers, but
cannot send ethers, the ethers in the contract will be per-
manently locked. This anomaly will cause all ethers in the
contract to be permanently locked and will cause economic
losses.

Forced to receive ether. An attacker can force ethers to
be sent to an address through self-destructing contracts or
mining. The attacker can forcibly send ethers to a contract.
If the contract’s function depends on the contract’s balance
being at a certain value, the attacker can use this error to
affect or destroy the contract’s function.

Pre-sent ether. Malicious users can send ethers to the
address of a contract before the contract is deployed. If
the function of the contract depends on the balance of the
contract, then the pre-sent ether may affect the function of
the contract. The consequences of this anomaly are the same
as Forced to receive ether anomaly.

Uninitialized local/state variables. Uninitialized lo-
cal/state variables will be given default values (eg., the
default value of an address variable is 0x0, sending ethers to
this address will cause ethers to be destroyed). This anomaly
will increase the probability of developers making mistakes,
which may eventually lead to the contract’s function not
being consistent with the developers’ expectations.

Hash collisions with multiple variable length argu-
ments. Because abi.encodePacked() packs all parameters in
order, regardless of whether the parameters are part of an
array, a user can move elements within or between arrays.
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As long as all elements can cause different parameters to
produce the same hash value, which may affect the function
of a contract.

Specify function variable as any type. Function vari-
ables can be specified as any type through assembly code
(up to and including version 0.5.16). This anomaly may
cause a function variable to be assigned to any type, thus
bypassing the necessary type checking. This will increase
the probability of developers to make mistakes and may
affect the functionality of a contract.

Dos by complex fallback function. If the execution of
the fallback function consumes more than 2300 gas, send-
ing ethers to the contract using transfer-statement or send-
statement may fail. This anomaly can cause a contract to
be unable to receive some externally transferred ethers (the
ethers sent using the transfer-statement and send-statement),
which may cause economic losses.

Public function that could be declared external. De-
ploying a function with public visibility consumes more
gas than deploying a function with external visibility. If a
public function is not used in the contract, then declaring the
function as external can reduce gas consumption.

Non-public variables are accessed by public/external.
Solidity needs to specify the visibility of state variables,
of which internal and private specify that state variables
can only be accessed internally. However, using public or
external functions to access internal and private state variables
does not result in compilation errors. This anomaly causes
users to access externally invisible state variables by calling
public/external functions, which will affect the function of
the contract.

Nonstandard naming. Solidity specifies a standard nam-
ing scheme. Following the standard naming scheme will
make the source code easier to understand. Inconsistent or
confusing variable names can result in developers referenc-
ing the wrong variables, increasing the likelihood of errors
during execution. This anomaly will reduce the readability
and maintainability of the source code. When developers
review the code, they cannot quickly and accurately under-
stand the type of each identifier.

Unlimited compiler versions. In different versions of
Solidity, the same statement may have different semantics.
When writing contracts, the Solidity version should be
explicitly specified. In Solidity, the pragma keyword is used
to enable certain compiler features or checks. It instructs the
compiler to check whether its version matches the one re-
quired by the source code. This anomaly leads to a decrease
in the maintainability of the contract. In future versions of
Solidity, the same sentence may have different semantics.
Therefore, not specifying the specific compiler versions will
result in the inability to correctly understand the original
meaning of the code when reviewing the code in the future.

3 SCAnoGenerator
3.1 Overview of SCAnoGenerator
SCAnoGenerator is an automatic anomaly injection tool for
Ethereum smart contracts. It can inject 20 types of se-
vere anomalies into the source code of real-world contracts.
Specifically, SCAnoGenerator, extended from our previous
work [45], employs heuristic algorithms to create anomalies

in real-world contracts. It is worth mentioning that, similar
to SolidiFI, SCAnoGenerator employs predefined templates
to generate anomalies. The constructed anomalistic smart
contracts can be used to evaluate both source code and
bytecode based anomaly analysis tools.

The workflow of SCAnoGenerator is shown in Fig 1.
SCAnoGenerator first collects real-world contracts (performed
by ContractSpider introduced in Section 3.2). It then checks
whether a contract is suitable for injecting a certain type
of anomalies by analyzing the contract’s control and data
flows, and extracts the data required for injecting anomalies
(achieved by ContractJudgeAndExtractor presented in Section
3.4). According to the data extracted by ContractJudgeAn-
dExtractor required for anomaly injection, SCAnoGenerator
injects anomalies into the contract (implemented by Anoma-
lyInjector described in Section 3.5).
3.2 ContractSpider
The first step of SCAnoGenerator is to collect real-world con-
tracts as the sources for anomaly injection so that users do
not need to manually collect the contracts beforehand (of
course, SCAnoGenerator also supports injecting anomalies
into local contracts). We implement ContractSpider based
on [49], which is a parallel high-performance web crawler.
ContractSpider automatically collects contract source code
by crawling open-source real-world contracts websites (e.g.,
http://etherscan.io/), and then saves these source code as
Solidity files. Note that ContractSpider runs independently
of ContractJudgeAndExtractor and AnomalyInjector. Users can
run ContractSpider once to collect thousands of real-world
contracts, and then users can generate the required anoma-
listic contracts by running ContractJudgeAndExtractor and
AnomalyInjector according to their needs. In fact, Ethereum
does not provide an interface to enable the direct access to
all contracts. As a result, the repetitive crawling takes a lot of
manpower and time. Given our limited time and resource,
we collected (not selected) a total of 66,208 contracts (e.g.,
dataset 3., which is the biggest dataset in our experiment.
3.3 Construct a contract’s control and data flows
SCAnoGenerator analyzes the control and data flows of a
contract to check whether the contract is suitable for inject-
ing certain types of anomalies. Therefore, we first introduce
how SCAnoGenerator constructs the control and data flows
of the contract. In the process of injecting the 20 types
of anomalies, SCAnoGenerator uses the same method to
construct the contracts’ control and data flows.

Based on solc [50] and Slither [35], SCAnoGenerator con-
structs a contract’s control and data flows. Specifically,
SCAnoGenerator extracts all the function-call paths from a
(derived) contract to track the definitions and use of data
in each path. A function-call path refers to a sequence of
nodes, each of which denotes a function. Adjacent nodes
means that there is a one-way calling relationship between
these functions (i.e., the former function calls the latter one).

• Data flow: Using solc to compile a contract can gen-
erate the abstract syntax tree (AST) of the contract.
By analyzing AST, SCAnoGenerator obtains the fol-
lowing information: definition-use pairs [51] of data,
and linear inheritance orders. Based on the above in-
formation, SCAnoGenerator tracks the definition and
use of all the data.

http://etherscan.io/
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Fig. 1: SCAnoGenerator workflow, where a step name followed by * refers to a manual process. SCAnoGenerator(SG) contains
three steps. As described in Section 3.2, Step 1 (ContractSpider) is to crawl a real smart contract from the open source
Ethereum platform. Step 2 (ContractJudgeAndExtractor) is to formulate different extractors according to 20 different
anomaly types to determine what types of anomalies can be injected into the contract. Based on the result of Step 2,
Step 3 (AnomalyInjector) is designed to inject corresponding anomalies. The injection mechanisms of two typical types of
anomalies are described in Section 3.4 and 3.5, and the injection of the remaining 18 types of anomalies are summarized in
Table 1.

Algorithm 1 Contract CFG construction algorithm
Input: Contract’s source code SC
Output: function-call paths set P

1 Set P ← empty set // function-call paths set.
2 changeSolcVersionBySolc(SC) // Adjust solc version.
3 ContractAstSet C = getContractASTBySolc(SC)
4 foreach contractAst in C do

// from base contract to derived contract
5 callGraphSet CGS = getFuncCallGraphBySlither(SC)
6 CFGSet CFGS = getFuncCFGBySlither(SC)
7 contractPathSet CPS = getContractCFG(CGS, CFGS)
8 funcAndItsSelector = getFuncSelectorBySolc(contractAst)
9 P = P ∪ CPS // Add new function-call paths.

10 foreach path in P do
11 foreach (oldFunc, oldSelector) in path do
12 foreach (newFunc, newSelector) in funcAndItsSelector do
13 if newSelector == oldSelector then
14 if newFuncHeader == oldFuncHeader then

/* Override */
15 oldFunc is replaced by newFunc
16 end
17 end
18 end
19 end
20 end
21 end
22 return P

• Control flow: SCAnoGenerator generates a (derived)
contract’s CFG by using the control flow graph (CFG)
of each function and the function-call graph gener-
ated by Slither as well as the linear inheritance order
generated by solc. Algorithm 1 shows this process.
When a function (or function modifier) overrides the

same function (or function modifier) of the base con-
tract, SCAnoGenerator uses the following two steps
to identify the overridden function on the path and
replaces it with the overriding function: (1) If the
function selectors of these two functions are different,
SCAnoGenerator will consider that there is no func-
tion override. If not, SCAnoGenerator enters step 2. (2)
SCAnoGenerator reads the contract’s source code, ob-
tains the function headers (i.e., in the function defini-
tion, all parts before the function body are called the
function header) of these two functions, and analyzes
whether the headers are same. Inheritance exists in
Solidity, which means that a subclass may override
the method inherited from its parent class. In this
case, SCAnoGenerator considers that the derived class
function overrides the base class function.

After constructing the function-call paths, SCAnoGen-
erator needs to ensure that each path is feasible, which
can improve SCAnoGenerator’s anomaly injection accuracy.
However, using the existing program path feasibility de-
tection technology (e.g., symbolic execution [52]) to check
whether each path is feasible will bring a huge performance
burden and greatly reduce SCAnoGenerator’s anomaly in-
jection speed. Considering that SCAnoGenerator’s design
purpose is to help users build large-scale datasets of smart
contracts with diverse anomalies, SCAnoGenerator needs to
balance anomaly injection speed and anomaly injection ac-
curacy. Therefore, we choose a compromise solution. Some
studies [53], [54], [55] on the feasibility of program paths
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point out that interrelated conditional statements are the
main reason for the infeasibility of program paths. There-
fore, SCAnoGenerator replaces the conditional part of each
branch conditional statement on every path with an ever-
true expression to ensure the feasibility of the path. For the
reentrancy anomalies in the labeled dataset, the number of
ever-true expressions accounts for only 0.7% of conditional
statements. We calculated the proportion of the number of
lines of conditional statements that have been modified to
ever-true expressions in the total number of lines of con-
tracts that have been injected with re-entrancy anomalies,
which is about 0.7%. It is worth noting that these ever-
true expressions are randomly selected from a pre-prepared
collection and replacing conditional statement with ever-
true expression may affect the data flow or control flow of
the original smart contract to a certain extent. Meanwhile, to
ensure the difficulty in solving these ever-true expressions,
and to prevent some dynamically executed tools from easily
skipping the workload of condition judgment that should
have been executed, these expressions are made to be of
high complexity, involving several kinds of mathematical or
logical operations.

