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Abstract Multimodal function optimization, where the

aim is to locate more than one solution, has attracted growing

interest especially in the evolutionary computing research

community. To evaluate experimentally the strengths and

weaknesses of multimodal optimization algorithms, it is

important to use test functions representing different char-

acteristics and various levels of difficulty. The available

selection of multimodal test problems is, however, rather

limited and no general framework exists. This paper

describes an attempt to construct a software framework

which includes a variety of easily tunable test functions. The

aim is to provide a general and easily expandable environ-

ment for testing different methods of multimodal optimiza-

tion. Several function families with different characteristics

are included. The framework implements new parameter-

izable function families for generating desired landscapes.

Additionally the framework implements a selection of well

known test functions from the literature, which can be

rotated and stretched. The software module can easily be

imported to any optimization algorithm implementation

compatible with the C programming language. As an

application example, 8 optimization approaches are com-

pared by their ability to locate several global optima over a

set of 16 functions with different properties generated by the

proposed module. The effects of function regularity,

dimensionality and number of local optima on the perfor-

mance of different algorithms are studied.

Keywords Multimodal optimization �
Test function generator � Global optimization �
Differential Evolution � Niching � Crowding

1 Introduction

Real-world optimization problems often contain multiple

global or local optima. Multimodal optimization aims to

locate all global optima and sometimes also good local

optima of a multimodal function. Evolutionary Algorithms

(EAs) have become a popular choice as optimization tech-

niques for many applications and are an interesting candi-

date for multimodal optimization due to their use of

populations, which allows multiple solutions to be searched

simultaneously. Examples of real-world multimodal prob-

lems having more than one global optima can be found for

example from (Crutchley and Zwolinski 2002) or (Dong

et al. 2006).

EAs in their original form are typically designed for

locating a single global optimum. Many techniques for

locating multiple solutions have been developed, commonly

referred to as niching methods (Mahfoud 1995a). The two

most well-known niching methods are probably crowding

(De Jong 1975) and fitness sharing (Goldberg and

Richardson 1987). In addition to crowding and fitness
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sharing, and their variants, many other niching methods

have been developed (Mahfoud 1995b; Beasley et al.

1993b; Harik 1995; Pétrowski 1996; Li et al. 2002). It is

noticeable that most of these methods have generally been

evaluated using only one- or two-dimensional multimodal

test functions. Furthermore, these functions are often

defined in a way which does not allow the function to be

tuned in terms of the characteristics of multimodal land-

scapes. For example, for the Shubert function used in (Li

et al. 2002), as the number of dimensions increases, the

number of global optima grows exponentially (D � 3D,

where D is the number of dimensions). There is no way to

control the number of optima, nor how they are distributed.

Additionally, the problem is separable and the global optima

are positioned at regular intervals in the search space, both

being easily exploitable features. In short, using solely the

currently available selection of test functions is typically

inadequate for proper analysis of the characteristics of dif-

ferent multimodal optimization algorithms. In the light of

the no free lunch theorem (Wolpert and Macready 1995,

1997), which states that no optimization algorithm can

outperform another over the set of all possible problems, it

becomes increasingly important to differentiate the charac-

teristics of the subset of problems in which each algorithm

excels. This was also noted in (Whitley et al. 2006), which

demonstrates the ability of different optimization algorithms

to exploit different problem features. For the above reasons,

a set of parameterizable functions is required whose char-

acteristics can be changed independently to isolate the

effects on performance of different optimization algorithms.

This paper describes an attempt to construct a software

module offering a framework for evaluating the perfor-

mance of multimodal optimization algorithms in locating

multiple solutions. Desirable features of such a framework,

which have been used as guidelines for designing the

module, include the following:

1. The framework should be easy to use and tunable.

2. It should be possible to transform functions from

separable to nonseparable by rotation.

3. There should be regular and irregular distributions of

optima.

4. There should be a controllable number of global and

local optima.

5. The functions should be scalable to different

dimensions.

6. The framework should contain reproducible random

functions.

7. The software should be easily expandable and freely

available.

8. The framework should facilitate performance measures.

Several function generators able to generate multimodal

functions have been previously presented in the literature:

DF1 (Morrison and Jong 1999; Morrison 2004) and

Moving Peaks (Branke 2002) focus on generating dynamic

multimodal landscapes that change over time. Gaviano

et al. (2003) generate differentiable multimodal functions

with a single global optimum by distorting convex func-

tions using polynomials. The constrained test cases gen-

erator (Michalewicz et al. 2000) generates function

landscapes by dividing the search space into regions and

constructing a unimodal function for each region; the main

feature being the ability to define constraint functions for

these regions. Macnish (2007) proposed a fractal landscape

generator by simulating random meteor impacts. The Max

Set of Gaussians (MSG) landscape generator (Gallagher

and Yuan 2006) combines several independent peaks to

form the function landscape. Liang et al. (2005) demon-

strate a method of generating composition test functions in

which the composition landscape is formed by combining

several standard benchmark functions. Specifically related

to genetic algorithms, Weise et al. (2008) introduces a

model problem which allows the characteristics of fitness

landscapes to be studied. The approach is related to binary-

encoded genetic algorithms, in contrast to this paper, which

presents encoding independent characteristics for continu-

ous optimization. None of the methods above provide all of

the features desired and thus a more versatile testing

environment is required which is able to generate a variety

of highly tunable, scalable, and controllable multimodal

test functions.

In the experimental part of the paper, eight optimization

approaches are compared based on their ability to locate

global optima. Differential Evolution (DE) (Price et al.

2005) is used as a benchmark and as a base model for all

evolutionary methods. The use of a single base model

allows the differences between niching methods to become

visible. Crowding DE (CRDE) (Thomsen 2004), Specia-

tion-based DE (SDE) (Li 2005) and DE using local

selection (DELL) (Rönkkönen et al. 2009) are used as

representatives of different niching methods. Two multi-

start gradient descent (GD) methods are included to offer a

baseline for comparison. In addition, two hybrid approa-

ches combining the gradient descent with local selection

DE (DELG) (Rönkkönen et al. 2009) and crowding DE

(DECG) are presented and studied.

This paper makes the following contributions: a test

function framework for experimental evaluation of multi-

modal optimization is presented. Two new parameterizable

test function families are presented and some existing

multimodal test functions are combined inside the frame-

work and their usability extended by allowing rotation and

stretching. As an application example, eight optimization

approaches are evaluated including two novel hybrid

approaches. The results demonstrate the importance of

understanding and being able to control the test function
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characteristics in order to explain an algorithm’s

performance.

The remainder of this paper is organized as follows.

Section 2 discusses important function features. The soft-

ware framework is introduced in Sect. 3. Section 4

describes the optimization approaches used in the experi-

mental part and Sect. 5 the used test setup. The results are

presented and analyzed in Sect. 6. Section 7 concludes the

paper and suggest directions for future research.

2 Important problem features

Global optimization algorithms aim to identify and exploit

the features of a problem in the search for a solution.

However, the no free lunch theorem (Wolpert and Macready

1995, 1997) states that no optimization algorithm can out-

perform another over the set of all possible problems. Thus,

to compare algorithms we need to compare their ability to

identify and exploit different problem features. This section

lists such features in the context of multimodal optimization.

