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Abstract Multimodal optimization is a relatively young term for the aim of finding several solu-
tions of a complex objective function simultaneously. This has been attempted under the denomina-
tion ‘niching’ since the 1970s, transferring ideas from biological evolution in a very loose fashion. In
this chapter we more formally define it, and then highlight its most important perspectives: how do
we measure what is good? On what problems do we measure it? Which type of algorithms may be
effectively employed for multimodal optimization? How do they relate to each other? Competitions
at two major evolutionary computation conferences have driven algorithm development in recent
years. We therefore report, in a concise fashion, what we have learned from competition results and
give an outlook on interesting future developments.

1 Introduction

What is the essence of multimodal optimization (MMO) when lots of mathematical optimization
methods have been used to deal with multimodal problems since the 1970s and even before? Ex-
perience shows that real-world problems are very often too complex to be treated successfully with
classical optimization methods. This is certainly a biased view, as simple problems are already
solvable by means of standard optimization methods, and only the ‘leftovers’ are difficult enough
to require some reasoning on how to treat them. These non-trivial real-world problems are almost
always multimodal, either by nature of the underlying function or enforced by the islands of fea-
sibility that are induced by constraints, or both. Although it is definitively as interesting as it is
important to also treat constrained multimodal optimization, we abstain from doing so as this area
is not that well explored yet and thus much more speculative.

Here, we provide an introduction and overview of the state-of-the-art of (unconstrained) mul-
timodal optimization, primarily, but not exclusively, from an evolutionary computation (EC) per-
spective. Interestingly, many of the ideas and techniques that emerged for multimodal optimization
in the EC field in recent years have predecessors in global optimization. Some of these have been
forgotten for some decades and only recently been brought to light again (see e.g. [1, 2]). We may
therefore speak of convergent evolution in this case, as obviously the need to overcome a specific
set of difficulties induced similar ideas in several research areas.
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Let us first attempt to non-formally approach the meaning of the term ‘multimodal optimiza-
tion’. In our view, it is an umbrella term that contains several types of applications of specialized
optimization methods to multimodal functions, but always with the focus on eventually delivering
multiple solutions. As previously stated, very many application problems are multimodal in nature.
However, they are often treated by simpler methods of convex optimization [3] that make strong
assumptions on the geometrical shape of the function, or by methods from global optimization [2, 4]
that are designed to find one global optimum of multimodal optimization problems. Why shall we
be interested in determining several optima, and possibly some that are not even globally optimal?
Li, et al. [5] discussed this issue nearly 20 years ago and gave two main reasons:

• to increase the chance of actually locating the global optimum, and
• to provide insights into the problem and suggest alternative innovative solutions.

One may argue that the latter argument is actually two arguments, as understanding optimization
problems in order to better adapt algorithms to them, is of value even if no alternative solutions
are desired. The other half of the argument reflects practitioners’ difficulties to accurately model a
problem. The provided global optima may actually be infeasible (see [6] for an example), or cannot
be realized exactly (i.e. when only a discrete set of shapes/parts/sizes is available, or machining is
limited to a particular fidelity). The model itself may be in error, globally, or locally, meaning a
range of disparate (but predicted high quality) solutions is of considerable value to mitigate the risk
when the realizing the design(s) in practice. Besides, we may also encounter the situation that the
decision-maker rejects specific solutions for reasons that have never been seen as part of the model,
either because they have not been expected to be relevant, or because they are very hard to be
expressed mathematically and are rather a matter of taste (so-called soft constraints). An example
that is somewhere between both cases is the sound of a car combustion engine that is optimized
for fuel efficiency but should still sound somewhat typical (not too different from the expectation
of the customer).

Once we accept that searching for multiple optima at once is sometimes required, the next ques-
tion is then how to define the properties of the particular optima we are interested in discovering.
This becomes increasingly important if there are a large number of potential optima in an opti-
mization problem. Even if we insist on returning global optima in our solution set, we still have at
least three choices [1]:

1. find all ‘best’ solutions, that is all points in the search space that are globally optimal, or
2. obtain all optima, global or not, possibly better than a specified threshold, or
3. find at least one globally optimal solution.

Taking into account that for most practical black-box problems, we do not know the value of the
global optimum and the problem to decide if a point is a global optimum is thus as hard as solving
the optimization problem itself, we may further relax the requirements and just ask for some ‘good’
optima. However, this does not help much, because there is no clear criterion on which ones to
look for if there are many, how to balance diversity and quality. The only thing that is clear is that
the sought optima shall be distant enough from each other to actually make a difference in their
practical implementation. This requires what has been very early termed as ‘diversity maintenance’,
albeit also a fuzzy term.

We have come a long way already with niching and closely related similar approaches from global
optimization, but the reshaped and unified field of multimodal optimization is still forming. We aim
to consolidate it here and also want to point to interesting developments as well as open problems.
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However, this work is not a survey. For that, you may consider consulting one of [7, 1, 8]. Here, we
want to point to the important lines of scientific development, not to every single attempt, and we
largely do so from the perspective of the multimodal optimization competitions of the last years.

The chapter now continues with a definition of the optimization task before we turn to the
available performance measures in Sec. 3. Section 4 then deals with test problems and generators,
and Sec. 5 provides an overview over common algorithmic approaches. We report on the outcome
of recent years competitions in Sec. 6, and then conclude the chapter with an outlook to possible
future research directions.

2 Definitions

We now outline the multimodal optimization task more formally, starting by disambiguating it from
the standard optimisation task.

2.1 The general optimisation problem

The general optimization task is to find the ‘best-performing’ design, x?, from some search space
(or domain) X , x? ∈ X , given some cost function, f . Without loss of generality, maximization
problems can be converted to minimization variants though the simple multiplication of −1. X
may be in a continuous space, a discrete space, a permutation space, mixed integer space, etc. For
the use of our illustrations here, X is a boxed-constrained continuous space, i.e. X = [`,u] ⊂ Rn.
n ∈ N is the fixed (in this case) number of decision variables. The vectors ` = (`1, . . . , `n)> and
u = (u1, . . . , un)> are called the lower and upper bounds of X , respectively.