3.4 ContractJudgeAndExtractor

One problem of injecting anomalies by inserting fully
anomalistic code snippets into real-world contracts is that
it is difficult to inject a large number of different complex
anomalies. The reason is that triggering complex anomalies
often requires multiple operations (e.g., variable declaration
and initialization, variable state changes, and triggering
anomalies) and thus it is not easy to write a large number of
different code snippets containing complex anomalies. One
way to solve this problem is to only inject a certain type
of anomalies into the contract that is suitable for injecting
that type of anomalies. For instance, the contract (reentrancy)
shown in Listing 3 is a contract suitable for injecting re-
entrancy anomalies. SCAnoGenerator only needs to construct
a statement (e.g., the statement in line 16) and insert this
statement before the statement in line 18 to inject a re-
entrancy anomaly. Hence, SCAnoGenerator first checks if a
contract is qualified for being injected with a certain type of
anomalies.

1 pragma s o l i d i t y 0 . 6 . 2 ;
2

3 c o n t r a c t reentrancyBase{
4 mapping ( address=>uint256 ) balances ;
5 func t ion getMoney ( ) e x t e r n a l payable{
6 requi re ( balances [msg . sender ] + msg . value > msg . value ) ;
7 balances [msg . sender ] += msg . value ;
8 }
9 }

10

11 c o n t r a c t reentrancy i s reentrancyBase{
12 func t ion sendMoney ( address payable account ) e x t e r n a l{
13 sendMoney ( account ) ;
14 }
15 func t ion sendMoney ( address payable account ) i n t e r n a l{
16 // account . c a l l . value ( balances [ account ] ) ( ” ” ) ; re −entrancy

here
17 account . t r a n s f e r ( balances [ account ] ) ;
18 balances [ account ] = 0 ;
19 }
20 }

Listing. 3:A contract that SCAnoGenerator can inject a re-
entrancy anomaly.

ContractJudgeAndExtractor is designed to achieve this
goal. ContractJudgeAndExtractor takes in a contract collected
by ContractSpider, extracts the contract’s control and data
flows, and analyzes the control and data flows to check
whether a certain type of anomalies can be injected into
the contract based on the predefined extraction criteria. If a
contract is qualified for being injected with a certain type of
anomalies, ContractJudgeAndExtractor will pass the contract
and the data required for anomaly injection to Anomaly-
Injector; otherwise ContractJudgeAndExtractor will skip this
contract. It is noteworthy that for different types of anoma-
lies the internal workflows and the employed techniques of
ContractJudgeAndExtractor are distinct. In this paper, we use
two representative anomalies, namely re-entrancy and integer
overflow and underflow, as examples to describe in detail how
ContractJudgeAndExtractor works, and we briefly introduce
ContractJudgeAndExtractor(s) of the remaining 18 types of
anomalies in Table 1.

3.4.1 ContractJudgeAndExtractor for re-entrancy (CER)

According to [14], re-entrancy anomalies refer to reentrant
function calls which divert money in an unexpected way.
From The DAO [56] accident, a typical form of re-entrancy
anomalies is that the call-statement that does not specify a
response function is used to send ethers to the payee, and
the call-statement is executed before the deduct-statement (i.e,
the statement that deduct the number of tokens held by the
payee address). This allows the payee to withdraw several
times the same amount of ethers that he(she) deposited
into the contract and even drain the contract’s ethers. Since
SCAnoGenerator can insert the call-statements that do not
specify a response function to send ethers to payee , the
key to injecting re-entrancy anomalies is to find the deduct-
statements. To achieve it, SCAnoGenerator first locates the
variables that record the relationship between the addresses
and the number of tokens held by the addresses (we call
such variables as ledgers).

CER searches for the ledgers and deduct-statements of a
contract through the following steps:

• Step 1: CER searches for the deposit paths in the
contract. The deposit path refers to a function-call
path in the contract meeting the following con-
ditions: 1) The entry function of this path is a
public function declared as payable. 2) There is
at least one value increment operation on a map-
ping(address=>uint256) variable in this path. We call
the mapping(address=>uint256) variable as a potential
ledger. We call the set of all the potential ledgers in the
contract as a potentialLedgerSet.

• Step 2: CER searches for withdrawal paths in the
contract. The withdrawal path refers to a function-
call path in the contract meeting the following con-
ditions: 1) There is at least one value decrement
operation on a potential ledger in this path. We call
a potential ledger that meets this condition as a target
ledger. 2) There is at least one operation to send ethers
in this path, where the payee address needs to be the
same as the address of the value decrement operation
in the target ledger. We call the set of all the target
ledgers in the contract as a ledgerSet, and the set of
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TABLE 1: The ContractJudgeAndExtractor(s) and AnomalyInjector(s) of the remaining 18 types of anomalies

Anomaly type ContractJudgeAndExtractor AnomalyInjector

Transaction order
dependence

The contract (Con) needs to be developed based on ERC-20
token standard and contains the approve function

SCAnoGenerator (SG) invalidates security measures to allow the quota of
the approved address to be set from one nonzero value to another
nonzero value, and labels the assignment statement as an anomaly

Results of contract
execution affected

by miners

SG searches for the if-statements in Con that meet the
following conditions: the condition part of the if-statement is

one of the following types: bytes32, address payable, uint256 or address

SG replaces an operand in the condition part of the if-statement
with the following global variables: block.coinbase (address type),
block.coinbase (address payable type), block.gaslimit (uint256 type),

block.number (uint256 type), block.timestamp (uint256 type),
blockhash(block.number) (bytes32 type), and labels the if-statement

as an anomaly

Unhandled false
exception

Con needs to contain at least one of the low-level call statement
(i.e., call-statement, send-statement, and delegatecall-statement)

SG uses the following 2 ways to invalidate the security
measures of the low-level call statement: receiving the return
value but not checking the return value, or not receiving the

return value. SG labels the low-level call statement as an anomaly

Use tx.origin for
authentication

SG captures the address type variables assigned in the
constructor function (we call these variables ownerCandidate)

and then searches for bool expressions such as
(ownerCandidate ==(!=) address type variable) in the contract.
Con needs to contain at least 1 bool expressions that meets

the above conditions

SG replaces address type variable (non-ownerCandidate) in the
bool expression that meets the extraction criteria with tx.origin,

and labels the bool expression as an anomaly

Wasteful contracts

Con needs to contain functions with the following
conditions: the function’s visibility is public or external,
and the function needs to contain the statements that

can transfer out ethers

SG invalidates all statements in the above functions (including
the function modifiers) that may interrupt the execution of these

functions, and inserts a statement to transfer out all ethers of Con
at the end of the function (e.g., msg.sender.transfer(address (this.balance);).

Finally SG labels the statement that can transfer out ethers as an anomaly

Short address
attack

Con needs to contain functions that meet the following
conditions: 1) the visibility is external or public, 2) the

function needs to contain statements that can transfer out
ethers, and 3) the payee address and the number of ethers

transferred are provided by the function caller

SG invalidates all check statements (i.e., statements that check
msg.data.length) in the above functions (and the function modifiers),

and labels these functions as anomalies

Suicide contracts

Con needs to contain functions that meet the following
conditions: visibility is external or public, and functions

need to contain self-destruct-statements (e.g., suicide-statement
and selfdestruct-statement)

SG invalidates all statements in the above functions
(and the function modifiers) that may interrupt

execution or authenticate, and labels the
self-destruct-statements as anomalies

Locked ether Con needs to contain functions
declared as payable

SG invalidates all the statements used to transfer out
ethers in Con in the following 2 ways: setting the
number of transferred out to 0, or changing the

transfer-out-statements (i.e, send-statement, transfer-statement,
call-value-statement) to comments, and label the contract as

containing this type of anomalies

Forced to receive
ether

Con needs to contain at least 1 of the 3 types of statements:
if-statement, require-statement, or assert-statement that

meet the following conditions: the type of the condition part of
the statement is uint256, and at least one operand in the

condition part is uint256 literals

SG will replace the non-uint256-literals operand
in the condition part of the above statements with

address(this).balance, and label these statements as anomalies

Pre-sent ether. According to [45], Forced to receive ether anomaly and Pre-sent ether anomaly are the manifestations of the same type of anomalies in different periods. Therefore,
the ContractJudgeAndExtractor(s) of these 2 types of anomalies are the same. The difference is that the anomaly types labeled by the AnomalyInjector(s) of the 2 types of anomalies are different

Uninitialized
local/state
variables

Con needs to contain initialization statements for
local variables or state variables (non-constant-varibales)

SG invalidates the assignment part in the
initialization statement (e.g., uint num; //= 1;), and
labels the initialization statement as an anomaly

Hash collisions
with multiple

variable length
arguments

Con needs to contain functions that meet the following
conditions: 1) visibility is external or public, 2) functions contain

multiple array type parameters, and 3) function contains
the declaration statement for the bytes32 variable

SG re-assigns the bytes32 variables in the above functions to
keccak256(abi.encodePacked(para)), where the para are the array

parameters passed by the external callers, and then labels
the bytes32 assignment statement as an anomaly

Specify function variable as
any type Con needs to contain function type variables

SG inserts assembly-statements so that external attackers
can modify the type of function variables and then
labels the inserted assembly-statements as anomalies

Dos by complex
fallback function

Con needs to contain the fallback functions that meet
the following condition: the fallback function contains

statements that can transfer out ethers

SG inserts the statements at the end of the above fallback
functions (e.g., payee address.call.gas(2301).value(1)(””);),

where the payee address is the payee address
in fallback function. Then SG labels the fallback functions as anomalies

Public function that
could be

declared external
Con needs to contain functions with external visibility SG changes the visibility of the above functions

from external to public and labels these functions as anomalies

Non-public variables
are accessed by
public/external

function

Con needs to contain external/public functions
SG searches for whether the above functions contain access
operations to private/internal state variables with visibility.
If so, SG will label these access operations as anomalies

Nonstandard
naming

Con needs to contain at least 1 of the following
4 types of structures: function, function modifier,

event and constant variable

SG changes the naming of these structures to non-standard
form, and then modifies the naming of these structures in

Con. Then SG labels the declaration statements
of structures as anomalies

Unlimited compiler
versions Con needs to contain the pragma-solidity-statement

SG analyzes the pragma-solidity-statements to get the oldest
Solidity version that can compile the contract, and then
replaces the original pragma-solidity-statements with the

following statement: pragma solidity ∧ minimum Solidity version.
And SG labels the new pragma-solidity-statements as anomalies
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locations for all the value decrement operations in
the withdrawal path as a deductSet.

• Step 3: All variables in the ledgerSet can be regarded
as the ledgers in the contract and the deductSet that
records the locations of all deduct-statements.

If a contract’s deductSet is not empty, SCAnoGenerator
only needs to insert the call-statements for sending ethers in
front of all the locations in the deductSet to inject re-entrancy
anomalies into the contract. For instance, in the contract
shown in Listing 3, there exist both a deposit path (func
getMoney) and a withdrawal path (func sendMoney, func

sendMoney). The ledgerSet of this contract is {balances},
and the deductSet of this contract is {line 17}. SCAnoGenera-
tor only needs to insert a call-statement for sending ethers in
line 16 to inject a re-entrancy anomaly.