2.1 Dimensionality and the number of optima

As the dimensionality of the search space increases, its size

grows exponentially. While it is possible to cover the

search space extensively in low dimensional functions, this

becomes increasingly difficult as the dimensionality

increases. Typically for multimodal test functions used in

literature the number of optima increases along with the

number of dimensions although exceptions exist, like the

Griewangk function (Whitley et al. 1996). The number of

optima is one of the most important features of a function,

especially in the context of multimodal optimization, as it

affects also the goal of the optimization. Low dimension-

ality and a low number of optima favor methods that rely

heavily on extensive coverage of the search space.

2.2 Relative area of attraction sizes

The size of the area of attraction (AOA) of an optimum

directly indicates the probability for a sample to be placed

there by a random placement. If we are able to get a point

inside the AOA of each interesting optimum, running a

local optimization algorithm from each of the sample

points produces the solution. As the differences in relative

AOA between optima increase, the optima with smaller

AOA become harder to find.

2.3 Relative fitness of optima

The differences between the finesses of the optima are

important for niching methods especially when the goal is

also to locate local optima. Typically the chance of a

niching method to maintain a local optimum is proportional

to the optimum’s fitness. For example, Mahfoud (1994)

demonstrates that for methods using fitness sharing, the

minimum population size required to maintain a local

optimum of certain fitness is proportional to the relative

fitness as well as the number of optima with a better fitness.

2.4 Separability

Separability is a synonym of decomposability. In separable

functions the parameters are independent of each other, i.e.

‘‘there are no nonlinear interactions between variables’’

(Whitley et al. 1996, p. 246). A separable function can be

optimized by optimizing each parameter individually.

A nonseparable function is naturally the opposite of a

separable function, meaning that parameters are not inde-

pendent and optimizing parameters individually no longer

works. A separable function can be made nonseparable by

rotation. Salomon (1996) demonstrates that the complexity

of finding optima of separable functions increases linearly

along with the increase in dimensionality. For nonseparable

functions the increase is typically exponential.

Epistasis (Beasley et al. 1993a) is a measure of the

separability. It measures the number of the nonlinear

interactions between the variables. A separable function

has minimal epistasis and the amount of epistasis increases

with the number of nonlinear interactions. Typically evo-

lutionary algorithms using crossover operators are capable

of exploiting separability (low epistasis).

2.5 Directional bias and regularity

Directional bias (Macnish 2007) in multimodal problems

means that the optima are located in direct lines. If these

lines correspond to the axis directions, a problem becomes

separable. While rotation can be used to remove the sep-

arability, the directional bias will remain. While not as

readily exploitable as separability, an algorithm that is able

to adapt itself to the rotation can still benefit from the

directional bias.

A function is regular if in addition to having a direc-

tional bias, all optima are of equal distance from each

other. Thus for each dimension, only a single distance

between the optimum points exists. Partially regular

functions have several different distances along a single

dimension between optima, at least in some of the

dimensions. In irregular functions all the distances between

each two optima are unique. The degree of regularity

represents the proportion of identical distances along each

dimension from the total number of such distances. The

degree of regularity is maximal in regular functions which

only contain single distance for each dimension and
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minimal in irregular functions where the number of iden-

tical distances is zero.

2.6 Symmetry

A two-dimensional function is symmetric if F(x1, x2) =

F(x2, x1) (Whitley et al. 1996). Up to D! such equivalences

may exist for a D dimensional function. Symmetry can be

exploited by exchanging the variables of a solution to

locate symmetrically positioned solutions. Rotationally

symmetric functions remain symmetric regardless of rota-

tion. For example the Schaffer’s F6 function (Macnish

2007; Thomsen 2004) is rotationally symmetric.

2.7 Continuity and differentiability

A continuous function does not contain points of discon-

tinuity. Classical optimization methods often require the

function to be differentiable, meaning that a meaningful

value for a derivative can be calculated for any point. Thus

in addition to being continuous, the function must not have

discontinuities in slope.

2.8 Global structure

An important characteristic of a function is the overall

global structure. For example, the Rosenbrock function (De

Jong 1975) is characterized by a banana shaped valley

which leads to the optima at [1, 1,..., 1]. Many traditional

test functions, like Rastrigin (Törn and Zilinskas 1989) or

Griewangk, have the global optimum at origin in the

middle of a parabolic valley in the center of the search

space. This allows a global optimization algorithm to

estimate the direction to the global optimum by exploiting

the global structure of the function. Additionally, methods

based on averaging have typically a search bias towards the

center, which allows the algorithm to exploit the centered

global optimum. Another way of exploiting the location of

an optimum is by copying parameter values from one

dimension to another in cases where all the parameters are

of equal value in the global optimum, as in the example

functions above.

2.9 Optima on constraints

Optima located on constraints may pose a problem for

some optimization methods like the grid based gradient

descent (GRGD) implementation used in this paper. On the

other hand, optima location on constraints is exploitable

because the points on the constraints represent only part of

the whole search space. Any algorithm concentrating its

efforts on the constraints will thus have an advantage

locating such optima.

3 The software framework

The proposed framework can be used to generate multi-

modal test functions for minimization. The functions are

tunable with parameters, to allow generation of landscape

characteristics that are specifically designed for evaluating

multimodal optimization algorithms by their ability to

locate multiple minima. At the moment, four families of

functions exist but the software module is easily expand-

able and new families may be added. The current software

version is 1.1 and it includes cosine, quadratic, hump and

common families. These are next described in detail, fol-

lowed by a discussion of issues related to the implemen-

tation of the software.

3.1 Cosine family

The cosine family allows functions with a high number of

optima to be generated with low computational cost. The

degree of regularity and separability may be controlled by

rotating and stretching the functions. Two cosine curves are

sampled together, of which one defines global minima and

the other adds local minima. The basic internal structure is

regular: all minima are of similar size and shape and

located in rows of similar distance from each other (see

Fig. 1a). The function family is defined by

fcosðy~Þ

¼
PD

i¼1� cosððGi � 1Þ2pyiÞ � a� cosððGi � 1Þ2pLiyiÞ
2D

ð1Þ

where y 2 ½0; 1�D; D is the dimensionality, the parameters

G~ ¼ ðG1;G2; . . .;GDÞ and L~¼ ðL1; L2; . . .; LDÞ are vectors

of positive integers which define the number of global and

local minima for each dimension, and a [ (0, 1] defines the

amplitude of the sampling function (depth of the local

minima).

The framework allows the function to be rotated to a

random angle and uses Bezier curves (Bezier 1968, 1986)

to stretch each dimension independently to decrease the

regularity (see Fig. 1b). To calculate the function value for

input vector x~; x~ is first mapped to y~: The mapping proceeds

in two steps, where the first step is to calculate b~; which is

the rotated point corresponding to x~

b~¼ Ox~ ð2Þ

where the matrix O ¼ ½o~1; . . .; o~D� is a randomly generated

angle preserving orthogonal linear transformation as

described in (Hansen and Ostermeier 2001). The domain

of x~ (the search space) is the D-dimensional unit hypercube

rotated with {OT. Then b~ is mapped to y~ by applying a

Bezier formula
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yi ¼
Xni

j¼0

ni

j

� �

Pi;jð1� biÞni�jbi
j; i ¼ 1; . . .;D ð3Þ

where ni is the degree of the Bezier curve for dimension i

and defines the number of the control points used. P~i are

the control point vectors defined such that Pi,0 and Pi,n_i

correspond to the lower and upper bound of yi and the

values between the bounds are strictly increasing.