There may be other constraints for the problem, which may be expressed as equality or in-
equality functions of x, gi(x), however in this chapter we shall focus exclusively on continuous
box-constrained problems — which reflects the properties of the test problems in the competition
results we discuss in later sections.

2.2 The multimodal optimization problem

The combination of X , f and g together are sufficient to describe the general optimization task,
however in the multimodal optimization task we are also concerned with a neighborhood-function,
which is used to characterize the local search landscape features.

For optimization problems in the continuous space, a common neighborhood-function is N(y) =
{x ∈ X | d(x,y) ≤ ε} which describes a ball-shaped neighborhood of a point y ∈ X . Using
neighborhood-function N , and an ε > 0, we can say x′ is a local minimum at radius ε if @x ∈
N(x′) : f(x) ≤ f(x′). on the definition provided in in [9, p. 6], the multimodal optimization task
may be formulated explicitly as:
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Definition 1 (Multimodal minimization problem). Let there be ν local minima x∗1, . . . ,x
∗
ν of

f in X . If the ordering of these optima is f(x∗1) ≤ · · · ≤ f(x∗l ) < h ≤ · · · ≤ f(x∗ν), a multimodal

minimization problem is given as the task to approximate the set
⋃l
i=1{x∗i }.

The variable h in this definition is simply a threshold to potentially exclude some of the lower
quality optima. Conversely, h = ∞ indicates we are interested in discovering all local optima of a
problem. If h = f(x∗1), we are only interested in approximating (all) the global optima.

Let P be the obtained approximation set. Additional constraints may be applied to this set,
to obtain more specific problem definitions. For example, the cardinality of P could be restricted
by requiring |P | ≤ k. If k = 1, we have the conventional global optimization problem, where
typically only one solution is sought. Another issue relates to the diversity requirements, which
could be formulated by demanding ∀x,y ∈ P,x 6= y : d(x,y) > κ, i. e., the distance between
any two solutions may not be smaller than some threshold κ. Figure 1 illustrates the desired set
for various h, ε and κ on a multi-modal test problem from [10]. Alternatively, a more sophisticated
diversity measure on the set P could be calculated, which may, for instance, lead to a multi-objective
formulation of the problem [11].

Given the above, one can see there are a range of different ways the multi-modal optimization
task make be defined, which unsurprisingly means there are a number of different (aligned) ways
that the degree of success in solving such a task may be measured. We now outline some of these
performance measures.

3 Performance Measures

Measuring performance in multimodal optimization has additional challenges beyond those exhib-
ited by standard global optimization, as the definition of goodness is far more complex. The first
striking difference is that as in multi-objective optimization, measurements are always computed
from sets, not from single solutions [12, 11]. Furthermore, it is necessary to know where the sought
optima are, or at least how good they are. The three principal dimensions of measuring performance
in multimodal optimization are: quality, diversity, and speed.

Depending on the application context, any of these may be more important than the others.
Generally, this means that we cannot expect to find one measure that captures all our criteria,
the measuring process is ambiguous by design and we have to make decisions regarding what we
consider as the most important features of a measure, and indeed their relative importance. Leaving
the temporal aspect (when are solutions found) aside for the moment, and starting from all search
points (solutions) an algorithm has seen doing one run, this leads to a multi-step process:

subset selection remove all solutions that do not meet the minimum performance threshold
attribution decide which optima each solution belongs to
assignment provide performance values for each of the single known optima/basins and

their associated solutions
aggregation compute an overall performance value on the basis of the single values

Thus, apart from the detection of multiple local or global optima, also an explicit identification or
subset selection of solutions that are needed for measuring within the possibly large set of explored
solutions is necessary (see Fig. 2). Note that for global optimization, this is usually implicitly done
by just selecting the best evaluated solution.
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e) f)

Fig. 1 Illustration of different targets under the multimodal optimization task. Composite Function 1 used from
[10] with n = 2. Panels (a) and (b) illustrate the problem in three dimensions and the plane. Panel (c) has the

desired solutions marked for h = 0, ε = 0.02 and κ = 0 (the global optima), with κ ' 9.56 a single global optima

is satisfactory. Panel (d) has the desired solutions for h = −200, ε = 0.02 and κ = 0.2 (the global optima and some
high quality local optima). Panel (e) has the desired solutions for h = −500, ε = 0.02 and κ = 0.5 (the global optima
and some high quality local optima which are distant from them). Panel (f) has the desired solutions for h = −1000,

ε = 0.02 and κ = 0.1 (all global optima, and many local optima of moderate performance and better).

Ideally, the optimization algorithms will already perform this task. However, not all algorithms
provide this explicit identification. Sometimes, it is easy to add, e. g., when the algorithm relies
on several convergent local searches. Then, we can simply collect the best solutions of the local
searches, and remove the duplicates. For some population-based approaches, however, the whole



6 Mike Preuss, Michael Epitropakis, Xiaodong Li, and Jonathan Fieldsend

solution
set (points)

 representing
set

optima
knowledge basin

knowledge

subset
selection

optimization
algorithm measuring  scalar

user

Fig. 2 How to evaluate performance of a multimodal optimization algorithm, general view (from [11]).

history of evaluations may have to be searched for suitable solutions. This might require quadratic-
time algorithms for a reasonable identification, which can get computationally expensive. Also,
depending on the concrete measures, it may be necessary to use knowledge on the location of optima
and/or basins for the selection process. However, without subset selection, multimodal optimization
algorithms are not very useful in practice as they emit huge solution sets the decision maker then
has to choose from.