By analyzing the control and data flows of a contract,
SCAnoGenerator can construct the contract’s potentialLedger-
Set, ledgerSet, and deductSet. If a contract’s deductSet is not
empty, CER will pass the source code, payee addresses, and
deductSet of the contract to the AnomalyInjector of re-entrancy
for conducting anomaly injection.

3.4.2 ContractJudgeAndExtractor for integer overflow and
underflow (CEI)

According to [45], the characteristics of the integer over-
flow and underflow (IOA) anomaly are: Characteristic 1: The
maximum (or minimum) values that are generated by the
operands participating in the integer arithmetic statement
can exceed the storage range of the result. Characteristic 2:
The contract does not check whether the result is overflow
or underflow.

To construct the above characteristics, CEI needs to find
integer arithmetic statements fulfilling the following condi-
tions in a contract: Condition 1: The types of the operand
variables and the result variable are same. This condition
can ensure that the statement meets characteristic 1. Condition
2: In the integer arithmetic statement, at least one operand
variable is a parameter passed by the external caller. This
condition can ensure that the injected anomalies can be
exploited by external attackers.

1 l i b r a r y SafeMath{
2 func t ion add ( uint256 a , uint256 b ) i n t e r n a l pure re turns (

uint256 ){
3 uint256 c = a + b ;
4 /* I n v a l i d a t i n g s e c u r i t y measures */
5 //requi re ( c>=a , ” safeMath : addi t ion overflow ”) ;
6 re turn c ;
7 }
8 }
9

10 c o n t r a c t IntegerOverflow{
11 using safeMath f o r uint256 ;
12 uint256 publ ic t o t a l s t a k e ;
13 func t ion addstake ( uint256 amount ) e x t e r n a l{
14 t o t a l s t a k e = t o t a l s t a k e . add ( amount ) ; // I n t e g e r overflow

here
15 }
16 }

Listing. 4:How SCAnoGenerator invalidates security
measures.

We call the integer arithmetic statements that meet
condition 1 and condition 2 as target statements. As shown
in Listing 4, when a target statement is found (line 14),

SCAnoGenerator only needs to invalidate the corresponding
check statement (line 5, i.e., the statement used to check
whether the result is overflow or underflow) to inject an IOA
anomaly. CEI identifies the check statements based on our
following experience. Generally speaking, require-statements
or assert-statements are used to check the results of integer
arithmetic statements. Therefore, if the operands participat-
ing in the integer arithmetic statements are the parameters
of a require-statement or an assert-statement, CEI regards this
require-statement (or assert-statement) as a check statement.

CEI searches for the target statements and check statements
in the contract according to the following steps:

• Step 1: CEI searches for integer arithmetic statements
or statements that use library functions for integer
arithmetic. We call the set of search results as a
candidate.

• Step 2: CEI verifies whether each statement in the
candidate meets condition 1 and condition 2. We call
the set of statements in the candidate that meets the
two conditions as a target.

• Step 3: CEI checks each statement in the target and
finds the corresponding check statement by analyzing
the contract’s control and data flows, i.e., determin-
ing whether a check statement is in the same function
or the library function. We call the set of check state-
ments as an opponent.

When the target of a contract is not empty, SCAnoGen-
erator can inject IOA anomalies into the contract and pass
the source code, target, and opponent of the contract to the
AnomalyInjector of IOA.

3.5 AnomalyInjector
An AnomalyInjector receives a contract and the data required
for injecting a specific type of anomalies from its corre-
sponding ContractJudgeAndExtractor and performs anomaly
injection and labeling. An anomaly injection tool always
modifies the content of the contract. The less the anomaly
injection tool modifies the contract content, the more the
injected contract keeps its original structure. Hence, Anoma-
lyInjector will only slightly modify the contract as much as
possible.

According to the received data, the AnomalyInjector in-
jects and labels a type of anomalies by one of the following
means:

• Inserting statements that cause anomalies. Anomaly-
Injector inserts the statements that cause the specific
type of anomalies into the contract and labels the
anomalies in the insertion locations. SCAnoGenerator
will use the structures of the contract that are visible
in the current scope to construct the inserted state-
ments, so as to reduce the probability of compilation
errors and keep the style of the inserted statements
consistent with the original code of the contract.

• Invalidating security measures. AnomalyInjector first
invalidates the security measures in the contract,
followed by labeling the statements without security
protection as having anomalies. Generally speaking,
the security measures invalidated by SCAnoGenerator
are error-handling statements (e.g., require-statement
and assert-statement), such statements are usually
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used to check the contract state and roll back the
transaction when the contract state is abnormal.

In this paper, we use the AnomalyInjectors of re-entrancy
and integer overflow and underflow as examples to describe in
detail how AnomalyInjector works, these two AnomalyInjec-
tors use the aforementioned means to inject anomalies. And
we briefly describe the AnomalyInjector(s) of the remaining
18 types of anomalies in Table 1.

1 //e . g . , payee address : account
2 account . c a l l . value ( 1 ) ( ”” ) ; // S o l i d i t y 0 . 5 . x − 0 . 6 . x
3 account . c a l l {value : 1} ( ”” ) ; // S o l i d i t y 0 . 7 . x

Listing. 5:How SCAnoGenerator constructs call-statements
based on a payee address.

3.5.1 AnomalyInjector of re-entrancy (BIR)

BIR injects re-entrancy anomalies by inserting statements
that cause anomalies. CER passes the following information
to BIR: contract source code, payee addresses, and locations
of deduct-statements (deductSet). BIR uses the payee addresses
to construct the call-statements for sending ethers (as shown
in Listing 5) and inserts the call-statements in front of the
deduct-statements based on the deductSet. Finally, it labels
the lines where the call-statements are inserted as having
re-entrancy anomalies. For instance, in the contract shown
in Listing 3, SCAnoGenerator will insert a call-statement (i.e.,

account.call.value(1)(””)) in front of the code in line 18, and
label the inserted line as having a re-entrancy anomaly.

3.5.2 AnomalyInjector of integer overflow and underflow
(BII)

BII injects IOA anomalies by invalidating security measures.
CEI passes the following information to BII: contract source
code, target, and opponent. target contains the locations of the
statements that may cause IOA anomalies. opponent contains
the locations of check statements. BII invalidates all the check
statements (by changing the statements to comments) in
the opponent to make the statements in the target without
security protection. Next, BII labels the statements in the
target as having IOA anomalies. For instance, in the contract
shown in Listing 4, SCAnoGenerator will change the code
in line 5 to a comment (assuming the code in line 5 is not
commented), and then label the code in line 14 as having an
IOA anomaly.

4 EVALUATION

Comparing SCAnoGenerator with state-of-the-art tools, we
conduct extensive experiments to answer five research ques-
tions:

• RQ1: Can SCAnoGenerator accurately inject anoma-
lies ?

• RQ2: What is the usability of SCAnoGenerator?
• RQ3: Can users find more weaknesses in existing

analysis tools by using SCAnoGenerator?
• RQ4: Can SCAnoGenerator efficiently inject anoma-

lies?
• RQ5: Are the anomalies generated by SCAnoGenera-

tor reliable?

4.1 Tools used in the evaluation

We employ two types of tools: 1) State-of-the-art Ethereum
smart contract anomaly injection tools. To the best of our
knowledge, there is currently only SolidiFI available in this
area. We compare the performance of SCAnoGenerator and
SolidiFI. 2) State-of-the-art smart contract analysis tools. We
apply these analysis tools to detect the anomalistic smart
contracts generated by SCAnoGenerator and SolidiFI.

TABLE 2: Selected and excluded tools based on our selection
criteria

Selection criteria Tools that violate the criteria

Excluded

criterion 1 teEther,Zeus,ReGuard, SASC,
Remix, sCompile, Ether, Gasper, sFuzz

criterion 2 Vandal, Echidna, MadMax, VeriSol, ILF

criterion 3

EthIR, E-EVM, Erays, Ethersplay,
EtherTrust, contractLarva, FSolidM,

KEVM, SolMet, Solhint, rattle,
Solgraph, Octopus, Porosity, Verx

criterion 4 Osiris, Oyente, HoneyBadger

Selected Maian, Manticore, Mythril,
Securify, Slither, SmartCheck

The state-of-the-art smart contract analysis tools are col-
lected via two channels: 1) Analysis tools that have been
covered by the latest empirical review papers, i.e., [27],
[33]. 2) Analysis tools that are available on GitHub [57]. We
use the keywords smart contract security and smart contract
analysis tools to search in Github and select the twenty tools
with the highest numbers of stars from the search results.

Not all analysis tools are applicable for our evaluation.
We select analysis tools from the collected results based on
the following criteria:

• Criterion 1. It supports command-line interface so
that we can apply it to anomalistic contracts auto-
matically.

• Criterion 2. Its input must be raw Solidity source
code, rather than only considering EVM bytecode or
other intermediate representation.

• Criterion 3. It is an anomaly detection tool, i.e., this
tool can report types and locations of anomalies in
contracts.

• Criterion 4. It can analyse contracts written in Solidity
0.5.x (i.e., 0.5.0-0.5.16). This is because SolidiFI can in-
ject anomalies into contracts written in Solidity 0.5.0
and older versions, but SCAnoGenerator currently
supports injecting anomalies into contracts written in
Solidity 0.5.0 and subsequent versions. So, to ensure
fairness, we will use the contracts that are written in
Solidity 0.5.x for our evaluation.

According to the selection criteria, we finally select 6
analysis tools (Maian [38], Manticore [58], Mythril [36], Se-
curify [39], Slither [35], SmartCheck [34]) to detect anomalies
injected by SCAnoGenerator and SolidiFI. Table 2 lists the 6
selected tools.
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4.2 Dataset for evaluation and environment

We use 3 types of datasets to perform this evaluation, e.g.,
labeled and unlabeled dataset, datasetθ. We first employed
both SCAnoGenerator and SolidiFI to generate an injected con-
tract dataset. The original real-world contracts were sourced
from the Solidity 0.5.x contracts in dataset 3 described in the
introduction.