The Bezier stretching will decrease the regularity of the

function but generally not completely eliminate it because

the function is regular along directions defined by O. The

degree of regularity can be roughly measured by consid-

ering the minimum number of global minima points

required to have a set which contains all possible differ-

entials to jump from a neighboring minimum to the next in

the axis directions. For completely regular functions, only

D ? 1 points are required (as long as there is more than

one minimum along each dimension). For stretched func-

tions the required number is
P

i=1
D (Gi - 1) ? 1 out of the

total number of global minima
QD

i¼1 Gi: So the degree of

regularity increases along with the number of dimensions.

Bezier stretching also affects the shape and size of the

minima, increasing the differences in their AOA.

The number of minima increases exponentially along

with the number of dimensions. The number of local minima

which are not global is
QD

i¼1 ½Gi þ ðGi � 1ÞðLi � 1Þ�: For

each dimension, two of the outermost minima will always be

located on the constraints. This means that if any of the

elements of G~ is less than 3, every minimum will be located

on at least one constraint. In the unstretched case, each

constraint on which the minimum sits, halves the area of

attraction for that minimum compared to a minimum with

one less constraint. The fraction of the AOA from the full

possible area is thus 1/2D-l, where l = 0, 1, ..., D describes

the number of constraints the minimum sits on. l = 0 means

a minimum located on no constraint (full possible AOA) and

l = D is a corner minimum with minimum AOA for

dimension D. For methods that rely heavily on the initial

points, locating the minima on corners becomes harder with

increasing dimensionality, unless the information that the

minima are located on the constraints is exploited.

Parameter a affects the depth of the local minima.

Increasing the value makes the minima deeper, also

increasing their area of attraction and thus slightly

increasing the difficulty of the problem. Examples of two-

dimensional cosine family functions are presented in

Fig. 1.

3.2 Quadratic family

The quadratic family is used to generate completely irregular

landscapes and allows the number of minima to be defined

independently of the number of dimensions (see Fig. 2). The

user may select any number of global and local minima. The

function is created by combining several minima generated

independently. Each minimum is described as a D dimen-

sional general quadratic form, where a symmetric matrix

C defines the shape. The functions in a quadratic family need

not be stretched or rotated because no additional benefit

would be gained since they are already irregular functions.

However, axis-aligned (hyper) ellipsoidal minima may be

randomly rotated by rotating the matrix C as follows:

B ¼ OCOT ð4Þ

The functions are calculated by

fquadðx~Þ ¼ min
i¼1;2;...;q

ðx~� p~iÞ
T B�1

i ðx~� p~iÞ þ vi

� �
ð5Þ

where x~2 ½0; 1�D; p~i defines the location, and vi the fitness

value of a minimum point for the i’th minimum. q is the

number of minima.

The placement of minima is chosen randomly, although

the minimum Euclidean distance between global minima
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(b) Stretched and rotated

Fig. 1 Example figures of two-dimensional cosine family functions

using parameter values a ¼ 0:8;G~ ¼ ½3; 3�; L~¼ ½2; 2� (9 global and

16 local minima). Additionally P~1 ¼ ½0; 0:1; 0:2; 0:5; 1� and P~2 ¼
½0; 0:5; 0:8; 0:9; 1� are used for b
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may be defined. The module makes sure that no minimum

is completely engulfed by another, deeper minimum. The

user may also define the shape of minima, which may be

spherical, ellipsoidal or randomly rotated ellipsoidal. This

selection is used for all generated minima. The shape range

for global and local minima may be defined independently

and the shapes are generated by using uniform random

numbers from this shape range for each dimension in

creating matrix C. The user may also define the range for

the fitness values of local minima points. Figure 2 presents

examples of functions from the quadratic family.

Since the locations of minima are random and the AOAs

of minima can be inside each other, the sizes of the areas of

attraction for different minima will vary greatly. Using

fewer or shallower local minima will naturally leave more

room for the global minima. Forcing a longer minimum

Euclidean distance between the global minima will also

leave more area for each minimum. As the dimensionality

increases, the differences in the shape parameters will have

an exponentially increasing effect on the AOAs. Small

differences in shape parameter values can lead to large

differences in the relative sizes of the AOAs in high

dimensions.

To demonstrate this, a random start gradient descent

(RSGD) algorithm was run on three different sets of qua-

dratic functions, with D = 1, 2, ..., 10. The average per-

formance of RSGD is a decent estimate of the relative sizes

of AOAs because to locate a minimum, the random starting

point must be located in the AOA of that particular mini-

mum. If the sizes differ significantly, the larger ones will

draw more points, slowing down the process of locating the

minima with a smaller AOA. Figure 3 displays the results

of the runs. The first set of functions has spherical minima

with identical sizes. The second also has spherical minima

and the third ellipsoidal minima, both allowing the shape

range to change by ±50%. As can be seen from the figure,

the required number of function evaluations (NFE) as well

as the standard deviation increase notably more slowly

along with the increase in dimensionality for the first set

compared to the other two. This is to be expected because

the identical shape eliminates the differences in AOA

caused by shape. The ellipsoidal shape is the most difficult

to solve when the dimensionality is low, but varying

spherical shape becomes more difficult when D [ 8. This

is logical because for a spherical shape only one random

value is generated, which is then used in all dimensions. If

the value is small, it will affect all dimensions. For an

ellipsoidal shape, each dimension will get a different ran-

dom value and the AOA will on average vary less as more

values are generated in higher dimensional cases. The

slower performance on the low dimensional ellipsoidal set

can be explained by the fact that the gradient descent tends

to oscillate on nonspherical shapes and thus needs more

line searches to find the minimum point compared to

spherical shapes, where the gradient points directly to the

minimum point.

3.2.1 Comparison to other methods

The MSG proposed by Gallagher and Yuan (2006) is an

interesting test function generator. An approach similar to

the quadratic family is used to produce peaks indepen-

dently and the dominant peak is used to define the function

value at point x~: MSG uses a Gaussian density function to

define the peaks. For the quadratic family a general qua-

dratic form was selected (which is similar to the exponent

part of the Gaussian density function, when the constant is

removed) to describe the minima. As a result, the land-

scapes generated by MSG have much steeper optima

shapes as well as large almost flat regions compared to the

ones generated by the quadratic family. In theory, both
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(a) Spherical, no local minima
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(b) Rotated ellipsoidal with local minima

Fig. 2 Examples of two-dimensional quadratic family functions. The

minimum Euclidean distance between global minima is set to 0.01,

and the shape range for all minima to [0.003,0.03]. a Has 10 global

spherical minima, while b has 10 global and 100 local rotated

ellipsoidal minima such that the local minima points have fitness

values in the range [ -0.95, -0.15]. The globally minimal value is

always -1
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approaches allow landscapes with no completely flat areas

to be generated. However, a potential problem with MSG is

numerical accuracy: away from an optimum, it is possible

that the search space contains areas which seem flat

because of limited numeric accuracy. When using the

quadratic form, this is not an issue.

