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Abstract—In this paper we use a divide-and-conquer approach
to tackle large-scale optimization problems with overlapping
components. Decomposition for an overlapping problem is chal-
lenging as its components depend on one another. The existing
decomposition methods typically assign all the linked decision
variables into one group, thus cannot reduce the original problem
size. To address this issue we modify the Recursive Differential
Grouping (RDG) method to decompose overlapping problems, by
breaking the linkage at variables shared by multiple components.
To evaluate the efficacy of our method, we extend two existing
overlapping benchmark problems considering various level of
overlap. Experimental results show that our method can greatly
improve the search ability of an optimization algorithm via
divide-and-conquer, and outperforms RDG, random decomposi-
tion as well as other state-of-the-art methods. We test an adaptive
allocation of computational resources to components based on
a measure of contribution, but this does not facilitate solving
overlapping problems. We further evaluate our method using
the CEC’2013 benchmark problems and show that our method
is very competitive when equipped with a component optimizer.

Index Terms—Cooperative co-evolution, large-scale continuous
optimization, overlapping problem, variable interaction, problem
decomposition.

I. INTRODUCTION

Many real-world optimization problems are composed of
several sub-problems that possibly depend on each other [1]–
[4]. Exploiting this module structure can greatly facilitate the
problem solving process [5], [6]. This is particularly useful
when tackling a large-scale problem, where the search space is
very large and the computational resource is limited. The vari-
able interaction structure can be used to decompose a large-
scale problem into sub-problems that are solved individually.
This divide-and-conquer approach is known as cooperative co-
evolution (CC) and has achieved many successes when used
to solve large-scale optimization problems [6]–[10].

If a problem consists of separable components, e.g., Fig.
1a, it is possible to generate an optimal solution by solving
each component independently. However in many real-world
applications, e.g., optimizing the wine supply chain [3] and
the transportation of water tanks [4], the problem components
usually interact with each other. What is the best strategy to
decompose these problems? In this paper we try to answer
this question using a particular type of problems in which the
components share some decision variables, e.g., Fig. 1b.
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Fig. 1: An example of the problems with (a) separable and
(b) overlapping components. In (a) two components are com-
pletely separable from each other; while in (b) two components
share a decision variable x4.

In the CC literature numerous methods have been proposed
to decompose a black-box optimization problem. However
they are typically ineffective when tackling problems with
overlapping components. The random grouping (RG) [11] and
delta grouping [12] do not explicitly consider the underlying
interaction structure of decision variables. The intelligent de-
composition methods including extended differential grouping
(XDG) [13], global differential grouping (GDG) [14], recur-
sive differential grouping (RDG) [10] and differential grouping
2 (DG2) [15] assign all the linked variables (i.e., variables that
interact both directly and indirectly [16]) into one group, thus
in many cases can not reduce the problem size.

The above methods partition the decision variables of a
given problem into mutually exclusive subsets. Differently
there are other methods that assign some decision variables to
more than one subset [17]–[22]. For example the overlapped
CC [21] allocates “influential” variables to multiple groups and
the statistical variable interdependence learning [18] identities
a linkage group for each decision variable based on non-
monotonicity detection. However it is non-trivial to design a



good communication strategy for the components that share
some common variables. Thus we will focus on the mutually
exclusive decomposition in this paper.

In the genetic algorithm literature, there have been some
works that construct overlapping building blocks to handle
overlapping problems [5], [23]–[26]. For example in [23], the
linkage groups are identified by non-monotonicity detection
and loosely linked variables are removed from the linkage
groups. In [24], [25] a Bayesian network is built based on
promising candidate solutions that implicitly captures the
problem structure. In [5] the pairwise mutual information
between decision variables is calculated based on promising
candidate solutions, and a clustering algorithm is then used
to group variables into overlapping linkage groups. However
these methods are computationally expensive and are not
directly applicable to CC.

In this paper we tackle large-scale overlapping problems
using CC. To this end, we modify the RDG method to
effectively decompose an overlapping problem. RDG is chosen
due to its decomposition efficiency; it can decompose an n-
dimensional problem using O

(
n log(n)

)
function evaluations

(FEs). The idea of our modification is to break the linkage
at variables shared by multiple components (see Fig. 3 in
Section III for an example). In our modification we recursively
identify the decision variables that directly interact with a
given variable under consideration and place them into a
group. If the current group size is less than a given threshold,
we will further examine the interaction between the current
group and remaining variables. Otherwise we treat the current
group as a component without further identifying any indirect
interaction. The threshold is used to control the group size.

To evaluate the efficacy of our proposed method, we extend
two overlapping problems in the CEC’2013 benchmark suite
[27], by varying the number of shared variables between
components. Experimental results show that our method sig-
nificantly improves over RDG, and outperforms other methods
when embedded into a CC framework to solve the extended
overlapping problems. We then try to boost the performance
of CC via adaptively allocating computational resources to
components based on their contributions to the overall fitness
improvement. However the solution quality generated by a
typical contribution-based CC model [28] is worse than that of
standard CC. We infer the reason may partially attribute to the
dependence of components in overlapping problems. Finally
we show that our method equipped with covariance matrix
adaptation – evolutionary strategy (CMA-ES) [29] produces
overall the best solution quality when compared against 9 other
state-of-the-arts on the CEC’2013 benchmark suite.