In the following, we list some possible measures and discuss briefly their advantages and disad-
vantages, mostly based on [11]. The first group of indicators is purely statistical and does not need
any prior knowledge of a problem. It corresponds to the diversity goal only. In order to measure
diversity of a solution set, one may use the sum of (all) distances, or the sum of nearest neighbor
distances. The latter may be better at avoiding clustering of solutions. Solow-Polasky diversity is
a biologically motivated diversity measure that has some advantages, but is computationally ex-
pensive and thus suitable for rather smaller solution sets. Additionally, it uses a critical parameter,
which is not trivial to specify. For more details on these measures please see [9].

Given the prior knowledge of the optima, i.e., the global optima are known in advance, we can
measure the peak ratio (PR) by checking for each desired optimum if there is a point in the solution
set that approximates it closely enough. This performance measure also requires a parameter in
order to define how ‘close’ it is from an known optimum. By measuring the peak distance, that
is the average distance from each optimum to the nearest point in the solution set, we can avoid
that parameter. This measure is related to the inverted generational distance well known in multi-
objective optimization. We can generalize it even further and define an averaged Hausdorff distance,
which is especially suitable for comparisons of different solution set sizes as it penalizes unnecessary
points. Whereas these three measures only account for the search space distances to the sought
optima, we can also use the objective space distance, that is the average error per peak, in the peak
inaccuracy (originally designed as peak accuracy) measure. Similarly, with knowledge of the basins
of attraction, we can also define basin ratio and basin inaccuracy. However, as basin information is
much harder to obtain than optima information, these measures are hardly ever used. This group
of measures corresponds to the quality goal.

We have seen that there are many different ways to measure performance of a multimodal
optimization algorithm and there is no optimal choice. For that reason, the competitions on niching
methods for multimodal optimization held at different evolutionary computation conferences in the
last years use a combination of three performance criteria:

Peak Ratio (PR): This measure is kept for comparability to earlier results and is used as de-
scribed in [10]. It measures the average percentage of the identified known global optima by an
algorithm over multiple execution runs. In detail, given the fixed number of maximum function
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evaluations (MaxFEs) and the desired level of accuracy (ε), it can be calculated according to the
following equation:

PR =

∑NR
i=1GO

i
α

GO ∗NR
, (1)

where GOiα denotes the number of global optima found at the end of the i-th execution run by
algorithm α, GO the number of known global optima, and NR the number of runs. Note that
we do not do subset selection for this measure, the whole archive of sampled solutions in one run
can be submitted and is searched for points that are near to the known (global) optima. This is
also the recall (sensitivity) value for the other two criteria.

Static F1: Here we are not only interested in the ability of the algorithm to find all sought
optima, but also to do proper subset selection and deliver only the important portion of the
solution set. In information retrieval, this is called precision (the fraction of useful information),
and its product with the recall (the fraction of the total amount of relevant information that was
actually retrieved) results in the F1 measure.
More specifically, given an algorithm α, and a problem instance, let GO be the number of all
global optima for that problem. Let Sα be the set of potential solutions that have been obtained
by algorithm α and let GOSα be the number of distinct global optima that exist in Sα. The
precision metric denotes the fraction of retrieved data that are useful, where under the MMO
formulation this can be translated as the fraction of the number of identified global optima by
algorithm α over the number of solutions identified by α, i.e., precision = GOSα/|Sα|, where
| · | denotes the cardinality of a set. Similarly, recall denotes the fraction of the total amount of
relevant data that were actually retrieved, which in our context means the fraction of the number
of global optima an algorithm α identifies over the number of existing global optima for a given
problem recall = GOSα/GO. It can be clearly observed that the recall measure essentially defines
the peak ratio (PR) of an algorithm α. The static F1 measure can be calculated according to the
following equation:

F1 = 2× precision× recall
precision+ recall

=
2×GOSα
GO + |Sα|

(2)

Just as the simple PR measure, the F1 value is bounded by 1. It resembles the harmonic mean
of precision and recall and takes its best value if all sought optima are found, and only these.
Both measures correspond to the goals quality and diversity, but not to speed.

Dynamic F1: The efficiency of an algorithm in terms of speed (how fast it identifies the desired
global optima) can not be captured by the above mentioned metrics. Therefore, we introduce a
dynamic F1 measure in order to separate slower from faster algorithms. This can be achieved if
the point in time (evaluation number under a fixed budget) is known when each solution that
ends up in the final solution set |Sα| has been obtained. We simply compute the static F1 value
for each point in time when the solution set changes, and then integrate over this value (over the
number of evaluations allowed in one run). Thus, the dynamic F1 is the area under the curve of
the static version F1 over time, and is also bounded by 1.
It is computed as follows: let the maximum budget of function evaluations of a problem instance
be MaxFEs. Let GOSα be the solution set identified by algorithm α, ordered by the number
of function evaluations fi when solution i was added to the set, where i ∈ [1, |GOSα |]. Then we
can denote the subset of GOSα from solution i up to, including, solution j, where i < j and
i, j ∈ [1, |GOSα |], as GOSα(i, j). The dynamic F1 measure (dynF1) can be defined according to
the following equation:
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dynF1 =

|GOSα |∑
i=2

(
fi − fi−1
MaxFEsp

F1(GOSα(1, i− 1))

)
+
MaxFEsp − f|GOSα |

MaxFEsp
F1(GOSα) (3)

Intuitively the first term of the equation calculates the area under the curve of the static F1

metric for a given solution set, i.e., GOSα(1, i− 1), while the second term performs the last step
of the integral to reach the maximum available budget. Larger values of the metric indicate faster
conversion rates to the desired global optima set.

Please note that all these three measures are based on the peak ratio (PR) and therefore need
information on the sought optima in order to be computed. Whereas diversity based measures
discussed above do not need that, if used alone, but they can only provide a very limited view
onto the multimodal optimization performance. Thus, it is much harder to reasonably measure
performance for real-world test problem when optima information is not known and we very much
depend on benchmarks in order to develop better algorithms.