The composition landscape in the functions proposed by

Liang et al. (2005) is formed by combining several basic

benchmark functions. When using solely unimodal basic

functions, the produced landscape resembles the one gen-

erated by the quadratic family. The number and location of

both global and local optima may be controlled indepen-

dently of the number of dimensions. Additionally the basic

functions may be rotated, although the only unimodal basic

function currently included is the symmetric sphere, on

which rotation has no effect. The proposed model allows

each basic function to be scaled independently, but each

dimension is scaled equally and the shape of the function

remains unchanged. Including ellipsoidal unimodal basic

functions and adding a dimensional scaling would allow

the composition functions to mimic the rotated ellipsoidal

optima shapes of the quadratic family. However, the most

interesting feature of the composition principle is that it

allows the landscape to be constructed of different basic

components, which may already be multimodal. While this

means that the number of optima would no longer be

independent of the number of dimensions and the number

and locations of local optima would be harder to define, it

would allow the definition of changing landscapes with a

lot of optima, which require less computational effort

compared to the quadratic family. Thus adding a new

family adopting the composition principle might be an

interesting option in future development of the framework.

3.3 Hump family

The hump family implements the generic hump functions

family proposed by Singh and Deb (2006), see Fig. 4. Like

the quadratic family, the hump functions allow irregular

landscapes to be generated and the number of minima to be

defined independently of the dimensionality. The placement

of minima is chosen randomly. Each minimum is defined by

fhðy~Þ ¼ hi 1� dðy~;iÞ
ri

� �ai
h i

; if dðy~; iÞ� ri

0; otherwise

(

ð6Þ

where y~2 ½0; 1�D; hi is the value of the ith minimum. dðy~; iÞ
is the Euclidean distance between y~ and the center of the

ith minimum. ri [ [0.001, ?) defines the basin radius and

ai [ [0.001, 1] the shape of the ith minimum slope.

Each minimum in hump functions has a fixed radius value

and all values outside the radius value are set to a constant 0.

Thus, the function surface is flat between the minima. This is

problematic if small radii are used because we end up with a

needle in a haystack problem, where the majority of the

search space is flat, including only some very thin holes.

Especially for methods relying on gradient information, the

flat surface makes gradients unusable. However, the hump

family offers a better control over the AOAs of minima

compared to the quadratic family because the AOAs cannot

intersect. Furthermore, when reasonably large radii for the

minima are used, the hump family is suitable for testing the
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(b) Function evaluations required to find the i’th min-
imum in the 10-dimensional case

Fig. 3 Performance of RSGD on different quadratic functions with

10 global and no local minima. The minimum Euclidean distance

between global minima is set to 0.1. The function evaluations are

averages from 100 independent runs and figures include standard

deviations. For each run, a different random seed is used in generating

the function
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ability of an algorithm to handle flat areas on a function

surface. The minima are always spherical in shape but the

hump functions can be rotated and stretched similarly to

cosine family functions to change the shape.

3.4 Common family

The common family collects some well known multimodal

test problems from the literature and implements them

inside the module framework. The module allows similar

rotation and Bezier stretching as used in the cosine family

for all implemented functions in the common family. At

the moment, eight different functions having multiple

global minima are implemented.

The two-dimensional Shubert function (Li et al. 2002)

fshuðy~Þ ¼
X5

i¼1

i cosððiþ 1Þy1 þ iÞ
X5

i¼1

i cosððiþ 1Þy2 þ iÞ

ð7Þ

where y~2 ½�10; 10�2; has 18 global and 742 local minima.

The global minima are situated in nine groups of two

closely situated minima. The groups form a shape of 3 by 3

square as shown in Fig. 5. The groups and also the minima

inside groups are regularly spaced.

The Vincent function (Shir and Bäck 2006)

fvinðy~Þ ¼ �
1

D

XD

i¼1

sin 10 logðyiÞ ð8Þ

where y~2 ½0:25; 10�D; has 6D global minima. The function

is partially regular, like a Bezier stretched function of the

cosine family. The differences between minima are not

random but increase along the value of y. Figure 6 displays

the function.

The modified two-dimensional Rastrigin function

frasðy~Þ ¼ 20þ
X2

i¼1

y2
i þ 10 cosð2pyiÞ

� �
ð9Þ

where y~2 ½�5:12; 5:12�2; is a version of the Rastrigin

function modified to contain more than one global mini-

mum. It has four regularly spaced global minima and 96

local minima. Figure 7 displays the function.

Other functions included are the Branin (Michalewicz

1996), the Himmelblau (Beasley et al. 1993b), the Six-

hump camel back (Michalewicz 1996; Ursem 1999) and

Deb’s first and third functions (Beasley et al. 1993b).

Additionally the family implements another set of eight

functions with a single global minimum and a set of local

minima to test the ability of algorithms to locate and keep

good local minima in addition to the global ones. The

functions are taken from (Thomsen 2004; Ursem 1999) and

include the Bohachevsky, the Shekel’s foxholes, the Ursem

F1, F3, F4 functions and the Ursem waves function. The

set also contains the Ripple (Thomsen 2004; Ghosh et al.

2000)

fripðy~Þ ¼
X2

i¼1

�e�2 ln 2ðyi�0:1

0:8 Þ
2

ðsin6ð5pyiÞ þ 0:1 cos2ð500pyiÞÞ

ð10Þ

and Ripple25 functions

fr25ðy~Þ ¼
X2

i¼1

�e�2 ln 2
yi�0:1

0:8ð Þ2 sin6ð5pyiÞ
� �

ð11Þ

where y~2 ½0; 1�2: The Ripple has 1 global and 252,004

local minima. The global form of the function consists of
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Fig. 4 Example of a two-dimensional hump family function. The

function has 10 global and local minima such that the local minima

points have fitness values in the range [-0.5, -0.15]. The globally

minimal value is always -1. The radii range for all minima is set to

[0.05,0.2] and the shape parameter ai is in the range [0.2, 0.5]
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Fig. 5 Shubert function
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25 holes, which form a 5 by 5 regular grid as shown by

Fig. 8. Additionally the whole function surface is full of

small ripples caused by the high frequency cosine function,

which creates a large number of small local minima.

Among the minima, the lowest values of the 25 holes are

used to decide an algorithm’s success in locating minima.

The global minimum is located at the corner of the grid.

The Ripple25 contains the global form of the Ripple

function without the ripple (Fig. 8). Ripple and Ripple25

can be used as a pair to compare an algorithm’s ability to

handle local noise.

3.5 Problem features and the proposed framework

Important features of multimodal functions were listed in

Sect. 2. This section summarizes the relation of different

function families to each of the features.

3.5.1 Dimensionality and the number of optima

The cosine, quadratic and hump families allow the

dimensionality to be scaled freely. Some common family

functions have a fixed dimensionality. The quadratic and

hump families allow the number of local and global optima

to be set precisely and independently of the number of

dimensions. For the cosine and common family functions,

the number of optima increases exponentially along with

the number of dimensions.

3.5.2 Relative area of attraction sizes

The hump family allows the relative AOAs to be directly

controlled. The quadratic family allows similar but less

precise control due to the fact that the AOAs of different

optima may intersect. In the cosine and common families

the relative AOA sizes can be altered by stretching the

functions.

3.5.3 Relative fitness of optima

Cosine family functions have groups of local optima with

similar fitness whose depth can be controlled. Quadratic

and hump families allow the definition of a range in which

the fitness of each local optimum is randomly generated.

For the common family each individual function defines

the fitnesses and they can not be modified.

