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Part I

Large-Scale Black-Box Continuous Optimization
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Optimization

min f (x), x = (x1, . . . , xn) ∈ R
n (1)

s.t. : g(x) ≤ 0 (2)

h(x) = 0 (3)

Can be converted to unconstrained optimization using:

Penalty method;

Lagrangian;

Augmented Lagrangian.

Our focus is unconstrained optimization. We must learn how to
walk before we can run.
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Large Scale Global Optimization (LSGO)

How large is large?

The notion of large-scale is not fix.

Changes over time.

Differs from problem to problem.

The dimension at which existing methods start to fail.

State-of-the-art (EC)

Binary: ≈ 1 billion [a].

Integer (linear): ≈ 1 billion [b], [c].

Real: ≈ 1000-5000.

[a] Kumara Sastry et al. (2007). “Towards billion-bit optimization via a parallel estimation of
distribution algorithm”. In: Genetic and Evolutionary Computation Conference. ACM, pp. 577–584.

[b] Kalyanmoy Deb and Christie Myburgh (2016). “Breaking the Billion-Variable Barrier in Real-World
Optimization Using a Customized Evolutionary Algorithm”. In: Genetic and Evolutionary Computation
Conference. ACM, pp. 653–660.

[c] Kalyanmoy Deb and Christie Myburgh (2017). “A population-based fast algorithm for a
billion-dimensional resource allocation problem with integer variables”. In: European Journal of
Operational Research 261.2, pp. 460–474.
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The Challenge of Large Scale Optimization

Why is it difficult?

Exponential growth in the size of search space (curse of
dimensionality).

Research Goal

Improving search quality (get to the optimal point).

Improving search efficiency (get there fast).
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Large Scale Global Optimization: Evolutionary Approaches

1 Decomposition and Divide-and-Conquer

2 Hybridization, Memetic Algorithms, and Local Search

3 Sampling and Variation Operators

4 Approximation and Surrogate Modeling

5 Parallelization

6 Initialization
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Variable Interaction, Linkage, Epistasis

What is variable interaction?
Genetics: two genes are said to interact with each other if they collectively
represent a feature at the phenotype level.

The extent to which the fitness of one gene can be suppressed by another gene.

The extent to which the value taken by one gene activates or deactivates the
effect of another gene.
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Variable Interaction, Linkage, Epistasis

Illustrative Example

f (x1, x2) = x2
1 + λ1x

2
2

g(x1, x2) = x2
1 + λ1x

2
2 + λ2x1x2
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Problem Structure

x

f (x)

(a)

x1 x2

x3

x4x5

x6

x

f (x)

(b)
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Effect of Variable Interaction

Why variable interaction?

The effectiveness of optimization algorithms is affected by how
much they take variable interaction into account.

Also applies to classic mathematical programming methods.

In EC:

Problem decomposition / dimensionality reduction.
Rotational invariance.
Systematic local search in memetic algorithms.
More effective approximation and meta-modelling.
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Linkage Learning and Exploiting Modularity
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Scalability issues of EDAs

Accurate estimation requires a large sample size which grows
exponentially with the dimensionality of the problem [1].

A small sample results in poor estimation of the
eigenvalues [2].

The cost of sampling from a multi-dimensional Gaussian
distribution increases cubically with the problem size [3].

[1] Jerome Friedman et al. (2001). The elements of statistical learning. Vol. 1. Springer series in
statistics Springer, Berlin.

[2] Roman Vershynin (2010). “Introduction to the non-asymptotic analysis of random matrices”. In:
arXiv preprint arXiv:1011.3027.

[3] Weishan Dong and Xin Yao (2008). “Unified eigen analysis on multivariate Gaussian based
estimation of distribution algorithms”. In: Information Sciences 178.15, pp. 3000–3023.
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Implicit Methods

Space partitioning / dimensionality reduction

Model Complexity Control [1].
Random Matrix Projection [2].

Low-rank covariance estimation [3]

Heavy-tail sampling [4].

[1] Weishan Dong, Tianshi Chen, et al. (2013). “Scaling up estimation of distribution algorithms for
continuous optimization”. In: IEEE Transactions on Evolutionary Computation 17.6, pp. 797–822.

[2] Ata Kabán et al. (2016). “Toward large-scale continuous EDA: A random matrix theory
perspective”. In: Evolutionary Computation 24.2, pp. 255–291.

[3] Zhenhua Li and Qingfu Zhang (2017). “A simple yet efficient evolution strategy for large scale
black-box optimization”. In: IEEE Transactions on Evolutionary Computation; Ilya Loshchilov (2015).
“LM-CMA: An Alternative to L-BFGS for Large-Scale Black Box Optimization”. In: Evolutionary
Computation.

[4] Momodou L Sanyang et al. (2016). “How effective is Cauchy-EDA in high dimensions?” In: IEEE
Congress on Evolutionary Computation. IEEE, pp. 3409–3416.
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Explicit Methods

A large problem can be subdivided
into smaller and simpler problems.

Dates back to René Descartes
(Discourse on Method).

Has been widely used in many

areas:

Computer Science: Sorting
algorithms (quick sort,
merge sort)
Optimization: Large-scale
linear programs (Dantzig)

Image source:
https://medium.com/@gaurav_52429/divide-and-conquer-paradigm-in-algorithms-ef43fb2222f5
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Decomposition in EAs: Cooperative Co-evolution

Figure: Cooperative Co-evolution [1]

[1] Mitchell A. Potter and Kenneth A. De Jong (1994). “A cooperative coevolutionary approach to
function optimization”. In: Proc. Int. Conf. Parallel Problem Solving from Nature. Vol. 2, pp. 249–257.
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CC is a Framework

CC as a scalability agent:

CC is not an optimizer.

Requires a component optimizer.

CC coordinates how the component optimizer is applied to
components.

A scalability agent.
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Challenges of CC

Main Questions

1 How to decompose the problem?

2 How to allocated resources?

3 How to coordinate?
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The Decomposition Challenge

How to decompose?

There are many possibilities.

Which decomposition is the best?

Optimal decomposition

It is governed by the interaction structure of decision variables.

An optimal decomposition is the one that minimizes the
interaction between components.
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Overview of Decomposition Methods
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Illustrative Example (Canonical CC)

Figure: Variable interaction of a hypothetical function.

n 1-dimensional components:
C1: {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}
C2: {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}
...
Cc : {x1}, {x2}, {x3}, {x4}, {x5}, {x6}, {x7}

Not the best decomposition even for fully separable
functions [1].