The remainder of this paper is organized as follows. In the
next section, we describe CC and briefly review the related
methods. Our modified RDG is described in Section III, and
evaluated using numerical experiments in Section IV. In the
last section, we conclude the paper and suggest possible
directions for future work.

II. BACKGROUND AND RELATED WORK

In this section, we describe CC [7] that tackles a large-scale
optimization problem via a divide-and-conquer strategy. CC
(Algorithm 1) typically consists of two stages: 1) decomposi-
tion: dividing a given high-dimensional problem into a number
of low-dimensional sub-problems; and 2) optimization: solving
each sub-problem cooperatively using an optimizer.

A. Decomposition Stage

The efficacy of CC heavily relies on a proper problem
decomposition, that is to decompose a problem based on its
underlying variable interaction structure. Two variables inter-
act if they influence each other in the optimization process.
A decomposition is considered as “good” if it minimizes the
inter-group and maximizes the intra-group variable interac-
tions [5], [6]. Generally, there are two different approaches
that can be used to identify variable interactions based on
perturbation: 1) non-monotonicity detection [23], and 2) non-
linearity detection [30].

The non-monotonicity detection method identifies variable
interactions by detecting non-monotonicity in fitness function
when perturbing decision variables. If the monotonicity of
fitness function with respect to variable xi does not change
for different values of xj , xi and xj are independent; oth-
erwise they interact. Decomposition methods in this category
include variable interaction learning [9], statistical variable in-
terdependence learning [18] and fast variable interdependence
searching [31]. These methods may require more samples to
identify a non-monotonicity relationship, thus are typically
more computationally expensive than non-linearity detection.

The non-linearity detection method identifies variable inter-
actions by detecting the non-linearity in fitness changes when
perturbing decision variables. If the fitness change induced by
perturbing decision variable xi varies for different values of
xj , xi and xj interact. The decomposition methods in this line
include differential grouping [6], XDG, GDG, DG2 and fast
interdependency identification [32]. These methods typically
require O(n2) FEs for decomposing an n-dimensional prob-
lem. The RDG method has reduced the decomposition cost to
O(n log(n)). We will further describe RDG in Section II-C,
as our proposition in Section III is closely related to it.

B. Optimization Stage

In the optimization stage, the sub-problems are optimized
iteratively using an optimizer in a cooperative manner. When
optimizing the ith sub-problem, a context vector is used to
assist the evaluation of the individuals in the sub-problem.
The context vector is a complete candidate solution, typically
consisting of the best sub-solutions from each sub-problem.
The context vector (excluding the ith sub-solution) is used
to combine with an individual in the ith sub-problem, so a
complete candidate solution can be formed and evaluated. The
context vector will be updated if a better sub-solution is found
for the ith sub-problem.



Algorithm 1 Cooperative Co-evolution
1: Divide decision variables X into components Xi, 1 ≤ i ≤ m
2: Initialize a context vector x∗ (a complete candidate solution)
3: for j from 1 to max cycles do
4: for i from 1 to m do
5: Sample sub-solutions xis for Xi using an optimizer
6: Evaluate the fitness of each xi, combined with x∗

7: Update x∗ if a better sub-solution xi is found
8: end for
9: end for

10: return the best solution found x∗

The original CC [7] optimizes sub-problems in a round-
robin fashion, thus computational resources are evenly dis-
tributed to each sub-problem. However if the sub-problems
contribute very differently to the overall fitness value, such
an allocation policy may be inefficient. Thus there is a recent
trend to adaptively allocate computational resources to sub-
problems based on their contribution to the overall fitness
improvement [28], [33]–[38]. In Section IV-D, we will em-
pirically investigate the efficacy of contribution-based CC on
overlapping problems.

C. Recursive Differential Grouping

In this sub-section, we describe the RDG method in detail
and discuss the issues of RDG when dealing with overlapping
problems. The RDG method identifies the interaction between
two subsets of variables X1 and X2 based on a measure of
non-linearity detection (see Fig. 2 for an example):

Theorem 1. (Sun et al. [10]) Let f : Rn → R̄ be an objective
function; X1 ⊂ X and X2 ⊂ X be two mutually exclusive
subsets of decision variables: X1 ∩ X2 = ∅. X1 and X2

interact, if there exist a candidate solution x∗ and sub-vectors
a1, a2, b1, b2, such that the non-linearity term λ is non-zero:

λ(x,x1,x2) := |∆1 −∆2| 6= 0, (1)

where

∆1 := f(x∗)|x1=a1,x2=b1 − f(x∗)|x1=a2,x2=b1 , (2)

∆2 := f(x∗)|x1=a1,x2=b2 − f(x∗)|x1=a2,x2=b2 . (3)

Here, f(x∗)|x1=ai,x2=bj calculates the objective value of x∗

when replacing X1 with ai, and X2 with bj .