4 Benchmark Suites and Problem Generators

The capability of a niching method in locating multiple optimal (or near optimal) solutions within a
single optimization run can be assessed by using a series of test functions constructed explicitly with
multimodality in mind, i.e., the fitness landscape as computed by the objective function needs to be
multimodal. In such a scenario, a search algorithm equipped with a niching method is challenged
to find as many as possible optimal (or near optimal) solutions in an optimization run. This is
clearly more demanding than just finding a single global optimal solution, which is typical for
a standard meta-heuristic algorithm. The earliest work on designing benchmark multimodal test
functions was done by Deb in his 1989 master thesis [13]. Deb’s test suite includes several simple
1 and 2-dimensional test functions, with multiple peaks of varying heights and distances between
them. Subsequent to that, a more challenging test function with millions of local optima and 32
global optima was proposed by Goldberg et al. [14].

Test function generators have also been developed to construct multimodal test functions with
more versatile and sophisticated sets of properties, also with the goal of being able to benchmark on a
larger set of instances and not single problems. Gallagher and Yuan proposed such a generator based
on the superposition of Gaussians [15]. Rönkkönen et al. [16] developed a more general multimodal
test function generator using tunable function families, such as the cosine and quadratic function
families. These test functions have more controllable numbers of global and local optima, scalable
to higher dimensions. The functions can be rotated to a random angle, and each dimension of a
function can be stretched independently using Bezier curves. Similarly, Singh and Deb proposed to
use the hump function family to generate a series of multimodal test functions with different levels
of complexity, e.g., several peaks can be generated at random locations with different shapes and
sizes [17].

More complex multimodal fitness landscapes (i.e., with multiple global optima) can be con-
structed by superposition of several basic functions each with a single global optimum, as proposed
by Qu and Suganthan [18]. Several such composition functions were included in the technical re-
port “Benchmark Functions for CEC2013 Special Session and Competition on Niching Methods for
Multimodal Function Optimization” [10]. Twenty multimodal test functions ranging from simple,
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separable, symmetric, and non-scalable to more challenging, non-separable, non-symmetric, and
scalable were included in this benchmark suite, which has been used in the GECCO/CEC niching
competition series running since 2013. Summarized results and rankings on many state-of-the-art
niching methods are made publicly available (see details in a subsequent section on niching competi-
tion results). It has been widely adopted as the standard benchmark in evaluating niching methods
in recent literature. The niching competition series aims to provide a common platform to facilitate
meaningful evaluation and fair comparisons of different niching methods across a range of problem
characteristics and difficulty levels.

Wessing [9] suggested the highly versatile polynomial based Multiple Peaks Model 2 (MPM2)
generator (in more detail described in [19]) that is based on former works by Preuss and Lasar-
czyk [20]. The most recent attempt in improving benchmark functions was carried out by Ahrari
and Deb [21], where a general procedure for generating scalable multimodal test functions was
proposed. This new procedure constructs a composite function through an application of two levels
of basic functions, with the first level made up of two basic functions gI and gII , whose outputs
in turn are fed into another basic function gIII in the 2nd level. Desirable properties such as ill-
conditioning and variable interaction can be designed through manipulation of the adopted basic
functions within the general framework. The composite functions generated are scalable to dimen-
sions, with controllable number of global optima, variable shapes and sizes of basins. In addition,
constrained multimodal test functions can be also constructed through introducing constraints in
the basic function gI . Note that the first attempt in designing constrained multimodal test functions
was made by Deb and Saha in [22].

To evaluate niching methods in dealing with uncertainty, multimodal test functions with con-
sideration of robustness were also developed by Alyahya, et al. [23]. Some of these robustness test
functions were built upon the widely used standard multimodal benchmark, i.e., CEC’2013 niching
competition technical report [10].

5 Popular algorithmic approaches and history of the field

Studies on niching methods can be traced back to the early days of development of genetic algo-
rithms, initially as attempts to promote population diversity [24, 25, 26] in order to improve global
search capabilities. However, as a side-effect, it was found that these diversity maintenance tech-
niques could be also used to locate multiple optimal solutions. One of the earliest studies attempting
to induce niching behaviour in a Genetic Algorithm (GA) is probably Cavicchios dissertation [24],
where several schemes were proposed in which offspring directly replace the parents that produce
them. These so called pre-selection schemes were later generalized by De Jong in a scheme called
crowding [25]. Some years later, Goldberg and Richardson proposed fitness sharing [27] as alterna-
tive niching scheme, and both methods have been quite influential on later developments.

Whereas crowding attempts to restrict recombination or rather replacement to individuals that
are similar, fitness sharing explicitly penalizes candidate solutions that are near to each other in
terms of “similarity” and reduces their fitness accordingly. Both methods suggest to use a search
space distance function as similarity measure. The overall idea is of course to enable survival of
“fitter as well as different” individuals occupying different promising regions of the search space.
Related niching methods developed in this time include restricted tournament selection [28] and
clearing [29].
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However, it has been shown that the parameters introduced by these methods (i.e., niche radius
and scaling factor) are rather difficult to determine [14] without any prior knowledge of a problem.
Nevertheless, the notion of a niche radius and the matching metaphorical idea of a sub-population or
species has dominated the multimodal optimization field for quite some time. From the large number
of proponents of niche radius based approaches, we name two examples: species conservation [5]
and niching in evolution strategies with its dynamic peak identification [30].

At some point, it became clear that niche radii, even if adapted at runtime, limits the perfor-
mance of multimodal optimization algorithms, simply because they cannot be expected to correctly
characterize basins of attraction. Furthermore, evidence accumulated that it was unrealistic to try
to employ a single population to manage a set of basins for a prolonged time [31]. At the same time,
reasoning about the nature of niching and multimodal optimization led to the belief that researchers
were actually try to handle a process that consisted of two distinct parts, and their interplay [32]:

• detecting and characterizing single basins of attraction, and
• performing local optimization in the most interesting of these basins.