[1] Mohammad Nabi Omidvar, Yi Mei, et al. (2014). “Effective decomposition of large-scale separable
continuous functions for cooperative co-evolutionary algorithms”. In: IEEE Congress on Evolutionary
Computation. IEEE, pp. 1305–1312.
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Illustrative Example (Exact Methods)

Figure: Variable interaction of a hypothetical function.

Finite Difference Methods and Monotonicity Detection

C1: {x1, x2, x4}, {x3, x5, x6, x7}
C2: {x1, x2, x4}, {x3, x5, x6, x7}
...
Cc : {x1, x2, x4}, {x3, x5, x6, x7}
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Monotonicity Check

∃ x, x ′i , x
′
j :f (x1, ..., xi , ..., xj , ..., xn) < f (x1, ..., x

′
i , ..., xj , ..., xn)∧

f (x1, ..., xi , ..., x
′
j , ..., xn) > f (x1, ..., x

′
i , ..., x

′
j , ..., xn)
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Monotonicity Check (Algorithms)

Linkage Identification by Non-Monotonicity Detection [1]

Adaptive Coevolutionary Learning [2]

Variable Interaction Learning [3]

Variable Interdependence Learning [4]

Fast Variable Interdependence [5]

[1] Masaharu Munetomo and David E Goldberg (1999). “Linkage identification by non-monotonicity
detection for overlapping functions”. In: Evolutionary Computation 7.4, pp. 377–398.

[2] Karsten Weicker and Nicole Weicker (1999). “On the improvement of coevolutionary optimizers by
learning variable interdependencies”. In: IEEE Congress on Evolutionary Computation. Vol. 3. IEEE,
pp. 1627–1632.

[3] Wenxiang Chen et al. (2010). “Large-scale global optimization using cooperative coevolution with
variable interaction learning”. In: Parallel Problem Solving from Nature. Springer, pp. 300–309.

[4] Liang Sun et al. (2012). “A cooperative particle swarm optimizer with statistical variable
interdependence learning”. In: Information Sciences 186.1, pp. 20–39.

[5] Hongwei Ge et al. (2015). “Cooperative differential evolution with fast variable interdependence
learning and cross-cluster mutation”. In: Applied Soft Computing 36, pp. 300–314.
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Differential Grouping

Theorem

Let f (x) be an additively separable function.

∀a, b1 6= b2, δ ∈ R, δ 6= 0, if the following condition holds

∆δ,xp [f ](x)|xp=a,xq=b1 6= ∆δ,xp [f ](x)|xp=a,xq=b2 , (5)

then xp and xq are non-separable, where

∆δ,xp [f ](x) = f (. . . , xp + δ, . . . )− f (. . . , xp, . . . ), (6)

refers to the forward difference of f with respect to variable xp with

interval δ [a].

[a] Mohammad Nabi Omidvar, Xiaodong Li, Yi Mei, et al. (2014). “Cooperative co-evolution with
differential grouping for large scale optimization”. In: IEEE Transactions on Evolutionary Computation
18.3, pp. 378–393.
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Separability ⇒ ∆1 = ∆2

Assuming:

f (x) =
m
∑

i=1

fi (xi )

We prove that:
Separability ⇒ ∆1 = ∆2

By contraposition (P ⇒ Q ≡ ¬Q ⇒ ¬P):

∆1 6= ∆2 ⇒ non-separability

or
|∆1 −∆2| > ǫ⇒ non-separability
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The Differential Grouping Algorithm

Detecting Non-separable Variables

|∆1 −∆2| > ǫ⇒ non-separability

Detecting Separable Variables

|∆1 −∆2| ≤ ǫ⇒ Separability (more plausible)
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Deductive Reasoning

Strong Syllogism

A⇒ B

A is true

∴ B is true

A⇒ B

B is false

∴ A is false

Weak Syllogism

A⇒ B

A is false

∴ B is less plausible

A⇒ B

B is true

∴ A is more plausible
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Deductive Reasoning - Example

Strong Syllogism

Rain⇒ Cloud

It is rainy

∴ It is cloudy

Rain⇒ Cloud

It is not cloudy

∴ It is not rainy

Weak Syllogism

Rain⇒ Cloud

It is not rainy

∴ Cloud becomes less likely

Rain⇒ Cloud

It is cloudy

∴ Rain becomes more likely
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Differential Grouping Family of Algorithms

Linkage Identification by Non-linearity Check (LINC,
LINC-R) [1]

Differential Grouping (DG) [2]

Global Differential Grouping (GDG) [3]

Improved Differential Grouping (IDG) [4]

[1] Masaru Tezuka et al. (2004). “Linkage identification by nonlinearity check for real-coded genetic
algorithms”. In: Genetic and Evolutionary Computation–GECCO 2004. Springer, pp. 222–233.

[2] Mohammad Nabi Omidvar, Xiaodong Li, Yi Mei, et al. (2014). “Cooperative co-evolution with
differential grouping for large scale optimization”. In: IEEE Transactions on Evolutionary Computation
18.3, pp. 378–393.

[3] Yi Mei et al. (June 2015). “Competitive Divide-and-Conquer Algorithm for Unconstrained Large
Scale Black-Box Optimization”. In: ACM Transaction on Mathematical Software 42.2, p. 13.

[4] Mohammad Nabi Omidvar, Ming Yang, et al. (Sept. 2015). IDG: A Faster and More Accurate
Differential Grouping Algorithm. Technical Report CSR-15-04. University of Birmingham, School of
Computer Science.
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Differential Grouping Family of Algorithms

eXtended Differential Grouping (XDG) [1]

Graph-based Differential Grouping (gDG) [2]

Fast Interaction Identification [3]

Recursive Differential Grouping (RDG1 and RDG2) [4]

[1] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge (2015). “Extended differential grouping
for large scale global optimization with direct and indirect variable interactions”. In: Genetic and
Evolutionary Computation Conference. ACM, pp. 313–320.

[2] Yingbiao Ling et al. (2016). “Cooperative co-evolution with graph-based differential grouping for
large scale global optimization”. In: International Conference on Natural Computation, Fuzzy Systems
and Knowledge Discovery. IEEE, pp. 95–102.

[3] Xiao-Min Hu et al. (2017). “Cooperation coevolution with fast interdependency identification for
large scale optimization”. In: Information Sciences 381, pp. 142–160.