In theory, any positive value of the non-linearity term λ
implies an interaction between the subsets of decision variables
under examination. However in practice, the value of λ for
separable decision variables may be non-zero, due to the
computational round-off errors incurred by the floating-point
operations [15]. In [39] we applied the technique suggested by
DG2 [15] to estimate an upper bound on the round-off errors
associated with the calculation of the non-linearity term λ:

ε := γ√n+2

(
|f(x∗1,1)|+|f(x∗2,1)|+|f(x∗1,2)|+|f(x∗2,2)|

)
. (4)

Here f(x∗i,j) stands for f(x∗)|x1=ai,x2=bj
; n is the dimen-

sionality; and γk := kµM/(1−kµM), where µM is a machine
dependent constant. The upper bound is then used as the
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Fig. 2: The rationale behind the non-linearity detection method
when identifying (a) separable and (b) non-separable subsets
of decision variables. In the separable contour plot (a), the
fitness change induced by perturbing the decision variable
subset X1 is the same for different values of X2. However in
the non-separable contour plot (b), the fitness change induced
by perturbing X1 varies for different values of X2.

threshold value to distinguish between separable and non-
separable variables for RDG2 [39].

With Theorem 1, the interaction between two subsets of
decision variables (X1 and X2) can be identified by the
following procedure:

1) Set all the decision variables to the lower bounds (lb)
of the search space (xl,l);

2) Perturb the decision variables X1 of xl,l from the lower
bounds to the upper bounds (ub), denoted as xu,l;

3) Calculate the fitness change ∆1 between xl,l and xu,l;
4) Perturb decision variables X2 of xl,l (xu,l) from lb to

the middle of the search space, denoted as xl,m (xu,m);
5) Calculate the fitness change ∆2 between xl,m and xu,m;
6) If the difference (λ) between ∆1 and ∆2 is greater than

the threshold ε, X1 and X2 interact.
The two subscripts of x denote the values of X1 and X2

respectively: ‘l’ is lower bound; ‘u’ is upper bound; and ‘m’
is the mean of lower and upper bounds.

The decomposition procedure of RDG can be briefly sum-
marized into three steps: 1) identifying the decision variables
that interact with a selected variable xi, and placing them
into a subset X1; 2) recursively identifying and grouping
the decision variables that interact with any variable in X1,
until X1 is independent of the remaining variables; and 3)
repeating step 1) and 2) until all variables have been grouped.
Thus in an overlapping problem, all decision variables will be
assigned into one group as they are all linked (either directly
or indirectly). In the next section we will modify the RDG
method to effectively decompose an overlapping problem.

III. DECOMPOSITION FOR OVERLAPPING PROBLEMS

In this section we modify the RDG method to effectively
decompose an overlapping problem. The basic idea is to break
the linkage at shared variables, by placing shared variables into
either of the overlapping components. Considering an example
in Fig. 1b, our desired decomposition is to assign x4 to either



x1

x2

x3

x4

x5

x6

x7

(a)

x1

x2

x3

x4

x5

x6

x7

(b)

Fig. 3: The desired decompositions (a) or (b) for the over-
lapping problem in Fig 1b. The idea is to break the linkage
at shared variables, such that the level of interaction between
components is low.

of the two components as shown in Fig. 3. For simplicity, we
refer to our modification as RDG3, to distinguish it from the
previous versions proposed in [10], [39].

The same as its predecessors, RDG3 begins by identifying
the interaction between the first decision variable x1 and the
remaining decision variables. If no interaction is detected,
x1 will be placed in the separable decision variable set S,
and the algorithm will move on to the next decision variable
x2. If any interaction is detected, the remaining decision
variables will be randomly divided into two (nearly) equally-
sized groups G1 and G2. Then the interaction between x1 and
G1, x1 and G2 will be identified respectively. This process is
recursively conducted until all the individual decision variables
that interact with x1 are identified and placed in the decision
variable subset X1 with x1.

In the next step, a threshold εn is imposed on the size of
X1 to handle overlapping problems. If the size of X1 is less
than εn (|X1| < εn), RDG3 further examines the interaction
between X1 and the remaining variables (excluding X1) to
identify the variables that indirectly interact with x1 (linked by
other variables). If any interaction is identified, the interacting
decision variables will be placed into X1. This process is
repeated until |X1| ≥ εn or no interaction can be further
detected between X1 and the remaining variables (line 9). The
variables in X1 will be treated as a non-separable group.

The RDG3 method moves on to the next decision variable
that has not been grouped (xi), and the above process is re-
peated until all decision variables have been grouped. Different
from its predecessors, RDG3 further divides the separable
variables (stored in S) into small groups with an interval εs
(line 23 to 30). That is to break the set S into subsets at
the εs, 2εs, · · · kεs elements, where k =

⌊
|S|/εs

⌋
. Finally

RDG3 returns the identified separable variable groups (seps)
and non-separable variable groups (nonseps) as the outputs.