3.5.4 Separability

Quadratic and hump families have high epistasis because

they are always nonseparable. The epistasis of cosine and

common family functions can be controlled by rotating the

functions.
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Fig. 6 Two-dimensional Vincent function
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3.5.5 Directional bias and regularity

Quadratic and hump family functions are irregular and do

not embody directional biases. Cosine family functions

always have directional bias. Their degree of regularity can

be controlled between regular and partially regular by

using stretching and controlling the number and positions

of the optima. Common family functions can also be

stretched, but some of them are already irregular or par-

tially regular by definition.

3.5.6 Symmetry

Quadratic and hump families are not symmetric. Cosine

family functions for which Gi and Li are defined equal for

all dimensions are completely symmetric in their basic

form. This means that they are symmetric in regard to all

the D! possible symmetry equivalences. Stretching and

defining varying Gi or Li of optima for different dimensions

can be used to control the amount of symmetry: removing

symmetry from n dimensions leaves (D - n)! symmetry

equivalences in regard to which the function is symmetric.

Some of the common family functions are also symmetric.

Using rotation removes the symmetry. The proposed

framework does not currently contain rotationally sym-

metric functions.

3.5.7 Continuity and differentiability

All the functions within the framework are continuous and

allow a numerical approximation of the first order deriva-

tive to be generated at any point, even if the derivative does

not exist in the analytical sense. The framework is not

designed to be used with methods which require analytical

first or higher order derivatives. Hump family functions

and some of the functions in the common family contain

areas of flat fitness, which pose a special challenge for

methods using derivatives to direct the search.

3.5.8 Global structure

Although the goal of multimodal optimization is to locate

multiple optima, averaging and copying can be used to

some extent in exploiting the structure in certain functions.

Cosine family functions in their basic form will often have

one global optimum in the middle of the search space and

several optima which have equal values for all or most

parameters. Rotation and stretching can be used to remove

the equal parameter values from most of the optima, but

one global optimum will always be located at the origin.

Quadratic and hump families generate the optima locations

randomly and thus planned exploitation of global structure

is not possible. None of the families currently allow the

design of specific types of global structure, like specifically

planted valleys or compressions of optima.

3.5.9 Optima on constraints

As the optima locations in quadratic and hump families are

randomly selected, they will rarely be positioned on con-

straints. However, depending on the selection of the

G~ and L~ parameters of the cosine family, a significant

portion or even all of the global optima may be located on

the constraints. For methods using solely the module’s

internal constraint handling, the search space seems to

continue past the constraints and the constraints become

irrelevant. However, the module provides also the exact

constraint information if required by an algorithm and thus

allows it to be exploited.

3.6 Implementation and features

The software is written in the C programming language

obeying the ANSI standard. From the outset the idea has

been to develop a general framework for evaluating mul-

timodal optimization algorithms. Thus the structure of the

software has been designed to allow easy addition of new

function families to the module. Figure 9 presents the

general structure of the module as an UML class diagram.

While ANSI C does not directly support object-oriented

concepts, they can be closely imitated. Thus the term class

will be used when referring to parts of the program.

Inheritance is imitated by defining a set of function

pointers in the generator class which represent the func-

tions provided by the public interface. Each class repre-

senting the different function families must provide an

implementation for each of the interface functions and an

initialization function which connects the function pointers

to actual implementations. Adding a new function family

thus requires adding a definition of the new initialization

function to the generator class, which would not be nec-

essary for languages supporting inheritance through

dynamic binding. However, this is seen as a minor incon-

venience since in all other respects implementation of the

new family can be done completely within its own compile

unit. All function calls from the public interface are first

Fig. 9 UML class diagram of the software structure
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handled by the generator class, which is responsible for

handling tasks collective to all families, and the call is then

redirected to the correct family as necessary. Thus each

new family needs to contain only implementations directly

related to the family. The utilities class provides imple-

mentations of functionalities used by multiple families, like

rotation, stretching and constraint handling, which are

readily available to new families.

The module is used by simply including the header file

containing the public interface to optimization software.

The user can then directly use all features provided by the

module. Function configuration is performed using text

files. Each function instance is explicitly specified by an

initialization file, except for the seed to the internal random

number generator for functions that use randomization. The

user may provide the seed through the call of initialization

function. The same function is always generated with the

same seed. Thus, it is easy to define exact test sets by

providing the initialization files and the information of used

seeds. These features make the module easy to use.

The module framework includes an internal constraint

handling method to keep the solutions within a given range.

The constraints are handled by mirroring the violating value

back from the violated boundary by the amount of violation.

This makes the function space look continuous for the

optimization approach during the run because any minimum

which is located on the boundary looks symmetrical,

although in reality the value is calculated in a mirrored point

inside the boundaries. If required, the internal constraint

handling can be ignored and the linear constraint functions

can be acquired in analytical form.

To help in evaluating the quality of a solution provided by

an algorithm, the module offers a method for deciding how

many different globally minimal solutions a given population

contains with a required accuracy and their exact locations.

A similar method is provided for the quadratic, hump and part

of the common family functions for deciding the number of

found locally minimal solutions. Other useful features

included are the possibility of initializing a population with

uniform random values in a proper range for the used func-

tion, an internal counter for function evaluations, and the

ability to acquire the number of minima a function contains.

The software package is freely available from: http://

www.ronkkonen.com/generator. The package includes the

source codes, a simple plotter program for visualizing the 2D

functions generated, written in Matlab, and detailed

documentation.

4 Optimization approaches

This section describes the eight optimization approaches

used in the experimental part of the study. The methods are

compared using the proposed test function framework by

measuring their ability to locate global optima.

4.1 Gradient descent

The most fundamental of the approaches are the two

multistart local searchers using a gradient descent algo-

rithm. The strategies simply generate new starting points

for the GD until the maximum number of function evalu-

ations has been reached. The random start gradient descent

uses random starting points while the grid based gradient

descent uses a predetermined grid to generate the starting

points. The grid is generated to maximize the coverage.

First a single point is generated at the middle of the search

space in regard to all dimensions. Then at each subsequent

generation, new points are generated between existing

points and the box constraints such that all distances are

halved. Thus the number of points generated at the end of

generation g is (
P

i=0
g 2i)D. Since the growth is exponential,

each new generation will contain more points than all

previous generations combined. Especially with higher

dimensions the number of generations completed will be

low and the search typically stops short of completing a

generation. Using the starting points in a predetermined

order would create a bias in the search. For this reason, the

points inside each generation are used in a random order.

The GD descends downhill by performing line searches

in a numerically estimated gradient direction until all

optima have been found or the maximum number of

function evaluations have been reached. The GD uses

bracketing (Press et al. 1992, p. 400) and Brent’s method

(Press et al. 1992, p. 404) (parabolic interpolation and

golden section search). The gradient vector is approxi-

mated with a central difference estimate, using the largest

absolute value of a box constraint for any of the dimensions

of the problem scaled with 10-8 as the distances from the

central point. The initial bracketing length of 10-3 is used

for all cases.

4.2 Differential Evolution

The Differential Evolution algorithm was originally intro-

duced by Storn and Price (1995) and several slightly dif-

ferent strategies exist. For this paper, only the DE/rand/1/

bin scheme (Storn and Price 1997) is considered. The

abbreviation DEGS stands for DE using global selection,

which in a broader sense includes most traditional DE

strategies. For convenience, DEGS is used as a synonym

for DE/rand/1/bin for the rest of this paper.