[4] Yuan Sun, Michael Kirley, and Saman K Halgamuge (2017). “A recursive decomposition method
for large scale continuous optimization”. In: IEEE Transactions on Evolutionary Computation;
Yuan Sun, Mohammad Nabi Omidvar, et al. (2018). “Adaptive threshold parameter estimation with
recursive differential grouping for problem decomposition”. In: a a 5, p. 2.
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Shortcomings of Differential Grouping

Cannot detect the overlapping functions.

Slow if all interactions are to be checked.

Requires a threshold parameter (ǫ).

Can be sensitive to the choice of the threshold parameter (ǫ).
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Differential Grouping 2

x1

x2

x3

1

3
2

(a, b, c) (a, b′, c)

(a′, b′, c)(a′, b, c)

(a, b, c ′)

(a′, b, c ′)

(a, b′, c ′)

Figure: Geometric representation of point generation in DG2 for a 3D
function.

x1↔x2:∆
(1)

=f (a′, b, c)−f (a, b, c),∆(2)=f (a′, b′, c)−f (a, b′, c)

x1↔x3:∆
(1)

=f (a′, b, c)−f (a, b, c),∆(2)=f (a′, b, c ′)−f (a, b, c ′)

x2↔x3:∆
(1)

=f (a, b′, c)−f (a, b, c),∆(2)=f (a, b′, c ′)−f (a, b, c ′),

λ = |∆(1) −∆(2)|
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Differential Grouping 2

˜ =





















x1 x2 x3 x4 x5 x6 x7

x1 0 2 0 2 0 0 0
x2 2 0 0 2 0 0 0
x3 0 0 0 0 2 2 0
x4 2 2 0 0 0 0 0
x5 0 0 2 0 0 4 2
x6 0 0 2 0 4 0 2
x7 0 0 0 0 2 2 0





















, (7)

ˆ =





















x1 x2 x3 x4 x5 x6 x7

x1 0 1 0 1 0 0 0
x2 1 0 0 1 0 0 0
x3 0 0 0 0 1 1 0
x4 1 1 0 0 0 0 0
x5 0 0 1 0 0 1 1
x6 0 0 1 0 1 0 1
x7 0 0 0 0 1 1 0





















. (8)
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Improving the Efficiency

Minimum Evaluations

The minimum number of unique function evaluations in order to
detect the interactions between all pairs of variables is

h(n) ≥
n(n + 1)

2
+ 1. (9)

Improving efficiency beyond the given lower bound is impossible
unless:

Sacrifice on the accuracy (partial variable interaction matrix);

and/or

Extending the DG theorem.
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Direct/Indirect Interactions

Indirect Interactions

In an objective function f (x), decision
variables xi and xj interact directly
(denoted by xi ↔ xj) if

∃a :
∂f

∂xi∂xj

∣

∣

∣

∣

x=a

6= 0,

decision variables xi and xj interact
indirectly if

∂f

∂xi∂xj
= 0,

and there exists a set of decision variables
{xk1, ..., xks} such that
xi ↔ xl1, ..., xks ↔ xj .
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Efficiency vs Accuracy

Saving budget at the expense of missing overlaps:

eXtended Differential Grouping [1].

Fast Interdependence Identification [2].

1 2

3

45

6 1

2

3

4

5

6

Figure: The interaction structures represented by the two graphs cannot
be distinguished by XDG.

[1] Yuan Sun, Michael Kirley, and Saman Kumara Halgamuge (2015). “Extended differential grouping
for large scale global optimization with direct and indirect variable interactions”. In: Genetic and
Evolutionary Computation Conference. ACM, pp. 313–320.

[2] Xiao-Min Hu et al. (2017). “Cooperation coevolution with fast interdependency identification for
large scale optimization”. In: Information Sciences 381, pp. 142–160.
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Extending the Theorem

Theorem

Let f : R
n → R̄ be an objective function; X1 ⊂ X and X2 ⊂ X be

two mutually exclusive subsets of decision variables: X1 ∩ X2 = ∅.
If there exist two unit vectors u1 ∈ UX1 and u2 ∈ UX2 , two real

numbers l1, l2 > 0, and a candidate solution x∗ in the decision

space, such that

f (x∗ + l1u1 + l2u2)− f (x∗ + l2u2) 6= f (x∗ + l1u1)− f (x∗), (10)

there is some interaction between decision variables in X1 and X2.

Some Algorithms

Recursive Differential Grouping (RDG) [a]

Fast Interaction Identification (FII) [b]

[a] Yuan Sun, Michael Kirley, and Saman K Halgamuge (2017). “A recursive decomposition method
for large scale continuous optimization”. In: IEEE Transactions on Evolutionary Computation.

[b] Xiao-Min Hu et al. (2017). “Cooperation coevolution with fast interdependency identification for
large scale optimization”. In: Information Sciences 381, pp. 142–160.
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DG2: Accuracy

n = ±s × βe−p,

0 1 2 3 4 5 6 7

Figure: Non-uniform distribution of floating-point numbers for a
hypothetical system (β = 2, emin = −1, emax = 3, and p = 3). The
vertical bars denote all the representable numbers in this system.

Theorem

If x ∈ R lies in the range of F, then

fl(x) = x(1 + δ), |δ| < µM,

where µM is called the unit roundoff, which is equal to 1
2β

1−p.
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Improving Detection Accuracy: The Idea
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RDG2 and RDG3

RDG2 [1]: Efficiency of RDG and accuracy of DG2.

RDG3 [2]: Decomposition for overlapping problems.
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[1] Yuan Sun, Mohammad Nabi Omidvar, et al. (2018). “Adaptive threshold parameter estimation
with recursive differential grouping for problem decomposition”. In: a a 5, p. 2.

[2] Yuan Sun, Xiaodong Li, Andreas Ernst, and Mohammad Nabi Omidvar (2019). “Decomposition for
Large-scale Optimization Problems with Overlapping Components”. In: Proceedings of the IEEE
Congress on Evolutionary Computation. IEEE.
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Popularity of variable interaction detection and

decomposition algorithms

43%

26%

4%

6%

5%
5%

12%

Differential grouping

Random grouping

Delta grouping

Monotonicity detection

Fitness difference

Meta-modelling

Statistical

Figure: The most accurate (differential grouping) and the simplest
(random grouping) are the most widely used.
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DG as an Analysis Tool

Interaction matrix of two different formulations of the same
structural engineering problem [1].