Optimization algorithms may perform these steps explicitly or implicitly and in a continuous
or alternating fashion, as summarized in [1] and [9]. Modern multimodal optimization algorithms
therefore diverge in these two major dimensions:

• How are basins identified (niching method, exploration), and
• how their local optimization is steered (base algorithm, exploitation).

Next to the previously described implicit basin identification, e.g. via restricted tournament selec-
tion, and looking beyond simple niche radius based schemes, a number of interesting approaches have
been suggested. In global optimization, simple clustering [2] evolved into more sophisticated spe-
cialized methods such as topographical selection [33]. The new geometrically motivated approaches
consequently also use the objective value as an additional dimension. Another related method that
does so is the hill-valley test of Ursem [34] that uses additional samples between suspected cluster
centers. If used economically, it can be highly beneficial for multimodal optimization methods to
spend a few additional evaluations, as [35] and, more recently, [36] show. Nearest-better clustering
(NBC) [1] is a similar, geometrically motivated heuristic to detect basins that attempts the same
goal, but without additional sample points. Wessing et al. [37] provide a thorough comparison of
some of these methods and show that ensembles may improve performance.

The second important aspect of multimodal optimization algorithms is the layout of the base
algorithm, how are the different optima pursued? As already described by Mahfoud, there are
both sequential and parallel approaches to this [38]. In particular, the parallel methods are mostly
population-based metaheuristic methods including Evolutionary Algorithms. They use different
means such as e.g. communication topologies [39] between sub-populations in order to prevent loss
of information that would lead to fixation (the search space shrinks to one point). New algorithms
have also been developed leveraging the unique characteristics of other meta-heuristics, e.g., Par-
ticle Swarm Optimization [40] and Differential Evolution [41]. Interested readers can find detailed
information on these methods in a latest survey on niching methods [8].

Sequential algorithms tend to run repeatedly, each time saving a different optimum, and they
do not necessarily possess a population. However, they need to make sure that search is started at
different locations. Beasley has shown that this approach can work well [42], and other algorithms
as the NEA+ [1] also followed this path.
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6 Niching Competition Result Analysis

This section presents a summary of the results and analysis of participating niching algorithms in
the competition series on “Niching Methods for Multimodal Optimization” that took place between
2016 and 2019. These participating algorithms and presented results provide a glimpse of the latest
trends in developing effective niching algorithms and the state-of-the-art in the field.

The competition series aims to provide a common platform allowing for easy and fair comparisons
across different niching algorithms. This niching competition series started its first competition in
2013, at CEC’2013, based on the niching benchmark suite “Benchmark Functions for CEC’2013
Special Session and Competition on Niching Methods for Multimodal Function Optimization” [10].
The competition has been organized by the IEEE CIS Task-force on MMO1. It has been held at
both GECCCO and CEC conferences almost every year since 2013. The competition series has been
playing a key role in engaging with the niching research community, and has received numerous
entries, among which several represents the state-of-the-art niching algorithms in the field [8]. The
competition series has adopted widely-used performance measures, i.e., the Average Peak Ratio
and Success Rate [10], for evaluating the performance of niching methods. Most importantly, the
competition provides a common platform to facilitate niching researchers to evaluate their algo-
rithms’ performance on a diverse set of test functions with different characteristics with increasing
complexity. Different solution accuracy levels have been adopted. Intuitively, the higher the accu-
racy level, the more challenging the benchmark instance becomes for locating and maintaining all
the global optima. Such setup first appeared in [41], while up until the CEC 2013 competition,
the community only considered arbitrary accuracy levels that might lead to inaccurate assessment
of the performance of niching approaches, since a successful located solution measured by a low
accuracy level (e.g., 0.1) could be still far away from the true global optimum. In contrast, higher
accuracy levels require effective search capabilities from the applied algorithm to accurately locate
the basin of attraction of the global optimum.

In 2016, the competition series adopted two new performance measures, to better reflect the
ability and efficiency of a niching algorithm to accurately identify the set of the known global
optima, i.e., how comparable is the provided set of potential solutions with the set of known global
optima, and how fast the global optima are identified by the algorithm. As a result, from 2016
onwards, the competition series included the following three new scenarios to rank participating
niching algorithms based on both existing and newly proposed performance measures (see Section 3
for details on how to compute these):

• Scenario I: This scenario adopts the CEC 2013 competition ranking procedure [10], which is
based on the average Peak Ratio measure value across all benchmark instances and accuracy
measures, to facilitate straightforward comparison with all previous competition entries. This
measure is essentially the same as the recall measure commonly-used in pattern recognition
and information retrieval, where recall is defined as the fraction of the total amount of relevant
instances that were actually retrieved.

• Scenario II: This scenario adopts the (static) F1 measure (as described in Eq. 2, Section 3) to
take into consideration the performance characteristics of the corresponding algorithm in terms of
the recall and precision of its final solution set. The ranking procedure, in this case, is performed
by the average F1 measure value across the different benchmark instances and accuracy levels.
The F1 measure is usually understood as the product of precision and recall. Here, precision is

1 http://www.epitropakis.co.uk/ieee-mmo/
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defined as the fraction of relevant instances among the retrieved instances. In the case of niching
(assuming maximization), precision is the fraction of detected peaks among all the retrieved
solutions. Ideally, if all sought peaks are found and only these in the submitted entry, it would
result in an F1 value of 1 (as both recall and precision would be equal to 1).

• Scenario III: This scenario adopts the (dynamic) F1 measure integral (dynF1 as described in
Eq. 3, Section 3) over the entire run time of an algorithm, for a benchmark instance, to take
into account the computational efficiency of the submitted algorithm. The integral of the F1

measure over time (or dynF1) computes the area-under-the-curve (AUC) of F1, divided by the
maximum number of function evaluations that are allowed for that specific problem instance. It
is, therefore, also bounded by the value of 1. This measure takes into account the time (in terms
of the number of function evaluations) at which the peaks are detected.

