

Abstract—Accurate time series forecasting are important for
displaying the manner in which the past continues to affect the
future and for planning our day to-day activities. In recent
years, a large literature has evolved on the use of evolving
artificial neural networks (EANNs) in many forecasting
applications. Evolving neural networks are particularly
appealing because of their ability to model an unspecified non-
linear relationship between time series variables. This paper
evaluates two methods to evolve neural networks architectures,
one carried out with genetic algorithm and a second one carry
out with differential evolution algorithm. A comparative study
between these two methods, with a set of referenced time series
will be shown. The object of this study is to try to improve the
final forecasting getting an accurate system.

I. INTRODUCTION
N order to acquire knowledge, it is interesting to know
what the future will look like, i.e. forecast the future from

the observed past. Time series forecasting is an essential
research field due to its effectiveness in human life. It is a
discipline that finds each day more applications in areas like
planning, management, production, maintenance and control
of industrial processes, economy, and weather forecasting.

The forecasting task can be performed by several
techniques as Statistical methods [1], and others based on
Computational Intelligence like Immune Systems [2] and
Artificial Neural Networks (ANN) [3].

ANNs provide a methodology for solving many types of
nonlinear problems that are difficult to solve by traditional
techniques. Most time series processes often exhibit
temporal and spatial variability, and are suffered by issues of
nonlinearity of physical processes, conflicting spatial and
temporal scale and uncertainty in parameter estimates. The
ANNs have capability to extract the relationship between the
inputs and outputs of a process, without the physics being
explicitly provided. Thus, these properties of ANNs are well
suited to the problem of time series forecasting.

The research reported here has been supported by the Spanish Ministry

of Science and Innovation under project TRA2007-67374-C02-02.
J. Peralta. Computer Science Department, University Carlos III of

Madrid, SPAIN (phone: +34 916249424; fax: +34 916249129; e-
mail:jperalta@inf.uc3m.es)

Xiaodong Li. School of Computer Science and Information Technology,
RMIT University. AUSTRALIA (phone: +61 3 99259585; fax: +61 3
96621617; e-mail: xiaodong.li@rmit.edu.au)

German Gutierrez. Computer Science Department, University Carlos III
of Madrid, SPAIN (phone: +34 916249135; fax: +34 916249129; e-mail:
ggutierr@inf.uc3m.es)

Araceli Sanchis. Computer Science Department, University Carlos III of
Madrid, SPAIN (phone: +34 916249423; fax: +34 916249129; e-mail:
araceli.sanchis@uc3m.es).

This contribution reports the methodology to carry out the
automatic design of ANN that tackles the forecasting of a
referenced set of time series [4]. The task will consist of
forecasting several time series, not all of them with the same
ANN, but an automatic method will be used to obtain a
different ANN to forecast each time series.

Two different steps, as it was explained in an earlier work
[5], will be done to get an ANN to forecast each time series.
The first step will consist of setting the kind of ANN that
will solve the forecasting task (Multilayer Perceptron), and
the learning algorithm used (Backpropagation).

In the second step the design of the ANN will be done,
setting the parameter values of the ANN, i.e. number of
input nodes, number of hidden nodes, learning rate for BP
and finally all connections weights. These parameters are
established by carrying out a search process performed by
two different evolutionary algorithms, a Genetic Algorithm
(GA), and Differential Evolution algorithm (DE).

The paper is organized as follows. Sec II reviews the
related work about how to tackle forecast task with ANN,
and design of ANN with Evolutionary Computation. Sec III
will explain how our system designs ANN with GA and DE
to forecast time series. In Sec IV experimental setup and
results are shown. And finally, conclusions and future works
are described in Sec V.

II. RELATED WORK

A. Time series and ANN
Several works have tackled the forecasting time series

task with ANN, not only computer science researchers, but
statistics as well [1]. This shows the full consideration of
ANN (as a data driven learning machine) into forecasting
theory [6].