[1] Amir H Gandomi et al. (2019). “Using semi-independent variables to enhance optimization search”.
In: Expert Systems with Applications 120, pp. 279–297.
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DG as an Analysis Tool

Interaction matrix of three different formulations of the same
structural engineering problem [1].

[1] Amir H Gandomi et al. (2019). “Using semi-independent variables to enhance optimization search”.
In: Expert Systems with Applications 120, pp. 279–297.

Nabi Omidvar, Yuan Sun and Xiaodong Li GECCO 2023: Large-Scale Optimization and Learning



Some Auxiliary Topics

Variable Interaction and Constraint Handling [1], [2], [3]

Large-Scale Multiobjective Optimization

[1] Eman Sayed, Daryl Essam, Ruhul Sarker, and Saber Elsayed (2015). “Decomposition-based
evolutionary algorithm for large scale constrained problems”. In: Information Sciences 316, pp. 457–486.

[2] Adan E Aguilar-Justo and Efrén Mezura-Montes (2016). “Towards an improvement of variable
interaction identification for large-scale constrained problems”. In: IEEE Congress on Evolutionary
Computation. IEEE, pp. 4167–4174.

[3] Julien Blanchard et al. (2017). “A cooperative co-evolutionary algorithm for solving large-scale
constrained problems with interaction detection”. In: Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, pp. 697–704.
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Variable Interaction and Constraint Handling
Idea: analyze the objective and the contraints [1].

min f (x) = x2
1 x2 + 4x5

s.t g1(x) =
x3

x2
4
+

√
x5 − x6 ≤ 0

g2(x) = x1 − x2e
−x6 ≤ 0
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
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[1] Julien Blanchard et al. (2017). “A cooperative co-evolutionary algorithm for solving large-scale
constrained problems with interaction detection”. In: Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, pp. 697–704.
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Large-Scale Multiobjective Optimization

Large-scale multiobjective optimization is growing popularity:

Benchmark development and analysis:

Development of a benchmark [1].
Analysis of the existing benchmarks [2].

Algorithm development:

Exploiting modularity using CC [3], [4], [5], [6].
Problem transformation [7].

[1] Ran Cheng et al. (2016). “Test problems for large-scale multiobjective and many-objective
optimization”. In: IEEE Transactions on Cybernetics.

[2] Ke Li et al. (2016). “Variable Interaction in Multi-objective Optimization Problems”. In: Parallel
Problem Solving from Nature. Springer International Publishing, pp. 399–409.

[3] Luis Miguel Antonio and Carlos A Coello Coello (2013). “Use of cooperative coevolution for solving
large scale multiobjective optimization problems”. In: IEEE Congress on Evolutionary Computation.
IEEE, pp. 2758–2765.

[4] Luis Miguel Antonio and Carlos A Coello Coello (2016). “Decomposition-Based Approach for
Solving Large Scale Multi-objective Problems”. In: Parallel Problem Solving from Nature. Springer,
pp. 525–534.

[5] Xiaoliang Ma et al. (2016). “A multiobjective evolutionary algorithm based on decision variable
analyses for multiobjective optimization problems with large-scale variables”. In: IEEE Transactions on
Evolutionary Computation 20.2, pp. 275–298.

[6] Xingyi Zhang et al. (2016). “A Decision Variable Clustering-Based Evolutionary Algorithm for
Large-scale Many-objective Optimization”. In: IEEE Transactions on Evolutionary Computation.

[7] Heiner Zille et al. (2018). “A Framework for Large-Scale Multiobjective Optimization Based on
Problem Transformation”. In: IEEE Transactions on Evolutionary Computation 22.2, pp. 260–275.
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Analysis of DTLZ1-DTLZ4
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Figure: Variable interaction graphs of DTLZ1 to DTLZ4 .
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Figure: Variable interaction graphs of DTLZ5 and DTLZ6.
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Decomposition Based Large-Scale EMO

Figure: Image taken from [1]

[1] Xiaoliang Ma et al. (2016). “A multiobjective evolutionary algorithm based on decision variable
analyses for multiobjective optimization problems with large-scale variables”. In: IEEE Transactions on
Evolutionary Computation 20.2, pp. 275–298.
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Weighted Optimization Framework (WOF)

Figure: Weighted Optimization Framework [1], [2]

[1] Heiner Zille et al. (2016). “Weighted Optimization Framework for Large-scale Multi-objective
Optimization”. In: Genetic and Evolutionary Computation Conference. ACM, pp. 83–84.

[2] Heiner Zille et al. (2018). “A Framework for Large-Scale Multiobjective Optimization Based on
Problem Transformation”. In: IEEE Transactions on Evolutionary Computation 22.2, pp. 260–275.
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LSGO: Potential Future Directions

1 The synergy between optimization and learning [1], [2].
2 The synergy between metaheuristics and classic mathematical

programming:

Problem decomposition.
Variation operators [3], [4].

3 Exploiting problem structure: overlapping components.

4 Noise, dynamism [5], and uncertainty.

5 Constraint handling.

[1] Marcelo Rodrigues de Holanda Maia et al. (2020). “MineReduce: An approach based on data
mining for problem size reduction”. In: Computers & Operations Research 122, p. 104995.

[2] Yuan Sun, Xiaodong Li, and Andreas Ernst (2021). “Using Statistical Measures and Machine
Learning for Graph Reduction to Solve Maximum Weight Clique Problems”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 43.5, pp. 1746–1760.

[3] Angus Kenny, Xiaodong Li, Andreas T Ernst, and Dhananjay Thiruvady (2017). “Towards solving
large-scale precedence constrained production scheduling problems in mining”. In: GECCO,
pp. 1137–1144.

[4] Angus Kenny, Xiaodong Li, and Andreas T Ernst (2018). “A merge search algorithm and its
application to the constrained pit problem in mining”. In: GECCO, pp. 316–323.

[5] Danial Yazdani et al. (2019). “Scaling Up Dynamic Optimization Problems: A Divide-and-Conquer
Approach”. In: IEEE Transactions on Evolutionary Computation.
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LSGO Resources

Omidvar, M., Li, X., & Yao, X. (2021). A review of
population-based metaheuristics for large-scale black-box
global optimization: Part A. IEEE Transactions on
Evolutionary Computation.