It is worth noting that to accurately measure the performance of the algorithms on the three
scenarios, the setup includes the option for competitors to perform actions on the submitted solution
set as the budget is consumed. This is an essential feature to correctly measure the behavior of
algorithms on the third scenario since an algorithm should be able to adapt its decision on which
solutions are characterised as potential global optima through time. As such, three actions have
been defined that gives the option to add and delete solutions from the submitted solution set as
well as to reset it.

The competition result analysis starts with a presentation of the final rankings of the submitted
entries and some initial statistical analysis on the reported results. It then proceeds with a short
analysis per scenario. Table 1 summarizes the competition results on all three scenarios for all
competition entries submitted to GECCO/CEC competitions from 2016 to 2019. For each entry,
the name of the algorithm (Algorithm), the mean Peak Ratio value (µPR), the mean F1 (µF1

) and
the mean dynF1 (µdynF1

) are reported along with their corresponding ranking per scenario. The
last two columns denote the mean rank per algorithm for all three scenarios and the final rank
across all algorithms and all scenarios2. Figure 3 provides the boxplots which show the variations
on these performance measures for each algorithm across all accuracy levels and all benchmark
instances. Note that the mean value of each distribution is marked by a (black) diamond in the
plots. Some of these entries are variants from their original implementation, e.g., HillVallEA19 from
the originally proposed HillVallEA. It is worth pointing out that, in most cases, differences between
these variants are small, and the new versions still retain the original key ideas and principles. The
top three ranking algorithms are highlighted in bold. Clearly, the best-performing entries across
all three scenarios are the HillVallEA19, HillVallEA, and RSCMSA17. It is interesting to note
that ranks in Scenario I and Scenario II are identical for the top six entries, showing remarkable
consistency. Scenario III ranks are the same only for the top two entries. Scenario III ranks for the
3rd and 4th places are the 4th and 3rd places (i.e., swapping places) according to Scenario I and
II. This suggests the amount of computational effort in detecting the sought peaks starts to differ.
For Scenario III, it is worth noting the performance of NEA+ and RLSIS17 algorithms that exhibit
much better performance in Scenario III comparing with the first two scenarios. This is justified
from the fact that both approaches incorporate strong local search algorithms (e.g., CMA-ES) which
can quickly refine potential solutions, and the submitted sets of potential solutions through out the
execution run is always small and includes mostly the best-estimated solutions without adding any
noise.

2 Note that, due to space limitation on graphs, the SSGA-DMRTS-DDC and SSGA-DMRTS-DDC-F entries are

denoted as SSGA-D and SSGA-DF accordingly.
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Scenario I Scenario II Scenario III Mean Final

Algorithm µPR Rank µF1 Rank µdynF1
Rank Rank Rank

ANBNWI-DE 0.8544 5 0.8872 5 0.7268 7 17/3= 5.66 5

ASCGAf 0.6000 18 0.3244 12 0.2139 13 43/3=14.33 12

CMA 0.6680 16 0.1891 15 0.2410 12 43/3=14.33 12
HillVallEA 0.8851 2 0.9297 2 0.8689 2 6 /3= 2.00 2

HillVallEA19 0.8916 1 0.9335 1 0.8827 1 3 /3= 1.00 1
IPOP 0.3522 19 0.3083 13 0.3033 11 43/3=14.33 12

NEA1 0.6088 17 0.1187 16 0.1693 14 47/3=15.66 13

NEA2 0.7458 13 0.2408 14 0.3052 10 37/3=12.33 11
NEA2+ 0.8071 9 0.8548 9 0.8064 5 23/3= 7.66 7

NMMSO 0.8254 8 0.3763 11 0.1549 16 35/3=11.66 10

NMMSO2 0.8254 7 0.3763 10 0.1549 15 32/3=10.66 9
RLSIS 0.8001 10 0.8616 7 0.5903 8 25/3= 8.33 8

RLSIS17 0.7995 11 0.8553 8 0.8007 6 25/3= 8.33 8

RSCMSA 0.8548 4 0.9103 4 0.8299 3 11/3= 3.66 4
RSCMSA17 0.8557 3 0.9106 3 0.8290 4 10/3= 3.33 3

SDE-Ga 0.8329 6 0.8835 6 0.3764 9 21/3= 7.00 6
SSGA 0.7552 12 0.0519 17 0.0293 19 48/3=16.00 14

SSGA-D 0.6793 15 0.0268 19 0.0565 17 51/3=17.00 16

SSGA-DF 0.7380 14 0.0482 18 0.0529 18 50/3=16.66 15

Table 1 Result summary of niching competition results for entries submitted to GECCO/CEC from 2016 to 2019.
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Fig. 3 Boxplots of the performance measure values across all accuracy levels and all benchmark instances. The first
boxplot represents Scenario I (Peak Ratio values), the second boxplot corresponds to Scenario II (static F1 values)

and the third to Scenario III (dynF1 values).

The graphical illustration of the performance distributions (in Figure 3) suggests a more clear
view of the best performing algorithms across different scenarios. In Scenario I, where the peak
ratio measure is used, the best performing algorithms can be clearly identified and are on par with
the reported rankings in Table 1. However, rankings become a bit difficult to distinguish between
the algorithms with mean and median performance values around 0.75. The performance differ-
ences of such entries become more evident in Scenario II, where the static F1 metric considers both
precision and recall of each algorithm. In this scenario, the top performers can be clearly sepa-
rated from the rest ones. The top performers are ANBNWI-DE, HillVallEA, HillVallEA19, RLSIS,



14 Mike Preuss, Michael Epitropakis, Xiaodong Li, and Jonathan Fieldsend

RLSIS17, RSCMSA, and RSCMSA17. In Scenario III, the top-performing group of algorithms in-
cludes HillVallEA and HillVallEA19, which are followed by the RSCMSA variants (RSCMSA and
RSCMSA17). The next group includes RLSIS17, NEA2+, and ANBNWI-DE.