DEGS starts from a random initial population. In each

generation g, it goes through each D dimensional target

vector x~i;g of the population and creates a corresponding

trial vector u~i;g using mutation
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vj;i;g ¼ xj;r0;g þ Fðxj;r1;g � xj;r2;gÞ ð12Þ

and crossover

uj;i;g ¼
vj;i;g if rand½0; 1� �CR _ j ¼ jrand

xj;i;g otherwise

�

ð13Þ

operations. The difference between two randomly chosen

population vectors ðx~r1;g � x~r2;gÞ defines the magnitude and

direction of the mutation. This makes the mutation opera-

tion self adaptive, because the average mutation step length

decreases as the population converges. To prevent cross-

over from duplicating the objective vector, u~i;g always

inherits the parameter with randomly chosen index jrand

from v~i;g: Indices r1, r2, and r0 are mutually different and

drawn from the set of population indices. rand[0, 1] is a

random number drawn anew for each round from the

uniform distribution in the range [0,1].

The control parameters for DE are the crossover rate

C R, the mutation factor F and the population size N P. F [
(0, 1 ? ] is a scaling factor for the mutation step length and

affects the population’s convergence speed. Additionally,

using a value of F = 1/l (where l is an arbitrary integer)

allows DE to efficiently exploit function regularities, as

demonstrated by Rönkkönen and Lampinen (2007b);

Rönkkönen et al. (2009). The effect is strongest with

F = 1, as the exploitation requires at least l ? 1 equally

spaced optima in a row.

CR [ [0, 1], controls the crossover by determining the

average number of parameters the trial vector u~i;g inherits

from the mutated vector v~i;g: An important aspect to con-

sider when using crossover is that the smaller the used

value of CR, the less rotationally invariant the search

becomes (Price et al. 2005). When the crossover is dis-

abled (CR = 1), the search becomes completely rotation-

ally invariant, i.e. the search is not biased in the axis

directions.

At the end of each generation the selection operation

x~i;gþ1 ¼
u~i;g if f ðu~i;gÞ� f ðx~i;gÞ
x~i;g otherwise

�

ð14Þ

is performed comparing each trial vector u~i;g to the corre-

sponding target vector x~i;g: If the trial has equal or lower

cost, it replaces the target vector. The term global selection

refers to the fact that the trial vector u~i;g has no relation to

the target vector x~i;g: This allows the under-performing

population members to be replaced by variants of the

population’s better solutions (Price and Rönkkönen 2006)

creating a strong bias to converge towards a single opti-

mum. This makes the algorithm generally ill-suited for

multimodal optimization, but offers an interesting point of

comparison for the other methods. DEGS is described in

Algorithm 1.

4.3 Crowding DE

Crowding based DE (Thomsen 2004) substitutes the glo-

bal selection of DEGS by crowding, where each trial

solution u~i;g competes against the closest population

member measured by Euclidean distance. The main

problem of the algorithm is the dual nature of parameter

F, which at the same time controls the speed of the local

search and the effectiveness of the global search

(Rönkkönen et al. 2009). The selection is always a com-

promise between these two: large values mean very slow

convergence speed while small values allow faster con-

vergence but cause the algorithm to neglect global

information, which is often essential for success especially

in difficult problems. Additionally, the crowding proce-

dure increases the computational complexity, for each

trial generated, NP Euclidean distance calculations are

required. The advantage of CRDE is the lack of additional

control parameters, which are required by most other

niching approaches and for which good values are typi-

cally problem dependent.

4.4 Speciation-based DE

Speciation-based DE proposed by Li (2005) classifies the

population into species according to their similarity

measured by Euclidean distance. Each species and its

corresponding species seed (the dominant individual) form

a separate subpopulation that run DEGS locally. The main

drawback of SDE is the requirement of a species radius R

parameter in order to define the size of a species. The

performance of the algorithm is highly dependent on the

value of this parameter and the value is problem

dependent.
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4.5 DE using local selection

The idea of local selection is simply to compare a trial

against its own parent instead of a random population

member (r0 = i in Eq. 12). This has the effect of decreasing

the selection bias towards a single solution and allows

multimodal optimization. An algorithm based on local

selection, DELL, was presented in (Rönkkönen and

Lampinen 2007a) and improved in (Rönkkönen et al. 2009).

The idea is to clearly divide the mutation into two separate

operations to get rid of the cumbersome dual nature of

parameter F. Local mutation uses small F for increased

convergence speed, while global mutation uses an unscaled

differential (F = 1) to achieve a global scale. For the local

mutation F ¼ 1:3=
ffiffiffiffi
D
p

is used to decrease the number of

parameters. The selection is based on results in (Price and

Rönkkönen 2006), which suggest it as an optimal value for

convex unimodal problems. A method for adding gaussian

noise to the global mutation to create an increased pool of

potential trials was developed, but it is not used in this paper.

Both mutations, local and global, are used in parallel and

parameter PX [ [0, 1] controls the probability that the glo-

bal mutation is selected. The algorithm is not sensitive to the

value of PX as long as the extremes are avoided.

4.6 Hybrid methods

The idea of separating local and global searches was taken

further (Rönkkönen et al. 2009) by replacing the local

mutation of DELL with a more efficient local search method.

DELG hybridizes the local selection DE with the gradient

descent algorithm. Each time the local phase is selected, the

algorithm performs a single line search in the direction of the

approximated gradient, not a complete local search. Thus,

the global and local search advance in parallel, their relative

emphasis decided by the PX parameter.

Finally the DECG algorithm shares the basic structure of

DELG, but uses crowding instead of local selection, sim-

ilarly as CRDE. The idea is to achieve a fair comparison

between crowding and local selection without the conver-

gence speed issues of CRDE.

5 Test setup

The purpose of the test setup is to demonstrate the usability

of the proposed functions by studying the effects of changing

the degree of regularity, dimensionality and number of local

optima on the performance of different algorithms. Config-

uration files and example figures for each function along

with a comprehensive set of plotted result curves are avail-

able at: http://www.it.lut.fi/ip/evo. In all cases, the constraint

handling is done using mirroring (the value is mirrored from

the violated boundary back inside the boundaries) provided

by the module. To make the functions nonseparable, and thus

eliminate the need to consider values smaller than CR = 1

for DE- based methods, all functions from cosine and

common families are randomly rotated. Bezier curves with

random control points of a tenth degree are used in all

stretched cases. For all tests, 100 independent runs are per-

formed such that each time a different random seed from

0, 1, ..., 99 is used to initialize the module. Thus each run is

done with a different function. The same set is always used

for each algorithm. This is done to minimize the ability to

exploit a specific feature of a single function instance and to

concentrate on the behavior of the algorithms with certain

types of functions. To determine the performance of an

algorithm, we mainly consider the average peak ratios

(Thomsen 2004):

peak ratio ¼ number of optima found

total number of optima
ð15Þ

for global optima, with accuracy 10-4 (difference in fitness

value) at a maximum of D*250, 000 function evaluations.

5.1 The functions

The test setup consists of four regular, five partially regular

and seven irregular functions. Shubert and three functions

from the cosine family are regular. To obtain partially

regular functions, all of the regular cases are stretched.

Additionally the Vincent function is included. In the cosine

functions, the basic shape of the global optima is a 5 by 5

square ðG~ ¼ ½5; 5�Þ and a = 0.8 is used. Among the

resulting 25 global optima, 16 are located at the constraints

and 9 are inside the search space. The functions are dif-

ferentiated by the number of local optima, for which values

L~¼ ½1; 1�; L~¼ ½10; 10� and L~¼ ½30; 30� are used, produc-

ing 0, 1,656 and 14,616 local optima.