Algorithm 2 RDG3 for Overlapping Problems
Require: f , ub, lb, εn, εs, n

1: Initialize seps and nonseps as empty groups
2: Initialize S as empty (to store separable variables)
3: Set all decision variables to the lower bounds: xl,l ← lb
4: Calculate the fitness: yl,l ← f(xl,l)
5: Assign the first variable x1 to the variable subset X1

6: Assign the rest of variables to the variable subset X2

7: while X2 is not empty do
8: [X∗1 ] ← INTERACT(X1, X2, xl,l, yl,l, n)
9: if |X∗1 | ≥ εn or |X∗1 | = |X1| then

10: if X1 contains one decision variable then
11: Add X1 to S for further decomposition
12: else
13: Add X1 to nonseps as a component
14: end if
15: Empty X1 and X∗1
16: Assign the first variable of X2 to X1

17: Delete the first variable in X2

18: else
19: X1 ← X∗1
20: Delete the variables of X1 from X2

21: end if
22: end while
23: while S is not empty do
24: if |S| < εs then
25: Add S as a group to seps, and empty S
26: else
27: Add the first εs variables in S as a group to seps
28: Delete the first εs variables from S
29: end if
30: end while
31: return seps and nonseps

1: function INTERACT(X1, X2, xl,l, yl,l, n)
2: xu,l ← xl,l; xu,l(X1)← ub(X1) //Set X1 to the ub
3: Calculate the fitness of xu,l: yu,l ← f(xu,l)
4: Calculate the fitness change: δ1 ← yl,l − yu,l
5: xl,m ← xl,l; xl,m(X2)←

(
lb(X2) + ub(X2)

)
/2

6: xu,m ← xu,l; xu,m(X2)←
(
lb(X2) + ub(X2)

)
/2

7: Calculate the fitness: yl,m ← f(xl,m); yu,m ← f(xu,m)
8: Calculate the fitness change: δ2 ← yl,m − yu,m
9: Estimate ε← γ√n+2

(
|yl,l|+ |yu,l|+ |yl,m|+ |yu,m|

)
10: if |δ1 − δ2| > ε then
11: if X2 contains one variable then
12: X1 ← X1 ∪X2

13: else
14: Divide X2 into equally-sized groups G1, G2

15: [X1
1 ] ← INTERACT(X1, G1, xl,l, yl,l, ε)

16: [X2
1 ] ← INTERACT(X1, G2, xl,l, yl,l, ε)

17: [X1] ← X1
1 ∪X2

1

18: end if
19: end if
20: return X1

21: end function

The main difference between RDG3 and its predecessors is
highlighted in red in Algorithm 2.

We introduce the threshold εn and εs in the hope that
a large-scale problem can be decomposed into reasonably-
sized components. On one hand it is a waste of computa-
tional resources to optimize a very small-sized component.
On the other hand a large-sized component is typically not



manageable by optimization algorithms. More importantly by
tuning the threshold εn, it is possible to break the linkage at
shared variables for an overlapping problem. Again consider
the example in Fig. 1b and εn = 4. If searching from x1,
the variables {x1, x2, x3, x4} will be placed in a subset X1

after the first step. As |X1| ≥ εn, X1 will be treated as a
component. The remaining variables {x5, x6, x7} will be iden-
tified as another component. The decomposition in this case
is identical to the one shown in Fig. 3a. Similarly if starting
from x7, the decomposition is identical to Fig. 3b. Note that
the decomposition of RDG3 is dependent on the order in which
variables are explored. Designing a sophisticated exploration
order for a black-box optimization problem is non-trivial and
requires additional computational effort, thus we simply use
variable index as the exploration order in this paper.

IV. EXPERIMENTS

In this section we use simulation experiments to evaluate
the efficacy of RDG3. All experiments were performed in
MATLAB. The source codes of RDG3 and the benchmark
problems used in our experiments are available online.1

A. Benchmarking Overlapping Problems

To systemically evaluate the efficacy of RDG3, we extend
two CEC’2013 overlapping problems (f13 and f14) [27],
considering various level of overlap between components.

The CEC’2013 f13 and f14 consist of 20 components, and
the adjacent components are designed to share m (m = 5)
common decision variables to impose overlap. The overlap-
ping effects in f13 and f14 are very different; the former is
conforming and the latter is conflicting [27], [40]. In a problem
with conforming overlapping components, a shared decision
variable has the same optimal value across overlapping com-
ponents. For example, if decision variable xi is in component
C1 and C2, the optimal value of xi in C1 is also optimal
for C2. However in a problem with conflicting overlapping
components, the optimal value of a shared decision variable
may not be the same in different components.

We extend the CEC’2013 f13 and f14, by varying the
parameter m from 1 to 10, resulting in 10 benchmark problems
for each of the conforming and conflicting categories. We
denote the conforming and conflicting problems as fo,m and
fl,m respectively, where m = 1, 2 · · · 10. Therefore, a suite of
20 overlapping benchmark problems are created in total. Each
problem is designed to have 20 components with 1000 decision
variables in total. As adjacent components share m decision
variables, the problem dimension is thus n = 1000 − 19m.
The global optimum for a conforming problem is 0, as all
components can be minimized to 0 simultaneously. However
the optimal value for a conflicting problem is unknown. As a
shared decision variable may have different optimal values in
overlapping components, it is not possible to simultaneously
solve each component to optimality 0. In this case, the global
optimum of the whole problem is thus greater than 0.