To statistically validate the observed differences among the algorithm across the three scenarios
we perform statistical analysis on the reported performance values. We first employ the Friedman
rank sum test [43] to assess whether at least two algorithms exhibit significant differences in the
observed performance values. The null hypothesis of the Friedman rank sum test states that the
performance distributions of all samples are the same, while the alternative hypothesis states that
at least two samples differ. The statistical analysis proceeds with a posthoc analysis to determine
which pairs of algorithms exhibit significant differences in performance (per scenario). In this step,
pairwise Wilcoxon-signed rank tests are performed on the performance samples of each pair of
algorithms. In addition, to alleviate the issue of having Type I errors given multiple comparisons,
the Bonferroni correction method is applied.

For all three scenarios, the applied Friedman rank-sum tests reveal statistically significant dif-
ferences in performances among the submissions across all considered problem instances and levels
of accuracy, with all p-values being � 10−16. As such, for all scenarios, we proceed to the posthoc
analysis to investigate the pair-wise performance differences among the algorithms. Figure 4 to Fig-
ure 6 present tile-plots to illustrate all pairwise differences in the observed performance samples
across the different scenarios, with the outcomes of the pair-wise tests at the 5% level of significance.
More specifically, the outcomes of the pairwise Wilcoxon-signed rank tests, without and with the
application of the Bonferroni correction method, are provided on the left and right-hand side of
the figures respectively. Each tile corresponds to a pairwise significance test between the algorithms
of the corresponding row and column. The color of the tile indicates if the observed performance
differences were enough to reject the null hypothesis at the 5% significance level (p-value < 0.05). As
such, grey tiles indicate significant differences between the pair of algorithms, while black tiles indi-
cate that the observed performance differences did not support the rejection of the null hypothesis,
i.e., no significant differences were observed.

Both sets of significance tests suggest that the majority of the previously mentioned observations
on the performance differences are statistically significant. The differences between the algorithms
in the top-performing group are significant for the majority of the cases across different scenarios.
There are only a few pairs of algorithms that exhibit similar behaviours, for example, NMMSO,
RLSIS, and RSCMSA variants against some specific cases.

The competition series checks five different accuracy levels with complexity increases substan-
tially as the accuracy level increases. The highest accuracy level being checked is ε = 10−5, where
an algorithm (apart from identifying the regions of different global optimal solutions) has to also
identify corresponding global optima with the highest accuracy. Figure 7 shows the boxplot with
median and the average peak ratio (i.e., Scenario I) of all participants across all benchmark prob-
lem instances for the ε = 10−5 level of accuracy. It is noticeable that for most algorithms, their
average performance is lower than their median performance. It is worth noting that the group of
best-performing algorithms usually incorporate effective local search algorithms, such as CMA-ES,
which enables them to accurately search and identify the global optima when approaching their
basins of attraction. As a result, the top-performing algorithms can still maintain their ranks even
at such a challenging accuracy level.

Similarly, for Scenario II, Figure 8 illustrates the performance distributions on precision, recall,
and the F1 measure of the algorithms across all benchmark problem instances at the highest ac-
curacy level (ε = 10−5). It can be observed that most of the median performance values are lower
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Fig. 4 Pairwise Wilcoxon statistical tests (left) with Bonferroni posthoc analysis (right) on results across all accuracy
levels and all benchmark instances for Scenario I.
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Fig. 5 Pairwise Wilcoxon statistical tests (left) with Bonferroni posthoc analysis (right) on results across all accuracy

levels and all benchmark instances for Scenario II.
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levels and all benchmark instances for Scenario III.
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than their corresponding average values, while there is a clear separation of the top-performing
algorithms from the remaining ones across all metrics. Here, high PR and SR values substantially
affect the performance of an algorithm, where effective local searchers boost the top-performing
algorithms substantially.
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Fig. 8 Boxplots of the precision, recall and static F1 measure for each algorithm across all benchmark instances at
the accuracy level of 10−5.

Figure 9 shows the performance pattern of considered algorithms across the benchmark instances
for the highest accuracy level (ε = 10−5) in a heatmap plot. It is evident that the efficiency and
effectiveness of the top-performing algorithms can be observed across the benchmark instances.
The group of the top-performing algorithms includes HillVallEA19 and HillVallEA, RSCMSA and
RSCMSA17, RLSIS and RLSIS17, the NEA+, and ANBNWI-DE, respectively, which constitute
the most robust algorithms across the different scenarios.
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Fig. 9 Heatmap plot that demonstrates the average dynF1 measure for each algorithm per benchmark instance at
the accuracy level of 10−5.

Here we will focus on providing some analysis on the group of top-performing algorithms. Note
that the Scenario I ranking are fairly consistent with the final ranks, as shown in Table 1. The ranks
are the same for the first 6 algorithms and only differ slightly after that.

The 1st and 2nd places belong to HillVallEA19 and HillVallEA respectively. The HillVallEA vari-
ants [36] employ a Hill-Valley Clustering (HVC) mechanism that combines the Hill-Valley test [34]
with the notion of the nearest better tree. For the Hill-Valley test, the number of sample points to
be checked is adaptively chosen. A mechanism is also in place to check if a solution belongs to the
niches of its nearest better neighbours, then a new cluster is created. This process is repeated for all
individuals during the selection. A restart strategy with an increased population size (starting with
very small size) is adopted to allow elite individuals to continue to survive into the future iterations.
The population size parameters for both the HVC and the core algorithm have been made adapt-
able with different problem sizes. The HillVallEA algorithm (which adopts AMaLGaM-Univariate
as the core algorithm) has been shown to outperform the state-of-the-art niching algorithms of the
niching competition series if more computational budget is given [36].

