
Turing Trains
Rule-based management of a dynamic display of images

James Harland

Basic Idea
Imagine a computer screen divided into rectangular tiles, each of which displays a different image. A
"train" works its way across the screen tile-by-tile, according to some internal instructions of its own,
changing some images and leaving others alone, and changing direction as it sees fit. The aim of this
project is to explore the development of movies made in this manner, including experimenting with
tiles consisting of colours, photographs, or other visual images of interest (perhaps a live webcam?).
The internal logic of the "train" will be based on the well-known computing concept of a Turing
machine. At any particular point in time, the machine will be examining a single tile (which may be
thought of as the position of the train's engine). The machine will examine the tile, and according to a
set of rules internal to the machine, either leave it as it is, or change it for a different image. It will then
move in one of three directions (right, left or straight ahead) to another tile. The previous 10 or so tiles
that have been visited will be highlighted, so that the movement of the train and its "carriages" will be
simulated by the highlighting of recently visited tiles. Some potentially interesting trains may arise from
busy beaver Turing machines, which result in some surprisingly complex behaviour.

Scope
This is intended as a broad environment in which several different ideas can co-exist and bounce off
each other. Hence whilst here are plenty of different ways in which something like this could work, it is
intended that there not be a “received” or “superior” way of doing things. Hence anyone who is
interested is more than welcome to join in and try out ideas.

Getting Started
An example of the a transition between two tile configurations is given below. The first one shows the
path of a Turing train which is replacing blank squares (here a pale yellow) with images of Gandalf and
Aragorn alternately. As the “memory” or “carriage length” is 5, there are only the 5 most recent images
displayed. Hence in the next configuration, the oldest image, the one of Gandalf in the top left hand
corner, is no longer highlighted.

In order to work out what can and should be done here, the first tasks is to develop a very basic tool
which can be used to experiment with tile patterns and the like. This tool will allow the user to specify
a collection of images to be used on the tiles, including a blank image. In the example below, there are
three images (which we can label as 0, 1 and 2), with 0 being the blank image (in this case the pale
yellow tile), 1 being Gandalf (as it is the first non-blank image used) and 2 being Aragorn. As
experimenting with different images will be critical, there should be a side bar or something similar
displaying the current images in use (and which numbers they are, as changing the order in which they
are used may be significant). Once this tool has a way of displaying updated tiles, and a means for the
user to manually change tiles (such as clicking on them to change them), then some rudimentary
experiments can begin. Please note that this tool is very likely to follow a common pattern of research
software, which that it is used to work out what the detailed specification should be, and hence at some
point gets thrown away in favour of a better designed and fully functional version.

The train changes the blank square under the “engine” to Aragorn's image and moves to the tile on the
right. The updated position is shown in the second configuration.

http://en.wikipedia.org/wiki/Turing_machine
http://en.wikipedia.org/wiki/Turing_machine

Somewhere there should be a sidebar or similar with the images below. The idea is that the user can
change the images below and hence change what is displayed on each tile.

Using this mapping, the tile manager can view the above sequence of changes as follows, where the
Visited value specifies how many time steps have elapsed since the tile was visited.

First configuration:

Image 1 Visited: 5 Image 2 Visited: 2 Image 1 Visited: 1 Image 0 Visited: ??
Image 2 Visited: 4 Image 1 Visited: 3 Image 0 Visited: 0 Image 0 Visited: ??

0 1 2

Second configuration:

Image 1 Visited: 6 Image 2 Visited: 3 Image 1 Visited: 2 Image 0 Visited: ??
Image 2 Visited: 5 Image 1 Visited: 4 Image 2 Visited: 1 Image 0 Visited:0

This will also allow for machine control of the tiles, by having the Turing machine (or any other way of
determining a sequence of updates to tiles) merely specifying the number of the new image to be
displayed, together with which tile is to be replaced. This makes it simple to interpret a Turing machine
transition such as “If the input is 1, replace it with 2 and move right” as an instruction to change
Gandalf's image into Aragorn's.