1https://bitbucket.org/yuans/rdg3

B. Decomposition Effects on Overlapping Problems

Methodology: The RDG3 method is used to decompose the
20 overlapping benchmark problems designed in Section IV-A.
Different threshold values εn = 0, 50, 100, 1000 are tested.
As the dimensions of all the benchmark problems are less
than 1000, RDG3 with εn = 1000 is expected to group all
variables into a component. It has been found that neither a
very large nor small value of εs is beneficial to the performance
of CC [41]. Thus we simply set εs to 100 in this paper. The
number of components generated (nc), the average component
size (s̄) and the number of FEs used are reported in Table
I. We then use CMA-ES [29] to solve the components in a
round-robin fashion. The parameter setting for CMA-ES is
consistent with the original paper. The computational budget
for the decomposition and optimization stages is set to 3×106

FEs in total. The mean of best solutions (ȳ) generated from
40 independent runs is reported in Table I; the best results are
determined using Wilcoxon rank-sum test (significance level
= 0.05) with Holm p-value correction [42].

Results: We observe in Table I that as εn increases, the
number of components (nc) generated by RDG3 decreases;
the average component size s̄ increases; and the number of
FEs used in decomposition is roughly the same. RDG3 with
εn = 1000 is significantly outperformed by the ones with
other parameter settings. In fact when εn = 1000, RDG3 is
equivalent to the RDG (or RDG2) method, that groups all
linked variables into one component. The results suggest that
overlapping problems can benefit from a divide-and-conquer
strategy, and can potentially be solved in a more effective way.
Further εn = 50 is a robust parameter setting for RDG3.
It significantly outperforms the other parameter settings on
conforming problems (fo,1 to fo,10); and generates comparable
solution quality with εn = 0 on conflicting problems (fl,0 to
fl,10). Thus we will use εn = 50 in the following experiments.
Last we note the threshold value used to identify variable
interactions (Eq. 4) is very conservative, resulting in some non-
separable variables being classified as separable. This is why
RDG3 with εn = 1000 generates more than one component
for some benchmark problems.

C. Comparison on Overlapping Problems

Methodology: We compare the performance of RDG3
against DG2, RG, and delta grouping when incorporated with
CMA-ES to solve the overlapping benchmark problems. DG2
is a state-of-the-art method, however similar to RDG it cannot
effectively decompose overlapping problems. The RG method
groups decision variables randomly in each evolutionary cycle,
while delta grouping groups variables based on a measure of
averaged variable differences. As a baseline, we also compare
RDG3 to a variant of RG, denoted as RG2, that randomly
groups decision variables in the first iteration, and remains
unchanged until the end of an optimization run. For RDG3,
εn is set to 50 and εs is 100; for RG, RG2, and delta grouping
the maximal component size is set to 100. The mean and
standard deviation of the best solutions generated in 40 runs



TABLE I: Decomposition and optimization results of RDG3 with different εn values on the overlapping benchmark problems.
nc is the number of components generated; s̄ is the average component size; FEs is the number of function evaluations used
in decomposition; and ȳ is the mean of best solution quality generated by a CC algorithm from 40 independent runs. The best
solution quality is in bold, according to the Wilcoxon rank-sum tests (significance level = 0.05) with Holm p-value correction.

Fun εn = 0 εn = 50 εn = 100 εn = 1000
nc s̄ FEs ȳ nc s̄ FEs ȳ nc s̄ FEs ȳ nc s̄ FEs ȳ

fo,1 28 35 18778 5.30e+05 18 54 19108 1.31e+04 17 57 19111 2.16e+04 8 122 18037 8.12e+06
fo,2 21 45 18220 3.78e+05 14 68 18112 1.46e+04 9 106 17482 7.20e+04 3 320 16930 5.32e+06
fo,3 28 33 17965 9.90e+05 13 72 17431 3.65e+03 11 85 16633 1.20e+04 1 943 15454 1.91e+06
fo,4 24 38 17644 1.40e+05 13 71 17293 6.45e+03 10 92 17044 5.84e+03 3 308 15937 2.59e+06
fo,5 18 50 16339 1.27e+04 14 64 15988 8.27e+03 8 113 15913 7.98e+04 2 452 15187 9.24e+05
fo,6 26 34 16546 1.02e+04 16 55 16876 3.17e+03 14 63 16972 7.49e+04 3 295 14602 1.48e+06
fo,7 20 43 15532 4.07e+05 15 57 15622 5.03e+04 10 86 15025 9.28e+05 1 867 14554 1.78e+06
fo,8 21 40 15814 2.91e+06 14 60 14893 4.34e+05 8 106 14296 5.42e+04 1 848 13192 1.20e+06
fo,9 18 46 14464 1.77e+03 13 63 14476 1.90e+03 9 92 14218 2.24e+04 1 829 14218 1.25e+06
fo,10 27 30 13969 1.24e+06 15 54 14503 1.29e+05 12 67 14185 2.47e+05 4 202 12979 1.35e+06