We then evaluated the anomaly injection performance
of the two tools by inspecting each contract in the injected
contract datasets. To ensure the fairness, we used SCAno-
Generator and SolidiFI to inject the same types of anomalies
into the same contracts to generate the dataset. In other
words, two contracts were generated based on each original
contract respectively by SCAnoGenerator and SolidiFI. It is
worth noting that, unlike SolidiFI, SCAnoGenerator cannot
inject arbitrary types of anomalies into a contract because
SCAnoGenerator only can inject a certain type of anomalies
into the real-world contracts that meet the predefined extrac-
tion criteria. Therefore, for each of the 7 types of anomalies
that can be injected by both SCAnoGenerator and SolidiFI, we
first used SCAnoGenerator to generate 50 injected contracts,
and then utilized SolidiFI to inject the same anomalies into
the same group of contracts. For each of the 13 types of
anomalies that can only be injected by SCAnoGenerator,
we used SCAnoGenerator to generate 50 injected contracts.
Finally, we obtain a dataset (i.e. the labeled dataset) com-
prising 896 injected contracts generated by SCAnoGenerator
and 322 injected contracts generated by SolidiFI. The in-
complete injected contract dataset results from the fact that
SCAnoGenerator could not find 50 qualified contracts from
dataset 3 for certain types of anomalies. Apart from the
labeled dataset, we also generate an unlabeled version of
the dataset (i.e., injected contracts without anomaly labels)
based on the labeled dataset for anomaly injection accuracy
and success evaluation of SCAnoGenerator and SolidiFI. We
combined both analysis tools and human experts for this
evaluation. This is because the existing analysis tools cannot
ensure 100% anomaly detection accuracy (which also results
from our motivation to design an anomaly injection tool
that can stimulate the current anomaly detection research).
These debugging experts did not participate in the design
and development of SCAnoGenerator. After completing SG
and uploading it to Github, we advertised the call for
participation on our lab website. After receiving a number
of applications and conducting the interview, we selected
3 debugging experts. All of them are skilled smart contract
developers who have an average of 3-4 years of experience
in smart contract development. A total of 3 experts partic-
ipated in the evaluation, which took about three months.
The debugging session of human experts contains two main
parts. First, after we used SCAnoGenerator and SolidiFI to
inject anomalies, we provided the injected but unlabeled
contracts to these experts to check if those contracts are
consistent with the basic facts, that is, whether the contracts
contain anomalies. If the answer is yes, they need to indicate
which lines of code have anomalies. Second, the annotated
dataset was provided to the experts to evaluate whether
the annotations are reasonable and validated according to
the locations of anomaly injection. Each expert’s evaluation
is independent here. More specifically, among the three

reviewers who checked the injected anomalies, when at least
two reviewers reported that an anomaly is reasonable, we
considered that the anomaly injection is effective. At the
same time, we used Fleiss’s Kappa (an extension of Cohen’s
Kappa) to evaluate the consistency among the experts’
opinions. Considering the workload issue, we randomly
selected 50 contracts’ inspection notes from the dataset
(labeled dataset and datasetθ) for statistics with a score of
0 or 1, where 0 represents that the anomaly in this contract
is invalid and 1 represents that the anomaly in this contract
is valid. After the score collection, we compiled the results
into a two-dimensional table (120 rows * 2 columns), where
120 rows represent the number of anomalies that can be in-
jected into 50 contracts, and 2 columns represent how many
experts give a score of 0 or 1 to a single anomaly in each row.
The Fleiss Kappa coefficient is 0.89, which indicates that
almost perfect agreement among these experts’ opinions.
To assess the usability of SCAnoGenerator(e.g., how generic
the used extraction criteria are for each anomaly type), we
expand the number of contracts to be injected. datasetθ is a
collection of 1,000 contracts coded in Solidity version 0.5.x
randomly selected from dataset 3. To sum up, we performed
experiments on labeled and unlabeled datasets to answer
RQ1, RQ3, RQ4 and RQ5. We performed experiments on
datasetθ to answer RQ2. These three datasets support Solid-
ity 0.5.x. The median versions of the labeled or unlabeled
dataset and the datasetθ are 0.5.2 and 0.5.12 respectively.
Other details can be found in Table 3.

To prove that our datasets (i.e., datasets 1,2 and 3)
represent “real-world” contracts [40], we use box-plots to
describe the distribution of received transactions per con-
tract among the datasets in Fig 2, where the y-axis is the
logarithm of the number of received transactions per con-
tract. It can be observed that the distribution is consistent
among these datasets. Due to relatively small numbers of
transactions, the width of the box charts of dataset 1 and 2
is slightly wider than that of dataset 3. 94.7% of contracts
receive about 8 transactions, which is consistent with Oliva
et al. [40]’s finding that 94.7% of contracts receive less
than 10 transactions. There are also a certain number of
abnormal values in the figure. This is because there are a
few contracts that can receive up to 10,000 of transactions.
Besides, we used Google BigQuery to calculate the creation
date of a contract (we view the timestamp of a block
where a contract was created as the creation date of the
contract). Specifically, we use the following SQL statement
SELECT DATE(block timestamp) FROM ‘bigquery-public-
data.crypto ethereum.contracts‘ WHERE address=’xxx’ for
querying the time of contract creation, where xxx is replaced
with the address of a contract in these datasets. Since the
time span of contracts in these three datasets is relatively
large, we calculate the creation date of contracts based on a
6-month interval. The time of contract creation in the dataset
starts from July 2018 to December 2020. The distribution of
the contracts in each interval is also shown in Table 3.

Our evaluation environment is built upon a desktop
computer with Ubuntu (18.04) operating system, AMD
Ryzen5 2600x CPU, 16GB memory, and NVIDIA GTX 1650
GPU.
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TABLE 3: Contract benchmark. Num represents the the number of contracts in the following dataset. LOC represents the
number of lines of code (including comments), F represents Functions, M represents Function Modifiers and Transactions
represents received transactions (average per contract). Contract creation date represents timestamp of a block where a
contract was created. For data (i.e., LOC, F+M and Transactions) containing two columns, the first column refers to an
average value and the second column refers to a median value.

Dataset Num LOC F+M Transactions Contract creation date
Jul-Dec 18 Jan-Jun 19 Jul-Dec 19 Jan-Jun 20 Jul-Dec 20

Dataset 1 964 545 318 54 37 3,107 8 2.40% 28.37% 2.40% 21.15% 45.67%
Dataset 2 4,744 565 351 52 38 4,202 8 3.90% 29.50% 5.40% 20.60% 40.60%
Dataset 3 66,208 376 205 35 24 5,878 9 4.10% 27.43% 6.78% 25.70% 35.99%
labeled 896 673 334 65 37 3,267 7 2.50% 25.70% 5.50% 22.00% 44.30%
datasetθ 1,000 566 327 52 38 1,620 7 4.00% 26.40% 8.40% 23.50% 37.70%

Fig. 2: The distribution of received transactions per contract
of dataset 1, 2 and 3

4.3 RQ1: Anomaly injection accuracy
We calculate the accuracy of anomaly injection as follows:

accuracyRate = (BIN − IABN)÷BIN (1)

where IABN represents the number of anomalies that cannot
be activated, and BIN represents the number of anomalies
injected by the anomaly injection tool. We calculate the value
of IABN by checking the following two aspects:

• whether the injected contract can be compiled. Since
the anomaly injection tool always modifies the con-
tent of the contract, we use solc of the original
contract to compile the injected contract. If there are
compilation errors in an injected contract, all the in-
jected anomalies in the contract are not deemed to be
activated.

• whether the injected anomalies can be exploited
by attackers and cause the expected consequences.
Three smart contract debugging experts manually
check each injected anomaly on the premise of know-
ing the locations and types of injected anomalies, and
reach a consensus through discussion. If an anomaly
cannot be exploited, it cannot be activated.

Result. In this experiment, we used the unlabeled ver-
sion of the dataset. A contract that cannot be compiled
indicates that the contract cannot be compiled to generate
corresponding ast files through running the corresponding
version of smart contract compiler solc. After making de-
tailed statistics, we can see that the anomalistic datasets

generated by SCAnoGenerator can be compiled by solc to
generate corresponding ast files. In contrast, not all anomal-
istic datasets generated by SolidiFI can be compiled by solc.
For example, among the 322 contracts, for Results of contract
execution affected by miners, 3 contracts failed to compile.
SolidiFI fails to compile in case a variable is not defined
but the variable is used. Of the 498 re-entrancy anomalies
injected by SolidiFI, only a small amount over 100 can be
validated by experts (See one of analysis in Fig 1). Some
extremely rare security measures (e.g., only one re-entrancy
anomaly injection of one contract cannot be validated by
human experts due to ReentrantLock) prevent the injected
anomalies generated by SCAnoGenerator from being vali-
dated by our human experts. Of the 1623 transaction order
dependency anomalies injected by SolidiFI, almost 405 can-
not be validated by experts (See one of analysis in Fig 6).
Table 4 shows the accuracyRate(s) of SCAnoGenerator and
SolidiFI for anomaly injection, where N/A means that the
anomaly injection tool is not designed to inject a type of
anomalies. We can see that SCAnoGenerator can inject more
types of anomalies with higher accuracy, compared with
SolidiFI. Specifically, SCAnoGenerator shows equal or higher
accuracyRate(s) than SolidiFI for all the 7 comparable types
of anomalies.

1 bool claimed TOD22 = f a l s e ;
2 address payable owner ToD22 ;
3 uint256 reward TOD22 ;
4 func t ion setReward TOD22 ( ) publ ic payable{
5 requi re ( ! claimed TOD22 ) ;
6

7 requi re (msg . sender == owner TOD22 ) ;
8 owner TOD22 . t r a n s f e r ( reward TOD22 ) ;
9 reward TOD22 = msg . value ;

10 }
11

12 func t ion claimReward TOD22 ( uint256 submission ) publ ic{
13 requi re ( ! claimed TOD22 ) ;
14 requi re ( submission < 10) ;
15

16 msg . sender . t r a n s f e r ( reward TOD22 ) ;
17 claimed TOD22 = true ;
18 }

Listing. 6:A transaction order dependence anomaly injected
by SolidiFI that cannot be activated

Analysis. By interviewing the debugging experts, we obtain
the main reasons for the injection failures of SolidiFI and
SCAnoGenerator. The main reason for the injection failures
of SolidiFI is that the inserted code snippets contain dead
code. e.g., Listing 6 shows a sample code snippet inserted
by SolidiFI. The original purpose of the code snippet is
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to inject a transaction order dependence anomaly into the
contract by switching the execution order between two func-
tions setReward TOD22 and claimReward TOD22. If claim-
Reward TOD22 is executed before setReward TOD22, the
statement in line 5 will throw an exception. However, since
SolidiFI does not assign a suitable value to the variable
owner TOD22, it causes that owner TOD22 keeps the default
initial value (0x0) and the require-statement in line 7 throws
an exception. This eventually results in the statements in
lines 8 and 9 turning into dead code and the executing
function setReward TOD22 becoming useless.

The main reason for the injection failures of SCAno-
Generator is the excessive security measures used in some
contracts. In some contracts, developers use multiple re-
dundant security measures to prevent anomalies. Although
SCAnoGenerator can invalidate most of the common security
measures (we obtain the common security measures for
each type of anomalies through extensive investigations),
some extremely rare security measures prevent the injected
anomalies from being activated. As the code in the Listing 7
shows, now we insert an anomaly statement on Line 7.
Line 1 declares a wallet variable of mapping type. Line 2
declares flag, and its default value is true. Under normal
circumstances, the money transfer operation can only be
performed when the flag is true. Before the money transfer,
the flag is changed to false. Only after the money transfer
is completed, the flag is reset to true. In fact, transfer has
already played the role of a protection contract, but the
declaration of flag has played the role of repeated protection.
We call flag a reentrancy lock. Now imagine a scenario:
when the attack contract calls this code segment, the money
transfer operation of Line 7 will transfer the ownership of
the contract to the external contract, but the flag at this time
is still false. Therefore, when calling the tranfer function
again, the flag is equal to false and cannot enter the function,
resulting in invalid anomaly insertion.