Omidvar, M., Li, X., & Yao, X. (2021). A review of
population-based metaheuristics for large-scale black-box
global optimization: Part B. IEEE Transactions on
Evolutionary Computation.
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Part II

Large-Scale Combinatorial Optimization
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Combinatorial Optimization

Many real-world problems can be formulated as combinatorial
optimization, e.g., Routing, Scheduling, Knapsack, Assignment,
Matching, Covering, Packing and Partitioning.

General Integer Linear Programming (ILP) Formulation:

max
x

cx ,

s.t. Ax ≤ b,

x ∈ Zn.

There often exist great opportunities for optimization techniques in
real-world applications, e.g., in the mining industry, a small increase
in efficiency can translate into millions of dollars in saving [1].

[1] Angus Kenny, Xiaodong Li, Andreas T Ernst, and Dhananjay Thiruvady (2017). “Towards solving
large-scale precedence constrained production scheduling problems in mining”. In: GECCO,
pp. 1137–1144.
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Large-Scale Combinatorial Optimization

Challenges: As the global economy grows, the size of optimization
problems arising in industrial applications has increased significantly
over the years. From 2003 to 2017, the size of the largest problem
in MIPLIB has grown 70 times larger [1]. The dramatic increase in
problem size has posed significant challenges to optimization
algorithms.

Solution approach: reduce the size of large-scale optimization
problems to a point that is manageable by existing optimization
algorithms.

[1] Ambros Gleixner et al. (2021). “MIPLIB 2017: data-driven compilation of the 6th mixed-integer
programming library”. In: Mathematical Programming Computation, pp. 1–48.
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Problem Reduction

Motivation: The optimal solution of many combinatorial
optimization problems is determined by only a small fraction of
variables.

Aim: (1) significantly reduce the size of a problem, and (2) capture
an optimal (or near-optimal) solution in the reduced space.

(a) Before Reduction (b) After Reduction
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Exact Problem Reduction

Exact methods: remove (or fix) decision variables that cannot be
part of an optimal solution, typically based on mathematical
reasoning or computation of an objective bound.

Heuristic methods: remove (or fix) decision variables based on
certain rules typically extracted from feasible solutions.

Machine learning-based methods: greedily remove (or fix)
decision variables that are unlikely to be part of an optimal
solution, based on machine learning.
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Problem Specific Bounds

Given a weighted graph
G (V ,E ,W ), the Maximum
Weight Clique (MWC) problem is
defined as

max
x

|V |
∑

i=1

wixi ,

s.t. xi + xj ≤ 1, ∀(vi , vj) /∈ E ,

xi ∈ {0, 1}, vi ∈ V .

v2
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v3

3

v4
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Figure: A MWC is a complete
subgraph with maximum total node
weights.

UB(vi ) := wi +
∑

vj∈Ni
wj (Ni := {∀ vj | (vi , vj) ∈ E}) defines an

upper bound on the weight of cliques that include vi . In other
words, if UB(vi ) is less than the incumbent solution, node vi can
be safely pruned.
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Linear Relaxation Bounds

Integer Programming Formulation

z IP = max
x

|V |
∑

i=1

wixi ,

s.t. xi + xj ≤ 1, ∀(vi , vj) /∈ E ,

xi ∈ {0, 1}, vi ∈ V .

Linear Programming Relaxation

zLP =max
x

|V |
∑

i=1

wixi ,

s.t. xi + xj ≤ 1, ∀(vi , vj) /∈ E ,

0 ≤ xi ≤ 1, vi ∈ V .

zLP is an upper bound on z IP: z IP ≤ zLP.

IP is NP-hard, while LP can be solved in polynomial time.

LP bound is often used in MIP solvers such as CPLEX and Gurobi
for prunning nodes in a branch-and-bound search tree.
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Lagrangian Relaxation Bounds

Knapsack problem:

1 Number of items: n;

2 Item value: {v1, v2, · · · , vn};

3 Item weight:
{w1,w2, · · · ,wn};

4 Knapsack capability: C .

z IP = max
x

n
∑

i=1

vixi ,

s.t.
n

∑

i=1

wixi ≤ C ,

xi ∈ {0, 1}, i = 1, 2, · · · , n.

L(λ) = max
x

n
∑

i=1

vixi + λ(C −
n

∑

i=1

wixi ) = max
x

n
∑

i=1

(vi − λwi )xi + λC ,

s.t. xi ∈ {0, 1}, i = 1, 2, · · · , n.

The original problem is decomposed into n 1-D problems.
L(λ) is an upper bound on z IP for any λ ≥ 0: L(λ) ≥ z IP.
minλ≥0 L(λ) provides the tightest LR bound.
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Dantzig-Wolfe Reformulation

Given a graph G (V ,E ), the aim of
the vertex coloring problem is to
assign a color to each vertex, such
that the adjacent vertices have
different colors and the total number
of colors used is minimized.

v1

v2

v3

v4v5

v6

v7

v8

Figure: Vertex coloring example

S : a Maximal Independent Set (MIS).

S: the set of all possible MISs in G .

Sv : the set of MISs that contain v ∈ V .

zS : indicating whether S is selected.

min
z

∑

S∈S
zS ,

s.t.
∑

S∈Sv
zS ≥ 1, v ∈ V ;

zS ∈ {0, 1}, S ∈ S.

The Dantzig-Wolfe reformulation with a large number of variables
often has a tighter LP bound than the compact MIP formulation.
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Column Generation

1: function CG(G (V ,E ))
2: Generate an initial subset of MISs S

′ (randomly).
3: repeat

4: (dual u
∗, y∗

RMP
) ← Solve a restricted master problem with S

′.
5: (x∗, y∗

PP
) ← Solve a pricing problem with the dual value u

∗.
6: S

′ ← S
′ ∪ x

∗ ⊲ add the generated column x
∗ to S

′.
7: until the minimum reduced cost y∗

PP
≥ 0.

8: return the optimal objective value of the LP y∗

RMP
.

Restricted Master Problem:

min
z

∑

S∈S′
zS ,

s.t.
∑

S∈S′v
zS ≥ 1, v ∈ V ;

0 ≤ zS ≤ 1, S ∈ S
′.

Pricing Problem:

min
x

1−

|V |
∑

i=1

u∗i · xi ,

s.t. xi + xj ≤ 1, (i , j) ∈ E ;

xi ∈ {0, 1}, vi ∈ V .

CG can be embedded into B&B, i.e., Branch-and-Price method.
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Heuristic Problem Reduction

Exact methods: remove (or fix) decision variables that cannot be
part of an optimal solution, typically based on mathematical
reasoning or computation of an objective bound.