The irregular functions are generated using the quadratic

family. For all cases, rotated ellipsoidal shapes are used for

the optima such that the values used to generate C are

randomly generated in the range [0.003, 0.03], the opti-

mum value of local optima in the range [ -0.95, -0.15]

(global optima have value -1) and the minimum possible

Euclidean distance between two global optima points is set

to 0.01. Versions with 0 and 100 local optima are generated

for two, five and ten dimensions, each having ten global

optima. In addition, a two dimensional function with 1,000

local optima is included. Table 1 summarizes the test

function setup.

5.2 Parameter setup

For all DE based methods, crossover is always disabled by

using CR = 1 and best performing population size among
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NP = [50, 100, 200, 300, 500, 1, 000, 2, 000] is searched

for each problem. A fixed PX = 0.5 for DELL and

PX = 0.9 for DELG and DECG are used in all reported

results. For DEGS, CRDE and SDE, a best performing value

for mutation step length among F = [0.1, 0.5, 0.9, 1] is

searched for each function due to the difficulties of finding a

well performing value for all problems. Additionally, a best

value for R is similarly searched for SDE among

R = [0.05, 0.5, 2] for common family functions, among

R = [0.005, 0.05, 0.2] for other two-dimensional functions,

among R = [0.05, 0.08, 0.2] for the five-dimensional cases

and among R = [0.05, 0.11, 0.2] for the ten-dimensional

functions. Part of the parameter combinations were left

untested for some methods and functions based on existing

results and assumptions of their poor chance of improving

the results.

6 Analysis and results

Figure 10 presents a classification of the algorithms in

regard to their ability to identify and exploit the regularity of

the problem versus their convergence speed. The ability to

exploit regularity can be seen as an indicator of an algo-

rithm’s ability to exploit global information. The conver-

gence speed illustrates the speed in finding the first optimum

in problems with no local optima and can be seen as an

indicator of the effectiveness of the local search. Because the

parameter setups affect the performance, the classification is

qualitative, and should be seen as a guideline for the prop-

erties of the algorithms in typical cases.

The deterministic nature of GRGD makes it a difficult

method to compare using the cosine family functions. The

chosen method of generating the grid makes the algorithm

inefficient in searching the constraints where the majority

of the global optima are located. On the other hand, the

algorithm will always instantly locate the first nine global

optima of fcL1, fcL10 and fcL30, because the first nine

starting points will be generated directly to the optima.

Generating starting points on the constraints at the begin-

ning would allow the algorithm to instantly locate all

global optima of the functions. However such a strategy

would be problematic in a more general setup, because it

would strongly bias the search to the constraints. 3D points

would be required to achieve an initial coverage of the

constraints. While this works in low dimensional cases, in

higher dimensions the algorithm would only generate

points on the constraints. For this reason, the results for

GRGD are more interesting for the quadratic family

functions, where they demonstrate the effect of an even

coverage of the search space.

As can be seen from the results in Table 2, DEGS is the

top performer in all regular cases, but the performance

crumbles as the degree of regularity decreases. This dem-

onstrates well the advantages of a Framework with varied

functions with tunable features as it allows the identifica-

tion of features a specific algorithm excels in exploiting.

Although DEGS is generally not suited to multimodal

optimization, it is very efficient in special cases with reg-

ularly spaced optima.

Figure 11 presents a summary of the best performing

methods with different types of two-dimensional functions.

As expected, the methods able to efficiently exploit regu-

larity perform well in the regular functions, but DELG

gains the upper hand as the degree of regularity decreases.

DECG becomes able to rival DELG in irregular functions

as the number of local optima increases. The multistart

methods are able to outperform DELG in functions with no

Table 1 Function test set

Function GO LO D Family Regularity

fcL1ðx~Þ 25 0 2 Cosine Regular

fcL10ðx~Þ 25 1,656 2 Cosine Regular

fcL30ðx~Þ 25 14,616 2 Cosine Regular

fshuðx~Þ 18 742 2 Common Regular

fScL1ðx~Þ 25 0 2 Cosine Partial

fScL10ðx~Þ 25 1,656 2 Cosine Partial

fScL30ðx~Þ 25 14,616 2 Cosine Partial

fSshuðx~Þ 18 742 2 Common Partial

fvinðx~Þ 36 0 2 Common Partial

fq2;0ðx~Þ 10 0 2 Quadratic Irregular

fq2;100ðx~Þ 10 100 2 Quadratic Irregular

fq2;1;000ðx~Þ 10 1,000 2 Quadratic Irregular

fq5;0ðx~Þ 10 0 5 Quadratic Irregular

fq5;100ðx~Þ 10 100 5 Quadratic Irregular

fq10;0ðx~Þ 10 0 10 Quadratic Irregular

fq10;100ðx~Þ 10 100 10 Quadratic Irregular

GO and LO are the number of global and local optima, respectively

Fig. 10 Comparison of the used methods
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local optima, but can not keep up with the other methods as

the number of local optima increases.

Figure 12 displays a typical example of the convergence

speeds of the different methods with regular functions

which contain local optima. DEGS is the fastest, followed

closely by DELG and DELL. Crowding somewhat slows

down DECG in locating the last few optima. CRDE takes a

lot of time to find the first optima due to the inefficient

local search, but locates the rest quite fast by exploiting the

regularity. The SDE and multistart methods, which

primarily rely on local search, find the first optima faster

but are slow to locate the subsequent optima due to their

inability to exploit the regularity.