1 mapping ( uint => address ) w al le t ;
2 boolean f l a g = true ;
3 func t ion withdraw ( ) {
4 requi re ( f l a g == true ) ;
5 f l a g = f a l s e ;
6 requi re ( wa l le t [ address1 ] > 0) ;
7 address1 . c a l l . value (1 wei ) ; // I n j e c t e d anomaly
8 w al le t [ address1 ] −= 1 wei ;
9 f l a g = true ;

10 }

Listing. 7:A reentrancy anomaly injected by SCAnoGenerator

4.4 RQ2: Usability assessment

SCAnoGenerator relies on predefined extraction criteria for
each anomaly type to decide if a contract is qualified for
being injected with a certain type of anomalies. In this
section, we carry out usability assessments to understand
the capability of SCAnoGenerator to inject different types of
anomalies into contracts, so as to understand the general-
izability of the extraction criteria for each anomaly type.
We evaluate the usability of our method from two aspects:
1) how many anomalies (on average) can be injected in
each contract for each anomaly type; and 2) given a certain
number of contracts to be injected, how many contracts
meet the conditions for qualified injection of certain types
of anomalies?

We assess Aspect 1) in the following way:

averageAmount = (BIN − IABN)÷ CIN (2)

where CIN represents the number of contracts injected by
the anomaly injection tool for each anomaly type, and aver-
ageAmount represents the number of anomalies (on average)
can be injected in each contract for each anomaly type.

We measure Aspect 2) through the following metric:

successRate = CIN ÷BCIN (3)

where BCIN represents the total number of contracts to be
injected for each anomaly type, and successRate represents
the proportion of contracts meeting the injection conditions
for each anomaly type. The lower the successRate, the more
contracts required for anomaly injection, and more contracts
excluded from anomaly injection.

Result. In this experiment, we use datasetθ. Table 4
shows the averageAmount(s) and successRate(s) of SCAnoGen-
erator for anomaly injection. For averageAmount, we can see
that at least one anomaly is injected in each contract for each
anomaly type. For some anomaly types, such as Nonstandard
naming and Non-public variables are accessed by public/external,
using SCAnoGenerator can often inject the anomalies in
multiple places of a contract. For successRate, we find that
most contracts are excluded for anomaly injection for some
anomaly types like Transaction order dependence, due to the
effect of the predefined extraction criteria.

Analysis. We analyse the generalizability of the anomaly
injection criteria set by SCAnoGenerator from the aforemen-
tioned two aspects.

When evaluating how many anomalies (on average) are
injected in each contract for each anomaly type (i.e., aver-
ageAmount), we employ SCAnoGenerator to inject anomalies
to create a dataset with labels. SCAnoGenerator is based on
the analysis of the data flow and control flow of an injected
contract combined with the structure of the contract to inject
anomalies instead of arbitrary injection. It is found that the
selected contracts are with diverse lengths. SCAnoGenerator
needs to find the proper places from each contract to inject
anomalies according to the predefined extraction criteria. It
can also be computed based on the result of Table 4 that,
for certain types of vulnerabilities, about 85% of contracts
can be injected with more than 2 anomalies, and 47% of
contracts can be injected with more than 7 anomalies.

When evaluating how many contracts are included for
anomaly injection (i.e., successRate), we screen dataset 3 to
find Solidity 0.5.x-based contracts and randomly select 1000
contracts to form datasetθ. We then run SCAnoGenerator
to perform anomaly injection. An anomaly can only be
injected once the control flow and data flow of a contract
are analyzed, and it is determined that the contract meets
its corresponding injection conditions.

The main reasons why SCAnoGenerator excludes many
contracts for anomaly injection and has a relatively low
success rate are: 1) SCAnoGenerator has relatively strict stan-
dard to judge whether a certain type of anomalies can be
injected into a contract. It employs the original structures
of a contract (e.g., variables that have been declared and
visible in the current scope) to construct the anomalistic
statements to be inserted into the contract, which means
that it is able to inject a type of anomalies into a contract
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TABLE 4: The captureRate, speed, averageAmount and successRate of analysis tools when detecting anomalies injected by
SCAnoGenerator(SG) and SolidiFI(SF)

Anomaly type Injection tool accuracyRate speed averageAmount successRate

Transaction order dependence SG 96.0% 34.1 1.0 0.7%
SF 75.1% 0.5 29.2 26.7%

Results of contract execution affected by miners SG 100.0% 1.2 6.2 28.9%
SF 97.9% 1.7 30.6 33.5%

Unhandled false exception SG 100.0% 3.4 1.7 6.6%
SF 97.3% 0.6 30.6 33.1%

Integer overflow and underflow SG 98.1% 4.0 4.6 10.1%
SF 97.7% 1.2 28.4 37.2%

Use tx.origin for authentication SG 100.0% 4.1 2.3 6.9%
SF 81.9% 0.5 28.1 28.9%

Re-entrancy SG 96.7% 352.1 1.0 0.2%
SF 20.1% 0.4 29.3 7.7%

Wasteful contracts SG 98.0% 5.6 1.5 6.2%
SF 91.7% 0.8 24.7 27.8%

Short address attack SG 100.0% 17.1 1.0 3.0%

Suicide contracts SG 96.9% 209.8 1.0 3.0%

Locked ether SG 100.0% 3.9 2.1 11.0%

Forced to receive ether SG 100.0% 4.8 2.5 6.4%

Pre-sent ether SG 100.0% 5.1 1.9 5.9%

Uninitialized local/state variables SG 99.9% 0.7 15.3 25.1%

Hash collisions with multiple
variable length arguments SG 97.5% 84.0 3.9 0.5%

Specify function variable as any type SG 100.0% 1949.8 1.3 0.3%

Dos by complex fallback function SG 98.0% 61.2 1.2 1.0%

Public function that could be declared external SG 100.0% 1.3 7.1 19.0%

Non-public variables are accessed
by public/external SG 98.7% 0.9 28.6 44.8%

Nonstandard naming SG 99.8% 1.7 52.4 54.9%

Unlimited compiler versions SG 100.0% 7.2 1.9 51.7%

only if the contract is recognized as eligible for injecting
this type of anomalies. In other words, SCAnoGenerator
cannot inject arbitrary types of anomalies into a contract
and it cannot arbitrarily insert anomalies into contracts.
For some anomaly types, such as those with low success
rate of anomaly injection, the expected conductions are
inherently uncommon in most contracts. For example, for
the anomaly specify function variable as any type, SCAnoGen-
erator can inject this type of anomalies into a contract only
if the contract contains function type variables. However,
developers rarely use function type variables in contracts.
Therefore, the successRate and averageAmount are relatively
low. 2) The success rate of SCAnoGenerator is restricted
by the cardinality of contracts qualified for being injected
with each type of anomalies, so it is unwise to use fewer
contracts to generate anomaly datasets, given the limited
number of qualified contracts for each anomaly type. 3)
We conducted an analysis on the datasetθ containing 1,000
contracts. After excluding contracts with zero transactions,
the success rate of SCAnoGenerator is relatively high in the
contracts with a high number of transactions, indicating the
applicability of SG on popular contracts. For example, we
found that almost 14% of the total contracts receive 1000+

transactions, where 66.3% of the contacts can be injected
with anomalies. In contrast, 26.7% of the total contracts
receive 100+ transactions, where 56.6% of these contracts
can be injected with anomalies. In addition, the contracts
that do not receive transactions can also be injected with
anomalies, but the success rate is 10% lower than that of the
contracts that receive transactions. Based on these findings,
we reformulate the success rate calculation of SG, which is

successRate∗ = (BIN − IBN)÷BIN (4)

where IBN represents the number of anomalies that cannot
be calculated for successRate. We calculated the value of IBN
by checking the following three aspects, IBN has added Cat3
on top of IABN, the contracts in Cat3 are those that cannot
receive transactions or have zero transactions.

• The injected contract cannot be compiled, which
means all the injected anomalies in the contract are
not deemed to be activated.

• The injected anomalies cannot be exploited by hu-
man experts.

• The contracts are not suitable for anomaly injection,
which all the injected anomalies in the contract are
not deemed to be activated.
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We can see from the Table 5 that the average success rate
is 64% for SG and the average success rate is 67% for SF.
In addition, not all the anomalies injected by SG have a
lower success rate than SF, such as results of contract execution
affected by miners and wasteful contracts.

TABLE 5: The successRate* of analysis tools when detecting
anomalies injected by SG and SF

Anomaly type Injection tool successRate*

Transaction order dependence SG 50.0%
SF 60.0%

Results of contract execution SG 77.9%
affected by miners SF 77.9%

Unhandled false exception SG 71.2%
SF 79.6%

Integer overflowand underflow SG 76.2%
SF 79.1%

Use tx.origin forauthentication SG 76.9%
SF 78.4%

Re-entrancy SG 13.7%
SF 15.7%

Wasteful contracts SG 82.3%
SF 78.7%

Short address attack SG 83.3%

Suicide contracts SG 74.4%

Locked ether SG 80.0%

Forced to
receive ether SG 79.7%

Pre-sent ether SG 81.4%

Uninitialized local/
state variables SG 76.1%

Hash collisions with multiple
variable length arguments SG 72.5%

Specify function variable
as any type SG 70.1%

Dos by complex
fallback function SG 71.4%

Public function that could
be declared external SG 79.5%

Non-public variables are accessed
by public/external SG 77.0%

Nonstandard naming SG 76.3%

Unlimited compiler versions SG 76.8%

4.5 RQ3: Analysis tool based evaluation
We use the aforementioned 6 analysis tools to detect the
anomalies injected by SCAnoGenerator and SolidiFI. The
following formula is to calculate the ratio of anomalies
detected to anomalies injected:

captureRate = BDN ÷BAN (5)

where BDN represents the number of anomalies detected
by an analysis tool, and BAN represents the number of
anomalies that can be activated and injected by the anomaly
injection tool. A lower captureRate indicates the weaker
ability of an analysis tool to detect injected anomalies.
Generally speaking, the output of the analysis tool is the
type and location of the anomaly (in the form of line number
or line number interval). SCAnoGenerator can provide the
exact locations (i.e., line number) of the injected anomalies,
and SolidiFI can only provide loc and length of its injected
code snippet (the line number interval can be calculated by

loc and length). Therefore, to count the injected anomalies
captured by detection tools, we have developed capture
criteria (as shown in Table 6). When the type and location
of the injected anomaly reported by the detection tool meet
the capture criteria, we will count the injected anomaly as a
detected anomaly. We manually check the tools’ documents
to map the anomaly types that these tools can detect to the
anomaly types that SCAnoGenerator and SolidiFI can inject.
We install the latest versions of the analysis tools and set
the timeout value for each tool to 15 mins per contract and
anomaly type. It is worth noting that the original anomalies
in the injected contracts, i.e., those not generated by the
injection tools, do not affect calculating the captureRate.