Heuristic methods: remove (or fix) decision variables based on
certain rules typically extracted from feasible solutions.

Machine learning-based methods: greedily remove (or fix)
decision variables that are unlikely to be part of an optimal
solution, based on machine learning.
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Large Neighborhood Search (LNS)

LNS iteratively chooses a subset of variables to optimize while
leaving the remainder fixed [1]:

1: function LNS(instance I )
2: Generate an initial feasible solution x .
3: while CPU time limit not reached do

4: Select a neighbourhood of x .
5: x ← Optimize the neighbourhood.

6: return the best solution found x .

[1] David Pisinger and Stefan Ropke (2010). “Large Neighborhood Search”. In: Handbook of
Metaheuristics. Springer, pp. 399–419.
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Construct Merge Search & Adapt (CMSA)

CMSA forms a reduced problem by using the components
appearing in sample solutions [1]:

1: function CMSA(instance I )
2: Initialize the sub-problem Is as empty.
3: while CPU time limit not reached do

4: S ← Sample solutions using a probabilistic method from
I .

5: Add the solution components of S into the sub-problem
Is .

6: Solve the sub-problem Is to optimality.
7: Remove some low-quality solution components from Is .

8: return the best solution found.

[1] Christian Blum, Pedro Pinacho, et al. (2016). “Construct, merge, solve & adapt a new general
algorithm for combinatorial optimization”. In: Computers & Operations Research 68, pp. 75–88.
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Merge Search (MS)

Merge search constrains certain variables to be the same, and
replaces multiple variables in the original problem with a single
variable [1]

[1] Angus Kenny, Xiaodong Li, and Andreas T Ernst (2018). “A merge search algorithm and its
application to the constrained pit problem in mining”. In: GECCO, pp. 316–323; Angus Kenny,
Xiaodong Li, Andreas T Ernst, and Yuan Sun (2019). “An improved merge search algorithm for the
constrained pit problem in open-pit mining”. In: GECCO, pp. 294–302.
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Comparison between LNS, CMSA and MS

A series of studies [1] have shown that:

1 CMSA is better than LNS when solutions contain rather few
items.

2 LNS is better than CMSA when solutions contain rather many
items

MS seems more effective on medium-sized problems, whereas
CMSA performs better on large problems [2].

[1] Evelia Lizárraga et al. (2017). “Construct, merge, solve and adapt versus large neighborhood
search for solving the multi-dimensional Knapsack problem: Which one works better when?” In:
ECECCO. Springer, pp. 60–74; Christian Blum (2020). “Minimum common string partition: on solving
large-scale problem instances”. In: International Transactions in Operational Research 27.1, pp. 91–111;
Christian Blum and Gabriela Ochoa (2021). “A comparative analysis of two matheuristics by means of
merged local optima networks”. In: European Journal of Operational Research 290.1, pp. 36–56.

[2] Dhananjay Thiruvady et al. (2020). “Solution Merging in Matheuristics for Resource Constrained
Job Scheduling”. In: Algorithms 13.10, p. 256.
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MineReduce

Reduce problem size based on data mining [1]:

1 The data mining algorithm, FPmax∗, is used to mine frequent
patterns (i.e., solution components).

2 The mined patterns are used to fix or merge decision variables.

[1] Marcelo Rodrigues de Holanda Maia et al. (2020). “MineReduce: An approach based on data
mining for problem size reduction”. In: Computers & Operations Research 122, p. 104995.
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Frequent Pattern-Based Search (FPBS)

Hybridizing meta-heuristics with data mining [1]:

1 Generate a set of high-quality solutions via a greedy method or
population-based method.

2 Extract frequent patterns (solution components) from
high-quality solutions using data mining techniques.

3 Use the extracted patterns to construct new solutions.

[1] Daniel Martins et al. (2018). “Making a state-of-the-art heuristic faster with data mining”. In:
Annals of Operations Research 263.1, pp. 141–162; Yangming Zhou et al. (2020). “Frequent
Pattern-Based Search: A Case Study on the Quadratic Assignment Problem”. In: IEEE Transactions on
Systems, Man, and Cybernetics: Systems.
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Machine Learning-Based Problem Reduction

Exact methods: remove (or fix) decision variables that cannot be
part of an optimal solution, typically based on mathematical
reasoning or computation of an objective bound.

Heuristic methods: remove (or fix) decision variables based on
certain rules typically extracted from sample solutions.

Machine learning-based methods: greedily remove (or fix)
decision variables that are unlikely to be part of an optimal
solution, based on machine learning.
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Machine Learning-Based Problem Reduction

Automatically learn a rule to fix decision variables based on
previously solved problem instances [1]:

1 Solve a set of easy problem instances to optimality;

2 Label decision variables based on their optimal solution values;

3 Extract features to characterize each decision variable;

4 Train a machine learning model to predict the optimal solution
value for each decision variable in training problem instances;

5 Remove (or fix) the decision variables that are predicted not to
be part of an optimal solution for an unseen test problem
instance.

[1] Yuan Sun, Xiaodong Li, and Andreas Ernst (2021). “Using Statistical Measures and Machine
Learning for Graph Reduction to Solve Maximum Weight Clique Problems”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 43.5, pp. 1746–1760.
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Illustration of Training and Testing
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Feature Extraction

1 Problem-specific features such as vertex or edge weight in a
graph [1].

2 ILP features extracted from ILP formulations, e.g., cost
coefficient or number of non-zeros in constraint matrix [2].

3 LP features computed from the LP relaxation of the ILP, e.g.,
reduced cost [3].

4 Statistical features computed from sample solutions, e.g.,
Pearson correlation coefficient [4].

[1] Juho Lauri and Sourav Dutta (2019). “Fine-grained search space classification for hard
enumeration variants of subset problems”. In: AAAI. vol. 33, pp. 2314–2321; Yuan Sun, Xiaodong Li,
and Andreas Ernst (2021). “Using Statistical Measures and Machine Learning for Graph Reduction to
Solve Maximum Weight Clique Problems”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 43.5, pp. 1746–1760.

[2] Jian-Ya Ding et al. (2020). “Accelerating Primal Solution Findings for Mixed Integer Programs
Based on Solution Prediction”. In: AAAI, pp. 1452–1459.

[3] Jian-Ya Ding et al. (2020). “Accelerating Primal Solution Findings for Mixed Integer Programs
Based on Solution Prediction”. In: AAAI, pp. 1452–1459; James Fitzpatrick et al. (2021). “Learning to
Sparsify Travelling Salesman Problem Instances”. In: arXiv preprint arXiv:2104.09345.