fl,1 21 46 18793 7.84e+05 15 65 17971 8.57e+05 12 81 17632 4.12e+06 2 490 17035 1.50e+07
fl,2 21 45 18682 1.08e+07 12 80 17854 1.14e+07 8 120 16978 2.70e+07 1 962 17026 4.00e+07
fl,3 21 44 17872 1.03e+07 13 72 17605 1.18e+07 10 94 17482 1.10e+07 2 471 16951 5.75e+07
fl,4 19 48 17047 1.11e+07 14 66 16273 1.15e+07 10 92 15799 3.02e+07 1 924 15010 3.46e+07
fl,5 21 43 16669 4.45e+06 13 69 16288 5.56e+06 9 100 16438 4.94e+06 1 905 16150 2.74e+07
fl,6 17 52 14932 1.14e+08 13 68 14902 1.13e+08 11 80 14848 1.11e+08 1 886 16216 1.44e+08
fl,7 23 37 16324 1.58e+09 12 72 16198 1.60e+09 8 108 16123 1.62e+09 1 867 16582 1.76e+09
fl,8 17 49 14848 2.11e+07 14 60 14887 2.22e+07 8 106 14812 2.51e+07 1 848 14614 4.81e+07
fl,9 18 46 14701 1.06e+08 13 63 14962 1.05e+08 9 92 14926 1.12e+08 1 829 14647 1.64e+08
fl,10 21 38 14698 8.03e+07 10 81 14863 8.26e+07 8 101 14881 8.16e+07 1 810 13381 1.02e+08

TABLE II: Optimization results of CC-DG2, RG, RG2, Delta and RDG3, as well as CBCC-RDG3 when used to solve the 20
overlapping benchmark problems. CC-RDG3 significantly outperforms the other algorithms across the benchmark suite.

Fun CC-DG2 CC-RG CC-RG2 CC-Delta CC-RDG3 CBCC-RDG3
mean std mean std mean std mean std mean std mean std

fo,1 3.00e+06 4.74e+05 1.94e+11 2.68e+11 4.59e+06 1.64e+07 2.99e+11 1.67e+11 1.31e+04 4.56e+03 8.39e+06 1.52e+07
fo,2 3.20e+06 3.22e+05 7.27e+10 2.77e+10 2.84e+06 7.74e+06 8.71e+10 1.64e+10 1.46e+04 8.61e+03 3.46e+07 2.67e+07
fo,3 3.18e+06 3.80e+05 8.46e+10 2.03e+10 1.16e+06 1.40e+06 5.67e+10 8.03e+09 3.83e+03 3.41e+03 1.07e+06 2.78e+05
fo,4 4.22e+06 4.54e+05 6.78e+10 1.62e+10 8.59e+05 3.44e+05 5.56e+10 1.10e+10 6.72e+03 5.24e+03 2.48e+05 1.53e+05
fo,5 2.39e+06 2.36e+05 6.81e+10 1.83e+10 3.15e+08 7.94e+08 8.19e+10 2.01e+10 8.24e+03 3.09e+03 6.28e+04 2.83e+04
fo,6 4.05e+06 4.75e+05 7.83e+10 4.09e+10 7.95e+07 3.63e+08 4.91e+10 1.29e+10 2.92e+03 2.76e+03 2.76e+05 1.45e+05
fo,7 1.93e+06 2.52e+05 9.91e+10 9.81e+10 1.89e+06 5.81e+06 7.45e+10 1.56e+10 5.17e+04 2.99e+04 2.87e+08 1.49e+08
fo,8 1.93e+06 2.92e+05 7.12e+10 2.32e+10 3.25e+08 1.49e+09 1.15e+11 2.15e+10 4.84e+05 4.76e+05 9.42e+08 4.66e+08
fo,9 1.81e+06 2.70e+05 7.97e+10 2.79e+10 7.38e+05 4.94e+05 6.07e+10 1.42e+10 2.01e+03 1.08e+03 6.74e+07 2.55e+07
fo,10 3.51e+06 5.13e+05 1.11e+11 4.28e+10 2.11e+07 5.64e+07 2.42e+11 1.24e+11 1.23e+05 8.28e+04 8.63e+07 5.83e+07