TABLE 6: Injected anomalies that meet the following criteria
will be counted as detected anomalies

Analysis tool

line number line number
interval

line number (SG) line matching contains this line
number

line number
interval (SF)

falls within this
interval subset

Result. This experiment is on the basis of the labelled
dataset. Table 7 shows the captureRate(s) of SCAnoGenerator
and SolidiFI. In Table 7, we omit the captureRate(s) of an
anomaly injection tool in two cases: 1) This anomaly injec-
tion tool is not designed to inject a type of anomalies. 2)
A type of anomalies injected by this anomaly injection tool
cannot be activated. The experimental results of realRate(s)
show which anomaly injection tool will have the above two
cases when injecting which type of anomalies. * represents
that an analysis tool is not designed to detect a type of
anomalies. It can be seen from Table 7 that, compared to
the anomalies injected by SCAnoGenerator, the anomalies
injected by SolidiFI are easier to be detected by the detection
tools. We randomly selected 20% of injected contracts, used 6
detection tools to detect these contracts again, and manually
tracked their detection performance. The manual tracking
process means that 20% of the contracts participating in this
experiment are randomly selected to manually check the
results of the detection tool, that is, whether the results of
the tool conform to our basic fact of injecting anomalies (i.e.
whether the locations of the anomalies detected by the tool
are consistent with their actual locations in source code).
The whole process is also done by the experts. We found
that Slither achieved the best performance, which reports
97% of anomalies injected by SolidiFI and 68% of anomalies
injected by SCAnoGenerator. However, it also produced a lot
of false positives (56.2% of anomalies reported by Slither are
false positives). Mythril, Manticore, and Securify all exceeded
the timeout threshold when analyzing 65% of injected con-
tracts. However, when their runtime is within the timeout
threshold, they can detect 84% of the anomalies injected by
SolidiFI and 47% of anomalies injected by SCAnoGenerator.
These analysis tools can only detect at most 37.3% anomalies
injected by SCAnoGenerator, which means that analysis tools
cannot detect at least 62.7% anomalies injected by SCAno-
Generator. In contrast, these detection tools only missed at
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TABLE 7: The captureRate of analysis tools when detecting anomalies injected by SCAnoGenerator(SG) and SolidiFI(SF)

captureRate

Anomaly type Injection tool SmartCheck Slither Mythril Manticore Maian Securify

Transaction order dependence SG 0.0% * * * * 0.0%
SF 0.0% * * * * 4.8%

Results of contract execution affected by miners SG 7.4% 35.2% 1.8% 0.1% * *
SF 55.8% 100.0% 5.4% 8.9% * *

Unhandled false exception SG 26.2% 94.4% 0.2% * * 7.2%
SF 25.8% 100.0% 6.7% * * 19.4%

Integer overflow and underflow SG * * 1.0% 0.8% * *
SF * * 15.6% 10.2% * *

Use tx.origin for authentication SG 69.8% 72.6% * * * *
SF 70.6% 95.6% * * * *

Re-entrancy SG * 100.0% 14.5% 0.0% * 30.4%
SF * 96.4% 0.0% 0.0% * 31.2%

Wasteful contracts SG * 63.1% 0.7% * 0.0% 8.2%
SF * 98.4% 27.7% * 0.0% 20.4%

Short address attack SG * * * * * *

Suicide contracts SG * 76.3% 13.4% 0.0% 0.0% *

Locked ether SG 60.0% 78.0% * * 0.0% 0.0%

Forced to receive ether SG 85.7% 99.4% * 0.2% * 0.2%

Pre-sent ether SG 80.1% 99.4% * 0.0% * 0.0%

Uninitialized local/state variables SG * 71.9% * 0.0% * *

Hash collisions with multiple
variable length arguments SG * * * * * *

Specify function variable as any type SG * * 0.0% * * *

Dos by complex fallback function SG * * * * * *

Public function that could be declared external SG 0.0% 77.6% * * * *

Non-public variables are accessed
by public/external SG * * * * * *

Nonstandard naming SG * 82.2% * * * *

Unlimited compiler versions SG 100.0% 58.2% * * * 0.2%

most 49.4% of anomalies injected by SolidiFI. 62.7% or 49.4%
cannot be directly obtained from Table 7. We calculated the
sum of BAN and BDN when its capture rate is the highest.
For SG, the sum of BAN is 8,474, and the sum of BDN at
its maximum capture rate is 3,161. For SF, the sum of BAN
is 4,176, and the sum of BDN is 2,113 when reaching its
maximum capture rate. The experimental results of captur-
eRate(s) indicate that the use of SCAnoGenerator to evaluate
the detection tools can reveal more weaknesses of these
tools.

Analysis. We describe the performance of analysis tools
in detecting the injected anomalies and propose possible
directions for improvement.

The analysis tools based on pattern matching or feature
capture, represented by SmartCheck and Slither, show better
detection ability when detecting the anomalies injected by
SCAnoGenerator. This is because the tools based on pattern
matching or feature capture tend to achieve higher detection
speed (so they hardly reach the time out threshold) and
usually generate a lot of alerts. However, such tools also
tend to generate a large number of false positives, which
reduces the value of the generated detection results.

The analysis tools based on symbolic-execution, repre-

sented by Mythril and Maticore, show weaker anomaly de-
tection ability. This is because these tools exceed the timeout
threshold when analyzing many contracts. Although we set
a long timeout threshold (15 mins), symbolic-execution tools
need to take a much longer time to cover all the paths of the
contracts due to the high complexity of the injected contracts
generated by SCAnoGenerator. Besides, we found that even
in the case of no timeout, it is difficult for these tools to
find the complex anomalies (e.g., the re-entrancy anomalies
caused by the interaction among multiple functions from
multiple contracts). Our evaluation results are consistent
with the evaluation results of existing detection tools [27],
[59], [60], i.e., the performance of the current analysis tools
is far from meeting the security requirements of smart
contracts.

Based on our evaluation results, we believe that an ideal
detection tool should have at least two modules: the front-
end fast scanning module (e.g., pattern matching or feature
capture) module and back-end in-depth analysis module
(e.g., symbol recognition or fuzzing). The front-end module
should obtain information such as what types of anomalies
may be contained in the contract, and collect enough auxil-
iary information (e.g., path pruning conditions) for the back-
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end module. And the back-end in-depth analysis module
should narrow the search range (for symbolic execution) or
input space (for fuzzing) based on the information provided
by the front-end module, and improve the accuracy as much
as possible to obtain ideal detection performance.

It is noteworthy that there are still 4 of the 20 types of
anomalies injected by SCAnoGenerator that are not covered
by any analysis tool.

4.6 RQ4: Anomaly injection efficiency

We measure the injection time of SCAnoGenerator and Solid-
iFI when constructing the evaluation dataset. We calculate
the anomaly injection speed of SCAnoGenerator and SolidiFI
as follows:

speed = IT ÷BIN (6)

where IT represents the time it takes for the anomaly injec-
tion tool to inject anomalies. Note that we only count the
aggregated running time of ContractJudgeAndExtractor and
AnomalyInjector as IT rather than that of ContractSpider for
SCAnoGenerator.

Result. Table 4 shows the anomaly injection speed(s) of
SCAnoGenerator and SolidiFI (in seconds per anomaly). It can
be seen that the anomaly injection speed of SCAnoGenerator
generally lags behind that of SolidiFI.

Fig. 3: The proportion of the time for each stage of the
anomaly injection process

Analysis. We analyze the rationale for the lower
anomaly injection speed of SCAnoGenerator. There are two
reasons: 1) SCAnoGenerator spends substantial time running
solc and Slither. It needs to go through three stages to inject a
certain type of anomalies into a contract as aforementioned.
Running solc and Slither to generate auxiliary information is
the first stage. Constructing the contract’s control and data
flows and ascertaining whether the contract has a basis
for injecting a certain type of anomalies is the second stage.
Injecting a certain type of anomalies into the contract is the
third stage. We measure the proportion of time taken for each
stage. The results are shown in Fig 3. It can be seen that the
running time of solc and Slither accounts for most of the
running time of SCAnoGenerator (83%). 2) Contracts suitable
for injecting different types of anomalies have different
scarcity levels in Ethereum. For instance, SCAnoGenerator
spends substantial time to inject a specify function variable as
any type anomaly. This is because SCAnoGenerator can inject
this type of anomalies into a contract, only if the contract
contains function type variables. However, developers rarely
use function type variables in contracts. According to the
statistics, SCAnoGenerator needs to extract average 21,603

contracts to find a contract suitable for injecting this type
of anomalies. In contrast, SCAnoGenerator only takes 209.8
seconds to inject a suicide contracts anomaly. This is because
self-destruct-statements are more common than function type
variables. SCAnoGenerator only needs to inject suicide con-
tracts anomalies by invalidating the security measures of
self-destruct-statements.

4.7 RQ5: Reliability of anomalies
This subsection is to verify the reliability of the anomalies
generated by SCAnoGenerator in a real environment. We
deploy the generated anomalistic contracts on Remix to
replay the transactions and assess if the injected anomalies
can be triggered. Transaction replaying refers to the input
with specific conditions to see whether the contract will
produce qualified output. Take the reentrancy in Listing 3 as
an example. We construct the Attack contract in the Listing 8.
First, we deploy the reentrancy contract to Remix and initial-
ize the storage of 2 ether. Then we deploy the Attack contract
and call the deposit function in line 8 to store 1 ether in the
reentrancy contract. Now we want to withdraw the money
we just deposited by directly calling the withdraw function
on line 11 to withdraw the money. When the reentrancy
contract transfers money to the Attack, the control of the
contract will be transferred to Attack, and the fallback func-
tion on line 17 in Attack will be triggered. However, since
sendMoney is called in the fallback function, all the balances
in the original contract are forced to be transferred to Attack.
By specifying practical input conditions, we verify whether
all the places of a contract where anomalies are injected may
trigger corresponding vulnerabilities. Considering the high
workload, we randomly sample 100 contracts from dataset 1
by following the distribution of each type of anomalies in
the dataset.

1 c o n t r a c t Attack{
2 reentrancy publ ic reen ;
3 mapping ( address => uint256 ) balances ;
4 c o n s t r u c t o r ( reentrancy reen ) publ ic payable {
5 reen = reen ;
6 balances [msg . sender ] += msg . value ;
7 }
8 func t ion deposi t ( ) publ ic payable{
9 reen . getMoney ( ) ;

10 }
11 func t ion withdraw ( ) publ ic{
12 reen . sendMoney (msg . sender ) ;
13 }
14 func t ion ba lance0f ( address depos i tor ) publ ic view re turns (

u int ){
15 re turn balances [ depos i tor ] ;
16 }
17 f a l l b a c k ( ) e x t e r n a l payable{
18 reen . sendMoney (msg . sender ) ;
19 }
20 }

Listing. 8:An example of reentrancy anomaly attack contract.