[4] Yuan Sun, Xiaodong Li, and Andreas Ernst (2021). “Using Statistical Measures and Machine
Learning for Graph Reduction to Solve Maximum Weight Clique Problems”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 43.5, pp. 1746–1760.
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Classification Models

1 Support Vector Machine [1]

2 Logistic Regression [2]

3 K-Nearest Neighbor [3]

4 Graph Neural Network [4].

[1] Yuan Sun, Xiaodong Li, and Andreas Ernst (2021). “Using Statistical Measures and Machine
Learning for Graph Reduction to Solve Maximum Weight Clique Problems”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 43.5, pp. 1746–1760; Álinson S Xavier et al. (2020).
“Learning to solve large-scale security-constrained unit commitment problems”. In: INFORMS Journal
on Computing.

[2] Juho Lauri and Sourav Dutta (2019). “Fine-grained search space classification for hard
enumeration variants of subset problems”. In: AAAI. vol. 33, pp. 2314–2321; Juho Lauri, Sourav Dutta,
et al. (2020). “Learning fine-grained search space pruning and heuristics for combinatorial optimization”.
In: arXiv preprint arXiv:2001.01230.

[3] Álinson S Xavier et al. (2020). “Learning to solve large-scale security-constrained unit commitment
problems”. In: INFORMS Journal on Computing.

[4] Zhuwen Li et al. (2018). “Combinatorial optimization with graph convolutional networks and
guided tree search”. In: NeurIPS, pp. 539–548; Jian-Ya Ding et al. (2020). “Accelerating Primal
Solution Findings for Mixed Integer Programs Based on Solution Prediction”. In: AAAI, pp. 1452–1459.
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Generalization

How does the trained machine learning model generalize to unseen

problem instances [1]?

Figure: Each dot represents an instance in the 2-D feature space (Z1 and Z2). In
figure (a), dot color represents the category where instance is from; while in figure (b)
to (f), dot color represents the optimality gap (%) generated by the MLPR models.

[1] Yuan Sun, Andreas Ernst, et al. (2020). “Generalization of Machine Learning for Problem
Reduction: A Case Study on Travelling Salesman Problems”. In: OR Spectrum.
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Multi-Stage Pruning

Apply the trained ML model to prune the search space of a problem
instance recursively [1]:

1: function Multi-Stage Pruning(instance I )
2: while Stopping criterion not met do

3: Compute the features for each decision variable in I

4: Apply the trained ML to predict the optimal solution
value.

5: I ← prune the instance I based on the ML predictions.

6: return the reduced instance I .

[1] Marco Grassia et al. (2019). “Learning Multi-Stage Sparsification for Maximum Clique
Enumeration”. In: arXiv preprint arXiv:1910.00517; Juho Lauri, Sourav Dutta, et al. (2020). “Learning
fine-grained search space pruning and heuristics for combinatorial optimization”. In: arXiv preprint
arXiv:2001.01230.
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Feasibility and Optimality Gap

How to ensure that there is at least one feasible solution in the

reduced problem? More generally, how to compute an optimality

gap for the best solution generated from the reduced problem?

One can guarantee feasibility of the pruned problem instance by
adding one feasible solution to the reduced space [1].

If an approximation algorithm exists which can generate a feasible
solution with a valid bound, adding that feasible solution to the
reduced space can also provide an optimality gap for the best
solution in the reduced problem [2].

[1] Yuan Sun, Andreas Ernst, et al. (2020). “Generalization of Machine Learning for Problem
Reduction: A Case Study on Travelling Salesman Problems”. In: OR Spectrum.

[2] James Fitzpatrick et al. (2021). “Learning to Sparsify Travelling Salesman Problem Instances”. In:
arXiv preprint arXiv:2104.09345.
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Guiding Tree-Search Algorithms

A Graph Convolutional Network was trained to predict the optimal
solution values for binary variables, which were then used to guide a
tree-search algorithm for high-quality solutions [1].

[1] Zhuwen Li et al. (2018). “Combinatorial optimization with graph convolutional networks and
guided tree search”. In: NeurIPS, pp. 539–548.
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Generating Cut

A Graph Convolutional Network was trained to predict the optimal
solution values for binary variables, which were then used to
generate a global inequality constraint to prune the search space [1]:

∆(x , x̂ ,S) :=
∑

j∈S:x̂j=0

xj +
∑

j∈S:x̂j=1

(1− xj) ≤ Φ, (19)

S is the set of binary variables.

x̂ are predicted solution values of binary variables x ;

Φ is a parameter that controls the size of the reduced problem
space.

[1] Jian-Ya Ding et al. (2020). “Accelerating Primal Solution Findings for Mixed Integer Programs
Based on Solution Prediction”. In: AAAI, pp. 1452–1459.
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Boosting Meta-Heuristics

An ML model was trained to predict the optimal solution values of
binary decision variables, which were then incorporated into the Ant
Colony Optimization (ACO) algorithm, to bias its sampling towards
high-quality solutions [1].

[1] Yuan Sun, Sheng Wang, et al. (2020). “Boosting Ant Colony Optimization via Solution Prediction
and Machine Learning”. In: arXiv preprint arXiv:2008.04213.
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Warm Start

[1] trained a Gated Graph Convolutional Network to predict the
solution for the the Boolean satisfiability problem. The predicted
solution is then used as the starting point for stochastic local search
methods, resulting in a significant performance improvement.

[2] trained a model to predict redundant constraints, good initial
feasible solutions and affine subspaces where the optimal solution is
likely to lie, leading to significant reduction in problem size.

[1] Wenjie Zhang et al. (July 2020). “NLocalSAT: Boosting Local Search with Solution Prediction”.
In: IJCAI, pp. 1177–1183.

[2] Álinson S Xavier et al. (2020). “Learning to solve large-scale security-constrained unit commitment
problems”. In: INFORMS Journal on Computing.

Nabi Omidvar, Yuan Sun and Xiaodong Li GECCO 2023: Large-Scale Optimization and Learning



Adaptive Solution Prediction

Adaptive solution prediction framework [1].

[1] Yunzhuang Shen et al. (2023). “Adaptive solution prediction for combinatorial optimization”. In:
European Journal of Operational Research 309.3, pp. 1392–1408.
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Problem Reduction for Dantzig-Wolfe Reformulation

Learning to predict optimal columns with vertex coloring problem
as an example [1].