Size controls
It is anything but clear what the best tile size is going to be, or what the best number of tiles per movie
should be. Hence it would be useful to be able to control both of these aspects with a slider or some
similar mechanism, as well as the overall size of the screen.

Capturing human moves
In order to experiment with sequences of image changes, a user will most likely find it helpful to click
around on a series of tiles and then have the system play them back. Hence a record facility would be
useful, in which the use would click a record button, indicate some sequence of image updates by
clicking on tiles, and then have the system play them back, at some default rate of say one change per
second. As with most things, it would be useful to have this as a slider of some kind, so that
experiments can be done with rates of playback and the like. A single-step mode would be useful as
well.

Automatically generated sequences
Once the user can generate their own sequences in this way, the next step is to provide a mechanism to
allow these sequences to be generated by a program. There are two main aspects to this: one is
providing an API or similar interface so that a some other application can generated sequences. The
other is to provide a mechanism for specifying a given Turing machine, and seeing what affect it would
have. Hence a simple Turing machine emulator will need to be written here, and interfaced with the tile
manager, so that a user can specify a Turing machine (for simplicity, in terms of the standard transition
quintuple of State, Input, Output, Direction and NewState). The main novelties here from a Turing
machine perspective are that there are now three possible directions to move (left, right, ahead), and
that moving off the edge of the screen will result in wrapping (so that moving right in any tile of the
rightmost column will move the “engine” to the leftmost column of the same row, and similarly for the
other boundaries). If a combination of state and input is encountered that is not covered by the
transitions given, the machine terminates.

At a later point, it would be useful to develop an interface which allowed a less mathematical way of
specifying transitions. It would also be interesting to develop less strict versions, such as a machine with
some random elements. However, these are a much lower priority to begin with.

Just in case it is relevant, it would seem that eventually a client-server architecture would be useful here,
with the server being the tile manager, which in principle could be serving many clients (ie Turing
trains) at once.

More Adventurous Ideas
Other directions that could be pursued include

● multiple Turing trains Having more than one train at a time allows for some interesting
effects in its own right, as well as some potentially more complex ones, such as what happens
when trains intersect. One possibility is to make colliding trains swap some of their internal

logic, so that neither is exactly the same again after the collision.

● randomized choices Turing machines in the busy beaver world are deterministic, ie they
behave the same way every time for the same input. There is a well-known variety of Turing
machine in which a choice needs to be made between transitions that may occur.. In this
application, it may be interesting to allow a random choice between the possibilities, or to allow
a random choice of replacement images or directions (or both) after a fixed number of moves
(say 25).

● dynamic tiles In the standard Turing machine environment, nothing changes unless the Turing
machine changes it. Here one could imagin the tiles change the images displayed autonomously
(or, if you like, according to some process of their own, including random selection). Even a
simplistic repetitive display of images may provide a sufficient level of nondeterminism, in that
the time takes for a given Turing train to arrive at a given trile is not always obvious in advance.

● changing multiple tiles Turing machines come bundled with the philosophy that only one cell
is changed at a time. Whilst this gives an obvious focus for changes, it may be interesting to
explore other means of changing tiles, including, for example, changing an entire row or
column of tiles at once. This will take some more intricate specification of the change to be
made, it may be a way to introduce some more spectacular visual effects

● greater context for changes Conway's Game of Life is based on the use of the properties of
neighbours to determine the next tile to be displayed. Introducing similar behaviour here may
be interesting, ie taking into account neighbouring tiles or other contextual properties (in a
manner similar to cellular automata). Wolfram's lengthy book A New Kind of Science has a
multitude of variations on this theme.

● manual changes A simple way to introduce some different behaviour is to allow the user to
change tiles manually while the train/s are running.

	Turing Trains
	Rule-based management of a dynamic display of images
	Basic Idea
	Scope
	More Adventurous Ideas