It is worth noting that the whole process is to upload a
contract onto Remix to carry on the execution of the contract
rather than actually executing the contract in the chain
environment. In Ethereum, transactions are the only way
to trigger status changes. As it is a simulation experiment,
we did not deal with the status of a contract or replay exact
transactions. Moreover, we did not send real transactions to
a contract. As for dealing with possible cross-contract calls,
taking re-entrancy as an example (Listing 8), we put the
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calling contract (attacker) and the called contract on Remix
at the same time to simulate and test contract anomalies.

Result. Table 8 shows the experimental result. The sec-
ond column represents the number of contracts sampled
for each anomaly type, The third column represents the
number of contracts that can reproduce the corresponding
vulnerability type, where * refers to no anomalistic contracts
being deployed (due to the high computational power re-
quirements). We found that 98% of the generated contracts
can trigger the corresponding anomalies in Remix.

Analysis. It can be seen that all the injected anomalies
are successfully triggered except for the Transaction order
dependence anomalies that are not deployed in Remix due
to its high computational cost. Miners can decide which
transactions are packaged into the blocks and the order
in which transactions are packaged. Therefore, when per-
forming experiments on this anomaly type, it requires an
attacker to behave as a miner to monitor whether there are
contracts on the network that depend on the transaction
order. However, although it is revealed in the experiment,
it is noteworthy that SCAnoGenerator may sometimes in-
validate the injected anomalies. For example, for unini-
tialized local/state variables, SCAnoGenerator invalidates
the assignment part in the initialization statement, which
may cause the assignment in the safeMath library to be
commented out. For Wasteful contracts, if a statement is
inserted after the selfdestruct statement to transfer out all
ethers (e.g., msg.sender.transfer(address (this.balance), then the
injected anomaly is also meaningless.

5 DISCUSSION

The motivation behind SCAnoGenerator is to evaluate the
performance of existing anomaly detection tools through
anomaly injection. In addition, its practical applications
include the following aspects. Firstly, SCAnoGenerator can
generate source code anomaly datasets, which can be used
to conduct research on other smart contract security work.
For example, it can guide code obfuscation work by simu-
lating various attacks and analysis techniques, helping de-
velopers understand the effectiveness of obfuscation strate-
gies in combating different types of attacks, and contin-
uously improving obfuscation methods. To clarify, while
SCAnoGenerator is primarily a fault injection tool, it can
be effectively utilized to simulate certain attack scenarios
by injecting specific vulnerabilities or malicious inputs into
smart contracts. By doing so, it allows developers to ob-
serve how these injected faults can manifest into potential
exploitative behaviors, thereby simulating the conditions
under which an attacker might attempt to compromise a
contract. Secondly, it can enhance smart contract testing.
Testers use these tools to simulate the behavior of attackers
and evaluate the robustness and quality of smart contract
test cases. Thirdly, researchers can use SCAnoGenerator to
explore and analyze new types of anomalies and their im-
pacts, thereby advancing security research and potentially
uncovering new vulnerabilities. Compared with SolidiFI,
SCAnoGenerator has obvious advantages in accuracy and
injection type. Firstly, SCAnoGenerator can inject more types
of anomalies. Secondly, SCAnoGenerator can inject more
accurate, authentic and logical anomalies. From the SolidiFI

TABLE 8: The information of the sampling dataset from
dataset 1

Anomaly type samplingNum reproNum

Transaction order
dependence 5 *

Results of contract execution
affected by miners 5 5

Unhandled false exception 5 5

Integer overflow
and underflow 5 5

Use tx.origin for
authentication 5 5

Re-entrancy 2 2

Wasteful contracts 5 4

Short address attack 5 5

Suicide contracts 4 4

Locked ether 5 5

Forced to
receive ether 5 5

Pre-sent ether 5 5

Uninitialized local/
state variables 5 4

Hash collisions with multiple
variable length arguments 4 4

Specify function variable
as any type 1 1

Dos by complex
fallback function 5 5

Public function that could
be declared external 5 5

Non-public variables are accessed
by public/external 5 5

Nonstandard naming 14 14

Unlimited compiler versions 5 5

injection results, we can draw a conclusion that the anomaly
injection of SolidiFI is not authentic. This is because only
pre-defined code fragments are used by SolidiFI to insert
fragments into a contract to complete the injection. There is
no consideration about the original structure of the contract,
which leads to the consequence that the anomaly fragments
injected by SolidiFI are mostly non-logical and more likely
to be detected. In contrast, SCAnoGenerator can more accu-
rately inject suitable anomalies that are more difficult to be
detected, which provides a more realistic and challenging
environment to evaluate detection tools. However, SCAno-
Generator has limitations and threats. In this section, we
discuss the Limitations and Threats to validity.

5.1 Limitations of SCAnoGenerator

The limitations of SCAnoGenerator originate from the follow-
ing three aspects:

• Restricted extensibility and limited types of injected
anomalies. So far we can employ SCAnoGenerator to
inject 20 types of anomalies into smart contracts,
which completely covers the 7 anomaly types that
SolidiFI can inject. It is acknowledged that there are
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more types of anomalies in Ethereum. However, our
research motivation is not to design an injection
tool that can inject all available types of anomalies.
Instead, we aim to develop a tool that can inject
more types of anomalies that are more logical and
difficult to detect. SCAnoGenerator anomaly injection
starts with selecting contracts that meet the injecting
conditions for specific anomalies. These conditions
are based on our study on smart contract anomalies.
Due to the limitation of our capacity, SCAnoGenerator
may not inject anomalies covering all known real-
world scenarios. To address this issue, we open
the source code of SCAnoGenerator and generated
datasets to promote collaboration and technical ad-
vance in this area. To support or extend a specific
type of anomalies, we can analyze it based on the
control flow graph constructed in Section 3.3, and
formulate ContractJudgeAndExtractor and AnomalyIn-
jector based on the control flow graph. For example,
byte[] is a new anomaly type [45], which can act as a
byte array, but it wastes 31 bytes of space for each el-
ement due to padding rules. Its solution is to use the
bytes type instead of bytes[] for less gas consump-
tion. When designing the ContractJudgeAndExtractor
of byte[], SCAnoGenerator searches for variables de-
clared as byte in contract, and AnomalyInjector will
replace byte type variable as byte[] and label this
statement as an anomaly. During this process, devel-
opers need to write the code of ContractJudgeAndEx-
tractor and AnomalyInjector to execute the injection
of byte[]. To alleviate this issue, we plan to develop
configuration files for vulnerability customization in
the next phase. In addition, building the CFG can
be modularized into a plugin. This plugin would
handle the analysis of data flow and control flow
within the contract, making it easier to integrate
and extend with new types of anomalies. The 20
types of anomalies that we target in this project are
the top-ranked anomalies in terms of severity and
popularity. We believe that it can meet the general
demand of most developers.

• Restricted capacity or versions in generating injected
contracts. SCAnoGenerator is able to inject a type of
anomalies into a contract only if the contract is rec-
ognized as eligible for injecting this type of anoma-
lies. In other words, SCAnoGenerator cannot inject
arbitrary types of anomalies into a contract, which
means that, given many contracts to be injected, the
successRate and averageAmount of SolidiFI injection
are higher than those of SCAnoGenerator. This is a
trade-off between authenticity and generation capac-
ity for injected contracts. However, as long as there
are enough real-world contracts, SCAnoGenerator can
generate the required number of injected contracts
with relatively high authenticity. In contrast, cur-
rently there is no dedicated external measures that
can improve the injected contract authenticity. Due to
timeliness issues, SolidiFI can support up to Solidity
0.5.12 and SCAnoGenerator can support Solidity 0.5.x,
0.6.x, 0.7.x. However, SCAnoGenerator is not fully
compatible with Solidity 0.8.x and higher because

its control or dataflow analysis module depending
on solc. We have identified that most anomaly types
listed in Table 1 are not affected by this version
limitation. However, there are specific anomalies that
are impacted. Firstly, Integer overflow and underflow.
Starting from Solidity 0.8.x, all arithmetic operations
(such as addition, subtraction, multiplication, and
division) default to checking for overflow and un-
derflow. If an overflow or underflow occurs, the
operation will automatically revert. Because SCAno-
Generator invalidates security check require or assert
to cause overflow and underflow, this injection may
fail. In Solidity 0.8.x, integer overflow and underflow
protection are enabled by default, which presents
challenges for adapting SCAnoGenerator to this ver-
sion. Secondly, Nonstandard naming. ContractJudge-
AndExtractor of SCAnoGenerator needs to contain at
least one of the following four types of structures:
function, function modifier, event and constant variable.
Starting from Solidity 0.8.x, constant is replaced by
immutable and constant to distinguish between im-
mutable and constant variables. This change may re-
sult certain immutable variables not being captured,
causing injection failure. To adapt to this version, the
tool needs to include the immutable keywords on top
of the above four types.

• Inadequate path reachability proof. Considering whether
each path can be reached after anomaly injection, we
design a compromise method, which is to use ever-
true expression to replace conditional statements in
Section 3.3. We quantified this threat by the propor-
tion of statements modified by ever-true statements
and provided the replacement rates of the 20 types
of anomalies injected by SCAnoGenerator in Table 9.
In a contract, ST represents the total number of
statements modified by the ever-true statements, and
TC TC represents the total number of conditional
statement branches. The calculation formula for re-
placeRate is shown in the formula 7. From this Table 9,
we can see that very few conditional judgment state-
ments are replaced. Therefore, the threat caused by
ever-true statement replacement is relatively minor.

repalceRate = ST ÷ TC (7)
5.2 Threats to Validity

We discuss the threats to the validity of SCAnoGenerator
from multiple aspects.

The potential threats to internal validity is that SCAno-
Generator can only inject 20 types of anomalies. Apart from
the 7 types of bugs supported by SolidiFI, we include 13 ad-
ditional types of anomalies by thoroughly evaluating their
severity and universality. Therefore, we believe that the se-
lected 20 types of anomalies are representative and critical.
There are more types of anomalies in Ethereum, which are
not supported by the current version of SCAnoGenerator. To
eliminate this threat, we plan to expand SCAnoGenerator to
cover more anomaly types. We also aim to design machine
learning based solutions to support data driven anomaly
learning and injection in the future.

The potential threats of external validity results from
three aspects. First, there are toy/ education /test contracts
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TABLE 9: The replacement rates of 20 types of anomalies
injections of SG.