fl,1 4.40e+07 3.90e+06 9.69e+11 3.20e+11 4.15e+06 9.66e+05 9.04e+11 2.28e+11 8.64e+05 5.13e+04 4.32e+10 1.49e+09
fl,2 5.12e+07 4.31e+06 1.36e+12 4.57e+11 1.55e+07 1.97e+06 1.09e+12 2.26e+11 1.14e+07 5.30e+05 6.55e+08 4.79e+08
fl,3 4.57e+07 2.52e+06 3.90e+12 4.95e+12 1.44e+07 2.17e+06 2.39e+12 5.03e+11 1.17e+07 4.51e+05 1.76e+10 4.30e+09
fl,4 7.92e+07 7.68e+06 1.11e+12 3.55e+11 1.47e+07 1.58e+06 1.18e+12 2.31e+11 1.15e+07 4.27e+05 1.23e+07 6.49e+05
fl,5 3.58e+07 2.49e+06 8.43e+11 2.49e+11 1.53e+09 6.81e+09 7.85e+11 1.98e+11 5.57e+06 2.83e+05 1.62e+09 2.06e+09
fl,6 1.51e+08 3.09e+06 9.92e+11 3.64e+11 1.18e+08 2.26e+06 7.71e+11 1.69e+11 1.13e+08 2.25e+06 6.80e+09 1.22e+10
fl,7 1.76e+09 1.21e+08 1.24e+12 5.15e+11 1.67e+09 1.08e+08 9.84e+11 2.30e+11 1.59e+09 7.11e+07 1.75e+09 1.38e+08
fl,8 5.64e+07 2.73e+06 1.76e+12 8.62e+11 2.52e+07 1.36e+06 3.38e+12 1.50e+12 2.22e+07 1.48e+06 1.88e+08 1.32e+08
fl,9 1.69e+08 1.55e+07 1.16e+12 3.32e+11 1.11e+08 4.10e+06 1.33e+12 2.19e+11 1.05e+08 5.30e+06 3.26e+08 2.60e+08
fl,10 1.07e+08 3.10e+06 1.45e+12 4.33e+11 2.01e+09 6.03e+09 1.80e+12 3.31e+11 8.27e+07 2.49e+06 2.27e+09 2.53e+09

are reported in Table II. The same statistical tests are used as
before to identify the best results.

Results: RDG3 significantly outperforms the DG2 method
across the benchmark suite. DG2 aims at grouping all linked
variables into one component, thus all decision variables result
in one group for overlapping problems. By decomposing
overlapping problems into components that are optimized
cooperatively, RDG3 is able to greatly improve the solution
quality. However a “blind” decomposition, i.e., not explicitly
considering variable interaction structure, is detrimental to
optimization for overlapping problems. This can be inferred
from the results generated by RG, RG2 and delta grouping.

D. Contribution-Based CC on Overlapping Problems
Methodology: A contribution-based CC (CBCC) allocates

computational resources to components based on their contri-
bution to the overall fitness improvement. A number of studies
has reported that CBCC is more effective than CC when used
to solve problems with separable components [28], [33]–[38].
Here we evaluate the efficacy of a CBCC algorithm on overlap-
ping problems. In each evolutionary cycle, the component that
contributes the most to overall fitness improvement is selected
and evolved. We use the exponential smoothing method to
measure the contribution of a component [28]:

U = αÛ + (1− α)(ŷb − yb)/ŷb, (5)



TABLE III: Optimization results of CC-GDG, DG2, RDG, RDG2, RDG3 as well as CBCC-RDG3 when used to solve the
CEC’2013 benchmark problems. The best solution quality is in bold, determined by Wilcoxon rank-sum tests (significance
level = 0.05) with Holm p-value correction.

Fun CC-GDG CC-DG2 CC-RDG CC-RDG2 CC-RDG3 CBCC-RDG3
mean std mean std mean std mean std mean std mean std

f1 1.04e-20 9.90e-22 5.52e+05 5.88e+04 2.90e+05 3.28e+04 2.78e+05 3.17e+04 9.67e-19 1.23e-19 1.14e-18 1.27e-19
f2 1.54e+03 7.52e+01 4.69e+03 1.81e+02 4.69e+03 1.78e+02 4.71e+03 2.05e+02 2.36e+03 1.11e+02 2.31e+03 1.06e+02
f3 2.04e+01 4.28e-02 2.04e+01 5.21e-02 2.04e+01 4.96e-02 2.04e+01 4.35e-02 2.04e+01 6.21e-02 2.04e+01 5.95e-02
f4 7.31e+04 3.72e+04 8.52e+06 8.54e+05 5.83e+06 6.32e+05 5.83e+06 6.32e+05 1.61e+04 9.06e+03 4.29e+04 7.21e+04
f5 2.23e+06 4.24e+05 2.19e+06 3.51e+05 2.40e+06 4.36e+05 2.23e+06 3.23e+05 2.27e+06 3.02e+05 2.04e+06 3.13e+05
f6 9.96e+05 1.70e+03 9.96e+05 3.31e+02 9.96e+05 1.48e+02 9.96e+05 6.55e+01 9.96e+05 4.71e+02 1.00e+06 2.48e+04
f7 3.73e+07 1.30e+07 1.05e+03 2.79e+02 8.12e-17 2.17e-16 4.05e-16 1.49e-15 1.01e-03 3.26e-03 1.71e-21 2.39e-22
f8 1.28e+08 3.52e+07 3.85e+07 1.09e+07 8.51e+06 2.92e+06 8.70e+06 3.61e+06 1.24e+07 5.01e+06 7.11e+03 2.30e+03
f9 1.67e+08 3.88e+07 1.51e+08 2.87e+07 1.65e+08 4.16e+07 1.67e+08 2.66e+07 1.45e+08 3.15e+07 1.57e+08 2.90e+07
f10 9.11e+07 1.20e+06 9.13e+07 1.51e+06 9.10e+07 1.29e+06 9.11e+07 1.31e+06 9.11e+07 1.43e+06 9.16e+07 2.18e+06
f11 2.53e+07 2.69e+06 2.47e+05 2.37e+05 1.67e+07 1.62e+06 8.69e+03 1.24e+04 9.71e+03 1.46e+04 2.18e-13 1.02e-12
f12 1.00e+03 3.91e+01 1.01e+03 5.81e+01 9.81e+02 7.30e+01 9.81e+02 7.30e+01 9.88e+02 9.31e+00 7.00e+02 1.46e+02
f13 2.36e+06 3.38e+05 2.43e+06 3.70e+05 2.47e+06 3.83e+05 9.31e+05 1.60e+05 8.24e+03 3.09e+03 6.43e+04 4.40e+04
f14 3.63e+07 3.18e+06 3.59e+07 2.85e+06 2.77e+07 1.80e+06 2.68e+07 1.89e+06 5.57e+06 2.83e+05 1.65e+09 1.33e+09
f15 3.05e+06 3.35e+05 3.02e+06 3.30e+05 2.19e+06 2.28e+05 2.26e+06 2.45e+05 2.37e+06 6.94e+05 2.30e+06 2.17e+05