Figure 13 presents a summary of the best performing

methods with the different irregular functions. While

DELG and DECG demonstrate the top performance in the

two-dimensional functions, RSGD is the top performer in

all five- and ten-dimensional cases. Looking at the results

in Table 2 also show DECG to outperform DELG. It seems

that while the improved ability of crowding to keep

Table 2 Results

Function Performance DELG DECG CRDE DELL SDE DEGS RSGD GRGD

fcL1 D(IGR)LSEC 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

std 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

fcL10 (DGL)(ECS)RI 1.000 0.998 0.998 1.000 0.997 1.000 0.960 0.914

std 0.000 0.008 0.010 0.000 0.010 0.000 0.041 0.049

fcL30 (DGL)(EC)SRI 1.000 0.998 0.998 1.000 0.990 1.000 0.378 0.360

std 0.000 0.009 0.009 0.000 0.021 0.000 0.100 0.000

fshu D(LG)E(SC)IR 1.000 1.000 1.000 1.000 1.000 1.000 0.994 1.000

std 0.000 0.000 0.000 0.000 0.000 0.000 0.017 0.000

f{ScL1 (RI)GS(LCE)D 1.000 0.996 0.999 0.998 0.998 0.854 1.000 1.000

std 0.000 0.015 0.006 0.011 0.011 0.154 0.000 0.000

f{ScL10 GS(LE)RCID 0.999 0.956 0.809 0.964 0.985 0.714 0.858 0.725

std 0.007 0.042 0.078 0.069 0.028 0.248 0.089 0.143

f{ScL30 GLECSDRI 0.953 0.815 0.684 0.871 0.654 0.616 0.291 0.188

std 0.063 0.112 0.120 0.156 0.137 0.254 0.098 0.099

f{Sshu G(LS)CEI(RD) 1.000 0.910 0.927 1.000 0.999 0.874 0.882 0.896

std 0.000 0.100 0.153 0.000 0.008 0.151 0.115 0.122

f{vin RGICLSED 0.959 0.696 0.901 0.804 0.770 0.359 0.970 0.956

std 0.032 0.047 0.035 0.048 0.049 0.044 0.023 0.025

fq2,0 (IR)G(SE)LCD 1.000 0.997 0.988 0.997 1.000 0.574 1.000 1.000

std 0.000 0.017 0.036 0.017 0.000 0.147 0.000 0.000

fq2,100 (GRIE)(LS)CD 1.000 0.992 0.944 0.987 0.985 0.613 0.999 0.998

std 0.000 0.027 0.066 0.039 0.041 0.128 0.010 0.014

fq2,1,000 (GE)(LI)RSCD 0.990 0.985 0.716 0.983 0.912 0.635 0.948 0.973

std 0.030 0.036 0.268 0.038 0.091 0.144 0.069 0.053

fq5,0 RIE(GSC)LD 0.957 0.989 0.954 0.777 0.958 0.216 0.996 0.992

std 0.062 0.035 0.069 0.136 0.065 0.091 0.020 0.031

fq5,100 RIEGLSCD 0.701 0.769 0.211 0.502 0.313 0.120 0.905 0.853

std 0.145 0.138 0.129 0.161 0.135 0.085 0.104 0.116

fq10,0 REIGCSLD 0.893 0.957 0.728 0.411 0.619 0.117 0.981 0.932

std 0.101 0.061 0.222 0.175 0.106 0.038 0.042 0.075

fq10,100 R(IE)GLCSD 0.550 0.643 0.205 0.252 0.117 0.033 0.800 0.667

std 0.142 0.152 0.151 0.148 0.089 0.051 0.135 0.151

The method columns list the best achieved average peak ratios and the standard deviations (std) for each method. The best result for each

function is marked in bold font as well as any other results which do not have a statistically significant difference to the best one with a

significance level 0.05. Similarly the worst results are marked in italic font. The significance is determined using the two-tailed Wilcoxon signed-

rank test (Wilcoxon 1945). The performance column lists the tested methods from best to worst performer in each problem such that C is CRDE,

G means DELG, E stands for DECG, R is RSGD, D means DEGS, S stands for SDE, L is DELL and I is GRGD. In cases with no statistically

significant difference in the peak ratios, the speed measured as the number of function evaluations is used to determine the performance order.

The brackets are used to group methods when their relative performance order can not be confidently defined
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population diversity disrupts the performance in low

dimensional cases, it is able to offer an advantage as the

dimensionality increases.

Comparing the performance of the multistart and pop-

ulation based methods is especially interesting. Lobo and

Lima (2006) claim that a simple hill climber (like RSGD or

GRGD) will very likely outperform EAs in problems with

no global structure which the EA could exploit. Although

their study only assumes a goal of finding a single opti-

mum, the results in this study suggest that the same gen-

erally holds for multimodal optimization and includes the

hybrids. The quadratic family does not offer a meaningful

global structure nor does it offer other easily exploitable

features. Furthermore as different random seeds are used,

each quadratic function test set actually contains 100 dif-

ferent functions. This makes it hard to exploit any global

information and the even coverage provided by GRGD

offers a good comparison point for the other algorithms.

However, the grid approach is not able to offer an advan-

tage over randomly generated starting points. As can be

seen by comparing the results in quadratic functions on

Table 2, RSGD demonstrates superior performance over

GRGD especially with the higher dimensional quadratic

functions.

The DE part in the hybrids becomes an overhead in

irregular functions, as it is no longer able to offer signifi-

cant advantage to the search through exploiting the global

information. Two-dimensional functions containing local

optima, however, are an exception for this. As the two-

dimensional search space is still rather compact, the nich-

ing DE part is able to keep the population well spread,

preventing the hybrids from searching the same areas

repeatedly. Similarly, GRGD is able to outperform RSGD

in fq2,1,000 through minimizing the redundant searches. As

the volume of the search space increases along with the

dimensionality, it becomes increasingly difficult to cover

the search space with enough detail, and the overhead

outweighs the gained benefits, giving an advantage to

RSGD over the hybrids and GRGD. The pure DE- based

methods are clearly the worst performers, as the improved

global search capability simply can not compensate the loss

of convergence speed when the global information is not

easily exploitable.

7 Conclusions and future work

In this paper, a software framework for generating multi-

modal problems has been presented. The framework pro-

vides an easy way to construct parameterizable functions

and offers an environment for testing multimodal optimi-

zation algorithms. To the authors’ knowledge, no versatile

environment designed especially for producing problems

Fig. 11 Best performing methods with different two-dimensional

functions

0 5 10 15
0

0.5

1

1.5

2

2.5

3

x 10
5

90

Number of found optima

N
F

E

RSGD
GRGD
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SDE NP 500, F 1, R 0.5
DELL NP 50, PX 0.5, σ 0
DELG NP 100, PX 0.9, σ 0
DECG NP 100, PX 0.9, σ 0

Fig. 12 Average number of function evaluations required to find the

i:th optimum, including standard deviations for the fshu function.

RSGD was able to locate the 18th optimum in only 90% of the runs

Fig. 13 Best performing methods with different irregular functions
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for multimodal optimization exists and the proposed

framework aims to remedy this situation. In addition to

offering three families of parameterizable functions, the

framework implements several well known test problems

and provides an easy option to modify them by rotating and

stretching.

The framework allows easy addition of new families.

One such future family could be a variant of the current

cosine family where the global optima would not be

located on the constraints. This would allow easy com-

parison of algorithms in regard to their ability to locate

optima on constraints and offer a different challenge for

methods that rely on the constraints and initial population.

Another area in which the framework should be developed

is the ability to generate functions with desirable global

structure. For the quadratic family we are planning to

achieve this by adding an option giving the optima loca-

tions as parameters, instead of always generating them

randomly. A new family based on the composition idea

discussed in Sect. 3 could also be added to allow the

generation of varying landscapes having a large number of

optima without excessive computational cost. Additionally,

more known test functions could be added to the common

family and some of the existing functions currently limited

to two-dimensions could be generalized to allow higher

dimensional versions.

The usability of the proposed framework was demon-

strated by generating a set of test functions for comparing

eight optimization approaches in locating multiple optima.

The results demonstrate the importance of understanding

and being able to change the test function features in order

to explain the performance of an algorithm. Additionally,

the results show the advantage of separating the global and

local search operations through hybridization. This is

especially important in multimodal optimization, where the

population must stay diverse throughout the optimization.

The DE hybrids are able to offer a potential increase in

performance through identifying and exploiting regularities

the user is not aware of beforehand. The global search

phase, however, is only able to offer an advantage in

functions, which contain exploitable features. If the regu-

larities are not available, the hybrids still offer superior

performance compared to pure DE methods. Finally, the

results suggest crowding to offer an advantage over local

selection in irregular functions when the dimensionality of

a function increases.

In future research, more comprehensive testing is

required to fully understand the features of the approaches.

Especially the effect of increasing dimensionality further

should be studied. It seems that efficient global and local

parts are both important for the success of a multimodal

optimization algorithm. Nevertheless, a wide variety of

different approaches for implementing the global and local

part should be studied to determine the best combinations

for different types of problems.
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