Anomaly type replaceRate

Transaction order dependence 0.60%

Results of contract execution affected
by miners 0.38%

Unhandled false exception 0.54%

Integer overflow and underflow 0.38%

Use tx.origin for authentication 0.65%

Re-entrancy 0.80%

Wasteful contracts 0.40%

Short address attack 0.33%

Suicide contracts 0.46%

Locked ether 0.58%

Forced to receive ether 0.52%

Pre-sent ether 0.48%

Uninitialized local/state variables 0.60%

Hash collisions with multiple
variable length arguments 0.20%

Specify function variable
as any type 0.23%

Dos by complex fallback function 0.46%

Public function that could
be declared external 0.36%

Non-public variables are accessed
by public/external 0.54%

Nonstandard naming 0.65%

Unlimited compiler versions 0.44%

in the datasets. Liao et al. [25] defined a toy contract as a
smart contract that has not been previously invoked, as
genuine smart contracts are generally created for sending
transactions. Therefore, to identify if a smart contract is
more likely to be a toy contract, we check if the contract
was previously invoked and the number of transactions sent
to the contract is 0. We conducted a statistical analysis on
the transactions received by the contracts of the dataset and
found that 96.4% of contracts receive at least 1 transaction.
This indicates that most of the contracts are less likely to be
toy contracts. However, it is acknowledged that a contract
that received a single transaction is at a very high risk of
being a toy/education/test (i.e. irrelevant) contract. Second,
the numbers of labeled dataset and datasetθ are set to 50 and 1000
respectively due to the consideration of labor cost and time.
From a macro perspective, 50 contacts per anomaly type
∗ 20 anomaly types indicate that we have to review 1000
contracts to assess the injection results of SCAnoGenerator
and we also need to evaluate the injection results of SolidiFI
injecting into 322 contracts. It can be seen that we need to
manually review all the places where anomalies are injected,
and more than one anomaly is injected into a contract.
Therefore, after fully considering the time and labor costs,
we chose 50 contracts as the final experimental object. 1000
contacts are selected since SCAnoGenerator needs to search

for injectable contracts on a large scale and our evaluation
intention is to measure the anomaly injection capacity of
SCAnoGenerator in large contract sets. Moreover, SCAno-
Generator anomaly injection requires to run solc and Slither,
which is relatively time-consuming. In order to eliminate
this threat, we provide details of these datasets in Table 3
to prove the credibility. Third, the tools that SCAnoGenerator
relies on. SCAnoGenerator relies on two open-source tools
(i.e., solc and Slither) to construct a contract’s control and
data flows. The performance of these tools may also af-
fect the validity of SCAnoGenerator. Nevertheless, solc and
Slither are currently widely used open-source tools, which
are regularly maintained by dedicated organizations and
developers. This will reduce the impact of this threat.

The potential threat of construct validity derives the
repeatability of the evaluation. To verify the accuracy and au-
thenticity of the anomalies injected by SCAnoGenerator, three
smart contract debugging experts participated in our eval-
uation and manually identified anomalies. This may raise
the bar for other researchers to re-conduct the evaluation.
To alleviate this threat, we provide the evaluation datasets,
which allow researchers to completely repeat our evalu-
ation. Besides, we also provide SCAnoGenerator’s docker
image enabling researchers to easily use SCAnoGenerator for
new dataset generation.

The potential threat of conclusion validity comes from
the timeout threshold. To keep the time-consuming evaluation
within an acceptable range, if the time taken by an analysis
tool exceeds our preset timeout threshold, we will terminate
the execution of the tool and view it as an analysis failure.
The setting of the timeout threshold might cause our evalu-
ation results biased. To reduce the impact of this threat, we
investigate the average running time of these tools based
on the work in [27], [60] and set timeout threshold to 15
minutes. We have also increased the detection time of tools
to 30 minutes. We found that, even if the time is increased
by 15 minutes, there is no change in the results of static
detection tools (i.e., Slither and SmartCheck) and dynamic
tools (i.e., Manticore and Maian). For the remaining two
detection tools (i.e., Mythril and Securify), when we adjusted
the time to 30 minutes, Mythril’s captureRate on Integer
overflow and underflow, Re-entrancy and Specify function vari-
able as any type is not changed, and the captureRate on
the remaining anomaly types is increased by 2.4% in total.
Similarly, Securify’s captureRate on Locked ether and Pre-sent
ether is not changed, and the captureRate of the remaining
anomaly types is increased by 7.0% in total.

6 RELATED WORK

The section includes four parts: anomaly injection tools,
smart contract analysis tools, smart contract datasets and
exploiting smart contract anomalies.

6.1 Anomaly injection tools

Some researchers develop anomaly injection tools to build
large-scale vulnerable program datasets. Bonett et al. pro-
pose µSE [61], a mutation-based Android static analysis tool
evaluation framework. It systematically evaluates Android
static analysis tools through mutation analysis to detect
weaknesses of these tools. Their work validates the role of
anomaly injection tools in finding weaknesses in analysis
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tools. Pewny et al. propose EvilCoder [62], an anomaly injec-
tion tool that automatically finds the locations of potentially
vulnerable source code. It modifies the source code and
outputs the actual vulnerabilities. EvilCoder first employs
automated program analysis technologies to find functions
for anomaly injection. And then, it conducts possible attacks
by inserting statements or invalidating security measures.
Our work is inspired by EvilCoder. Dolan-Gavitt et al.
propose LAVA [63], an anomaly injection tool based on
dynamic taint analysis. LAVA can quickly inject a large
number of anomalies into programs to build a large-scale
corpus of vulnerable programs. In addition, LAVA can also
provide an input for each injected anomaly to trigger the
anomaly. Ghaleb et al. propose SolidiFI [33], which is the
first anomaly injection tool for Ethereum smart contracts.
SolidiFI injects anomalies into contracts by injecting code
snippets containing anomalies into all possible locations in
the contracts. They employ SolidiFI to inject 9,369 anomalies
of 7 types into 50 contracts. These contracts are then used
to evaluate 6 analysis tools. The evaluation results show
that these tools cause a large number of false positives and
false negatives. Hajdu et al. [32] use software-implemented
anomaly injection to evaluate the behavior of anomalistic
smart contracts, and analyze the effectiveness of formal
verification and runtime protection mechanisms in detecting
injected anomalies. However, these work except for [33]
cannot inject anomalies into Ethereum smart contracts, or
does not provide useable open-source tools.

6.2 Evaluating smart contract analysis tools
Some studies are devoted to evaluating the detection abil-
ities of smart contract analysis tools. Zhang et al. [45]
propose an Ethereum smart contract anomaly classification
framework and construct a dataset for this framework.
They utilize the constructed dataset to evaluate 9 analysis
tools and obtain some interesting findings. Chen et al. [64]
evaluate the performance of 6 analysis tools to identify
smart contract control flow transfer. They find that these
tools cannot identify all control flow transfers. To solve this
problem, they propose a more effective control flow transfer
tracing approach to reduce the false negatives of analysis
tools. Durieux et al. [27] conduct a large-scale evaluation
of 9 analysis tools upon 47,587 contracts. They find that
these tools would produce a large number of false positives
and false negatives. In addition, they present SmartAnoma-
lys [65], an execution framework that integrates 10 analysis
tools. Parizi et al. [59] evaluate 4 analysis tools using sev-
eral handwritten datasets. They think that SmartCheck can
detect the most anomalies, and Mythril has the highest ac-
curacy. The existing evaluations of Ethereum smart contract
analysis tools rely on either small-scale labelled handwrit-
ten datasets or unlabelled real-world contract datasets. This
makes it impossible to effectively and precisely evaluate the
real performance of analysis tools on anomaly detection.
The emergence of SCAnoGenerator is expected to solve this
dilemma.

6.3 Ethereum anomalistic smart contract datasets
Some organizations and researchers provide anomalistic
Ethereum smart contract datasets to show developers ex-
amples of various anomalies and provide benchmarks for

smart contract analysis tool evaluation. SmartContractSecu-
rity [29] provides a list of 36 types of Ethereum smart con-
tract anomalies and creates exemplary anomalistic contracts
for each type of anomalies. Crytic [30] provides an anomalis-
tic contract dataset covering 12 types of common Ethereum
security issues. However, most of the contracts in the dataset
have not been updated in the last two years. Zhang et
al. [45] provide an anomalistic contract dataset covering 49
types of smart contract anomalies. This dataset is currently
the largest handwritten dataset in terms of the number
(173) of contracts. Durieux et al. [27] create two datasets.
One contains 47,398 unlabeled real-world contracts. The other
comprises 69 labeled anomalistic handwritten contracts. Ac-
cording to the smart contract anomaly classification scheme
provided by DASP [66], they classify the anomalies in 69
contracts into 10 types. The labeled anomalistic contract
datasets provided by the above work all share the following
limitations: inadequate number of contracts, small contract
code size, and lack of real business logic in contracts.

6.4 Exploiting smart contract anomalies
Some studies are performed to find and exploit anoma-
lies in smart contracts. Jiang et al. [8] propose Contract-
Fuzzer, a smart contract fuzzing tool. ContractFuzzer gen-
erates fuzzing inputs and uses these inputs to run smart
contracts to trigger anomalies in smart contracts. Zhang et
al. propose ETPLOIT [67], a fuzzing-based smart contract
anomaly exploit generator. ETHPLOIT employs static taint
analysis to generate transaction sequences that can trigger
anomalies. It adopts a dynamic seed strategy to overcome
hard constraints in the execution paths. Feng et al. propose
SMARTSCOPY [68], an automatic generation tool for ad-
versarial contracts. SMARTSCOPY adopts techniques such
as symbolic execution to identify and exploit anomalies in
the victim’s smart contracts. Krupp et al. [69] provide the
definitions of vulnerable contracts. They present TEETHER,
which can generate exploits by analyzing the bytecode of
the contracts.

7 CONCLUSION AND FUTURE WORK

We propose a new approach, SCAnoGenerator, to automat-
ically inject 20 types of anomalies into Ethereum smart
contracts. We implement an anomaly injection tool, based
on this approach. Moreover, we conduct large-scale exper-
iments to evaluate SCAnoGenerator, and the experimental
results show that it can inject more types of anomalies than
state-of-the-art tools with higher accuracy and authenticity.
We also select 6 widely used analysis tools to detect the
anomalies injected by SCAnoGenerator. The experimental
results show that these tools cannot effectively detect most
of the anomalies injected by SCAnoGenerator. That is, the
anomalistic contracts generated by SCAnoGenerator can bet-
ter uncover the weaknesses of these tools. Finally, we use
SCAnoGenerator to construct 3 real-world contract datasets.

For future work, first, we plan to study how to im-
prove SCAnoGenerator into a flexible and extensible anomaly
injection framework. i.e., users only need to define some
rules, and then SCAnoGenerator just can inject a new type
of anomalies. Additionally, we will try to expand SCAno-
Generator to enable it to inject more types of anomalies.
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While the manual inspection provides essential expert vali-
dation for complex anomaly types, we are actively exploring
automated validation methods that could complement the
manual process. This would help enhance both scalability
and reproducibility in future iterations of our evaluation
framework, allowing for a more streamlined and objective
validation of injected anomalies without compromising ac-
curacy.
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