where ŷb and yb are the best fitness values found before and
after evolving a component; Û is the previous contribution of
the component; and α is the smoothing factor set to 0.5. The
calculation of U considers all fitness improvements in previous
cycles, with the weight decaying exponentially. We set the
number of FEs in each cycle to 1000. The decomposition
method used is RDG3 with εn = 50 and εs = 100, and
the component solver is CMA-ES. CBCC-RDG3 is compared
against CC-RDG3, and the results are reported in Table II.

Results: The CBCC model used in the paper is consistently
outperformed by the conventional CC across the benchmark
problems. This may indicate that adaptively allocating com-
putational resources is inefficient when tackling overlapping
problems. We infer the reason is rooted in the interaction
between components. The optimization state of a component,
i.e., how close to optimality, is highly dependent on others,
making the contribution of a component unpredictable espe-
cially for conflicting problems. However more research needs
to be done, e.g., testing other CBCC models on overlapping
problems, before any conclusion can be drawn.

E. Comparison on CEC’2013 Benchmark Problems

Methodology: In this sub-section, we perform three sets of
comparisons on the CEC’2013 benchmark problems: 1) RDG3
(εn = 50 and εs = 100) versus RDG, RDG2, DG2 and GDG;
2) CC versus CBCC (used in Section IV-D) with RDG3 as
the decomposition method; and 4) CC-RDG3 versus 9 state-
of-the-arts listed in the TACO website.2

Results: We observe in Table III that RDG3 significantly
outperforms the other four decomposition methods on overlap-
ping problems f13 and f14. RDG3 can generate significantly
better solution quality than RDG2 for problems with separable
variables e.g., f1, f2 and f4, suggesting it is useful to further
decompose separable variables into small components. CBCC-
RDG3 significantly improves over CC-RDG3 on problems
with separable components, e.g., f7, f8 and f11; however it is

2https://tacolab.org

outperformed on problems with overlapping components f13
and f14. It confirms our previous observation that adaptive
allocation of computational resources is not helpful when
dealing with overlapping problems. Finally our algorithm CC-
RDG3 generates the best solution quality for 7 out of 15
benchmark problems, when compared against the results of
9 other algorithms available on the TACO website.2

V. CONCLUSION

We tackled large-scale optimization problems with overlap-
ping components using a divide-and-conquer approach. We
modified the RDG method, denoted as RDG3, such that it
can effectively decompose overlapping problems by breaking
the linkage at shared (overlapped) variables. To systemically
evaluate the efficacy of RDG3, we extended two CEC’2013
overlapping problems by considering various level of overlap.
Experimental results showed our decomposition method facil-
itated problem solving, and outperformed random decompo-
sition as well as other methods on overlapping problems. We
also observed that a CBCC algorithm, that adaptively allocates
computational resources to components, is ineffective when
used to solve overlapping problems. Finally we showed RDG3,
when equipped with CMA-ES, is one of the most competitive
solvers for the CEC’2013 benchmark problems.

We suggest three potential research directions for future
work. First in the existing overlapping benchmark problems,
the overlapping effect is generated by adjacent components
sharing some decision variables. Designing benchmark prob-
lems with more flexible variable interaction structure and
richer source of overlap is desired. Second we presented some
preliminary results showing that overlapping problems are
challenging for a CBCC algorithm to solve. It would be useful
to test more CBCC models on overlapping problems. Last the
strength of variable interactions may be very different in a
given overlapping problem. Breaking weak linkage may be an
alternative approach to decompose overlapping problems.
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