At the 3rd and 4th places are RSCMSA and RSCMSA17 [44]. These RSCMSA variants are
developed with an effective repelling subpopulation (RS) scheme in conjunction with CMA-ES.
The RS is a hybrid method built on several existing ideas such as the taboo points in Tabu search
[45], normalized Mahalanobis distance [46], and the Hill-Valley function [34]. The rationale behind
the choices of these techniques is to overcome the often made assumptions on distribution, size, and
shape of the basins in MMO, which are impractical in many real-world problems. RSCMSA allows
several subpopulations to search in parallel. The previously identified basins are marked as taboo
points to avoid revisiting these basins in the future. A normalized Mahalanobis distance metric
(instead of the usual Euclidean distance) is adopted to better handle non-spherical basin shape.
The size of each basin is also adaptively defined by some parameters such that different sizes of basins
are considered individually (instead of a uniform parameter defining all basin sizes). The Hill-Valley
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function is used to determine if a solution belongs to a new basin. The core algorithm adopts CMSA-
ES (covariance matrix self-adaptation evolution strategy) [47]. RSCMSA builds on the strength of
CMSA-ES so that it can handle ill-conditioned problems efficiently. To save computational cost,
RSCMSA also employs a restart strategy with an increasing population size.

At the 7th and 8th places are NMMSO and NMMSO2 (according to Scenario I). These algorithms
employ subswarms, with an exploitative particle swarm optimiser directed at each basin of attraction
currently identified. Hill-Valley detection is used to distinguish these basins, and the number of
swarms is unbounded. This means a priori information regarding the number of basins to attain
is not required, but the search can be biased towards those basins of attractions that appear to
be of the higher quality. New swarms are generated to look for additional basins through random
seeding and splitting off exiting swarm members where Hill-Valley detection suggests they are on a
different peak than the swarm they are a member of.

At the 9th place is NEA2+ (according to Scenario I), an enhanced version of NEA (Nearest-
better EA) [48]. NEA builds on the idea of Nearest Better Clustering (NBC) that constructs a
spanning tree to connect each solution to its nearest solution that has better fitness. NBC assumes
that the best solutions are often located at different basins apart from each other and that the
distances between them are usually larger than the average distance between all solutions and their
nearest better neighbours. Therefore, by removing the longest edges (of the spanning tree) that are
larger than the average distance between all solutions and their nearest better neighbour, clusters
of solutions (or niches) can be identified. For each identified niche, NEA2+ employs CMA-ES to
search its basin for an optimal solution.

7 Conclusion

In this chapter we have provided a glimpse of multimodal optimization (MMO), including its back-
ground, MMO formulation, performance measures, its historical and recent development. We also
provided a result summary on the niching competition series between 2016 and 2019, hoping that
such analysis can help capture the latest trends and identify techniques that have been harnessed
to induce effective niching behaviours. Clearly there are still many open research questions, and we
have only witnessed the early stage of development of some new breeds of niching methods.

From the previous section on niching competition results, there are clearly emerging trends in
designing more powerful and robust niching algorithms, e.g., the use of more adaptive schemes for
parameter specification, mechanisms to avoid revisiting the same area of the search space, restart
strategies with incremental population sizes, and the adoption of individually adapted niche sizes.

Beyond developing more competent niching algorithms for just unconstrained and continuous
optimization problems, e.g., as those shown in the CEC 2013 benchmark suite for MMO [10], there
are abundance of research opportunities for further algorithmic development and applications of
niching methods, including the following:

• Most real-world problems are highly constrained and combinatorial in nature, however, existing
niching methods are mostly developed only for handling problems of unconstrained and contin-
uous nature.

• In today’s big data era, many large-scale (high dimensional) problems exist. However, most
existing work on MMO have been confined to studies on low dimensional problems, and those
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which are (relatively) quick to evaluate. The scalability of these methods, be it to problem size
and/or expensiveness, is relatively under-explored.

• Niching methods are often associated with many user-specified parameters, which could make
them difficult to use in practice. Many efforts have been attempted to make niching parameters
adaptive. However, there seems to be little study on how we can make use of the preference
information (which can be easily supplied by a decision maker) for niching. The benefit of this
is that it will break down the barrier and allow niching methods to be more readily accepted by
practitioners.

• Existing niching methods are mostly evaluated using benchmark test functions with known global
optima. However, in a real-world situation, it is common that we do not have prior knowledge
of the global optima (neither number nor best objective values). In such cases, how can we still
measure the performance of a niching method in a meaningful manner?

• Since a decision maker may have a fatigue issue [49] (considering the cognitive load), it may
be unnecessary to locate and present too many global optimal solutions. How many solutions
are adequate, and how do we determine an appropriate number? There could be also some
mechanism for controlling the number of solutions obtained. If a small number is chosen, then
the distribution of the solutions in the set can be made more sparse (to allow a better variety of
selections by the decision maker).

• Since many design problems, e.g., engineering structural design problems are typically multi-
modal [50], what would be the best approach to hybridize engineering optimization methods
with niching methods without too much computational cost?

• Often real-world optimisation problems exhibit uncertainty or noise. There has been very little
work on how optimizers developed for MMO cope on such problems.

Niching methods, which are specifically designed to locate multiple solutions in a single optimiza-
tion run, are a common task that transcends the disciplinary boundaries [8]. In many real-world
applications, we can see the prevalent need of discovering more than one optimal solutions, which
can provide alternative solutions and additional information (of the problem under study) to a
decision maker. This is in sharp contrast to the conventional view of single-optimum seeking be-
haviour of an optimization algorithm. As we face ever more challenging and complex problems in
the big data era, there will be increasing demands on designing more powerful niching algorithms
for handling ever more challening real-world MMO problems. Niching as a research topic is cur-
rently experiencing some new found rejuvenation. It is our hope that this chapter will draw more
attention to the significance and benefits of doing niching, and attract even more researchers to
contribute to this classic and yet fascinating area of research.
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