1: function Training(a set of training graphs)
2: Each MIS in a training graph is used as a training instance.
3: Extract features to characterise each MIS.
4: Compute the class label of each MIS.
5: Train a classification algorithm on the training set.

Feature extraction:

Problem-specific features,
e.g., the size of a MIS;

LP features, e.g., reduced
cost and LP solution value;

Statistical measures based
on sample solutions.

Computing class label: A MIS
is a positive training instance if it
belongs to any optimal solution;
otherwise it is negative.

Classification algorithms: Any
existing classification algorithm
can be applied.

[1] Yuan Sun, Andreas T Ernst, et al. (2023). “Learning to Generate Columns with Application to
Vertex Coloring”. In: International Conference on Learning Representations (ICLR).
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Problem Reduction for Dantzig-Wolfe Reformulation

ML-based Column Generation [1].

1: function MLCG(G (V ,E ), Nit)
2: Generate an initial subset of MISs S

3: for i from 1 to Nit do

4: Calculate the features for each MIS S ∈ S;
5: Evaluate the quality of each MIS using the trained ML model;
6: Update S by replacing low-quality MISs with new ones.

7: Solve the reduced MIP with S using Gurobi.
8: return the best solution found.

Evaluating MIS:

The prediction speed of the
machine learning model
matters.

Linear support vector machine
works better than decision tree.

Updating MIS:

The diversity of S matters

Random generation performs
similarly with a cross-over type
approach.

[1] Yuan Sun, Andreas T Ernst, et al. (2023). “Learning to Generate Columns with Application to
Vertex Coloring”. In: International Conference on Learning Representations (ICLR).
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ML-based Pricing Heuristic for Column Generation

Predict the optimal solution of the pricing problem, then use the
prediction to sample multiple high-quality columns [1].

[1] Yunzhuang Shen et al. (2022). “Enhancing column generation by a machine-learning-based pricing
heuristic for graph coloring”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 36.
9, pp. 9926–9934.
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Predicting Optimal Objective Values

[1] used regression techniques to estimate the production of
offshore wind parks.

[2] trained machine learning models to learn bounds on the
optimal objective values, which are then used to generate cuts to
prune search space.

[1] Martina Fischetti and Marco Fraccaro (2019). “Machine learning meets mathematical optimization
to predict the optimal production of offshore wind parks”. In: Computers & Operations Research 106,
pp. 289–297.

[2] Franco Peschiera et al. (2020). “A novel solution approach with ML-based pseudo-cuts for the
Flight and Maintenance Planning problem”. In: OR Spectrum, pp. 1–30.
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Predicting Magnitude of Changes in Optimal Solutions

In practice, we often need to solve, on a regular basis, many
problem instances, of which the parameters change slightly, e.g.,
routing problem that a navigation company faces.

[1] built a regression model to learn the proportion of optimal
solution values that can be reused when the problem instance is
perturbed slightly. The predicted information is used as a constraint
to reduce the problem size.

[1] Andrea Lodi et al. (2020). “Learning to handle parameter perturbations in combinatorial
optimization: an application to facility location”. In: EURO Journal on Transportation and Logistics 9.4,
p. 100023.
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Predicting Optimal Values for Continous Variables

[1] trained a regression model to estimate the optimal value for
continuous decision variables, and showed improvement
performance in blood supply chain management.

The trained ML model cannot be applied to problem instances with
different sizes.

[1] Babak Abbasi et al. (2020). “Predicting solutions of large-scale optimization problems via machine
learning: A case study in blood supply chain management”. In: Computers & Operations Research,
p. 104941.
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Neural Large Neighborhood Search

[1] trained a deep neural network via policy gradient reinforcement
learning to repair a destroyed (i.e. incomplete) solution for Large
Neighborhood Search (LNS).

[2] showed that one can learn a good neighborhood selector using
imitation and reinforcement learning techniques. More specifically,
a good decomposition of decision variables for LNS can be learned
via ML.

[1] André Hottung and Kevin Tierney (2020). “Neural Large Neighborhood Search for the Capacitated
Vehicle Routing Problem”. In: ECAI 2020.

[2] Jialin Song et al. (2020). “A General Large Neighborhood Search Framework for Solving Integer
Linear Programs”. In: NeurIPS 33.
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Remarks

Exact methods guarantee that the reduced problem always contains
an original optimal solution, but in many cases, they are
computationally expensive and often do not significantly reduce the
problem size.

Inexact methods (i.e., heuristic and machine learning-based
methods) are more aggressive at pruning the search spaces of
large-scale problems, but it is difficult to provide an optimality
guarantee for those methods.
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Challenges and Opportunities: I

Hybrid methods that combine the merits of Mathematical
Programming, Meta-heuristics and Machine Learning are often
effective in solving large-scale combinatorial optimization problems.

An avenue for future research is to explore effective ways of using
machine learning techniques to improve traditional algorithms, such
as Neural Large neighborhood Search [1] and Machine Learning
Ant Colony Optimization [2].

[1] Jialin Song et al. (2020). “A General Large Neighborhood Search Framework for Solving Integer
Linear Programs”. In: NeurIPS 33.

[2] Yuan Sun, Sheng Wang, et al. (2020). “Boosting Ant Colony Optimization via Solution Prediction
and Machine Learning”. In: arXiv preprint arXiv:2008.04213.
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Challenges and Opportunities: II

Machine learning-based problem reduction is quite new. It would be
interesting to fully test the effectiveness of this approach on various
types of combinatorial optimization problems, such as dynamic,
stochastic, and multi-objective optimization problems.
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Challenges and Opportunities: III

How to develop a strong optimality guarantee for inexact (i.e.,
heuristic and machine learning-based) problem reduction methods is
challenging and important.

May borrow some ideas from statistical learning theory, operations
research, or approximation algorithm design.

Nabi Omidvar, Yuan Sun and Xiaodong Li GECCO 2023: Large-Scale Optimization and Learning



Challenges and Opportunities: IV

The machine learning-based problem reduction method can be
easily adapted to various problems.

However, it is nontrivial to develop a machine learning model that
can be used to prune the search space for general ILPs (or at least
a class of problems) without the need of re-training the machine
learning model.

If this is successful, the generic machine learning model can be
incorporated into commercial solvers such as Gurobi and CPLEX as
a side package to solve large-scale optimization problems, expected
to bring significant benefit.
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Thank you!
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