Before using an ANN to forecast, it has to be designed,
i.e. establishing the suitable value for each freedom degree
of the ANN [7] (kind of net, number of input nodes, number
of outputs neurons, number of hidden layer, number of
hidden neurons, the connections from one node to another ,
connection weights, etc). The design process is more an
“art” based on test and error and the experience of human
designer, than an algorithm. In [6] Zhang, Patuwo and Hu
present a “state of the art” of ANN into forecasting task, in
[8] is proposed an “extensive modeling approach” to review
several designs of ANN.

The problem of forecasting time series with ANN is
considered as modeling the relationship of the value of the
element in time "t" (due to the net will only have one output

Time series forecasting by evolving artificial neural networks using
genetic algorithms and differential evolution

Juan Peralta, Xiaodong Li, German Gutierrez, Araceli Sanchis

I

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain IJCNN

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3999

neuron) and the values of previous elements of the time
series (t-1, t-2,.., t-k) to obtain a function as it is shown in
(1):

)a,,af (aa t-kt-t-t , 21 …= (1)

B. ANN and Evolutionary Computation
Several works show methods to obtain ANN design by an

automatic way; among them, those that use Evolutionary
Computation (EC) reveal that the search process carried out
by evolutionary techniques, obtain good results
[9,10,11,12,13].

Some of them use Direct Encoding Schemata (DES)
[9,10], others use Indirect Encoding Schemata (IES)
[11,12,13]. For DES the chromosome contains information
about parameters of the topology, architecture, learning
parameters, etc. of the Artificial Neural Network. In IES the
chromosome contains the necessary information so that a
constructive method gives rise to an Artificial Neural
Network topology (or architecture). Abraham [14] shows an
automatic framework for optimization ANN in an adaptive
way, and Xin Yao et. al. [15] try to spell out the future
trends of the field. Just a couple of studies have been done
using ANN and DE to generate a hybrid system to forecast
time series [16,17].

III. ANN DESIGN WITH GA AND DE

A. Learning pattern set
In order to obtain a single ANN to forecast time series

values, an initial step has to be done with the original values
of the time series, i.e. normalize the data. And once the ANN
gives the resulting values, the inverse process is carried out
in order to evaluate the forecasting carried out by the ANN.
This step is important as the ANN works with real values
number between 0 and 1 as input values.

Furthermore, the time series known values will be
transformed into a pattern set, depending on the k inputs
nodes of each ANN generated in search process carry out by
GA or DE. Therefore, each pattern consists in:

- "k" inputs values, that correspond to "k" normalized

previous values of period t: at-1,at-2,…,at-k.
- One output value, that corresponds to normalized time

series value of period t.

This patterns set will be used to train and validate each
ANN generated during the GA or DE execution. So patterns
set will be split into two subsets, train and validation. The
first x% from the total patterns set will generate the train
patterns subset, and the validation subset will be obtained
from the rest of the complete patterns set.

B. ANN design carried out with GA
The problem of designing ANN could be seen as a search

problem into the space of all possible ANN. Moreover, that

search can be done by a GA [18] using exploitation and
exploration.

Therefore there are three crucial issues: i) the solution's
space, what information of the net is previously set and what
is included into the chromosome; ii) how each solution is
codified into a chromosome, i.e. encoding schema; iii) and
what is being looked for, translated into the fitness function.

In this approach it has been chosen Multilayer Perceptron
(MLP) as computational model due to its approximation
capability and inside this group, Full Connected MLP with
only a hidden layer and Backpropagation (BP) as learning
algorithm, according to [19]. This is because ANN with only
one hidden layer are faster to be trained and easier to work
than two or more hidden layer MLP.

As it was mentioned before the design of the ANN will be
done by setting the parameter values of the ANN. In the case
of MLP with only one hidden layer and BP, the parameters
are: number of inputs nodes, number of hidden neurons,
number of output neurons, (only one, it is set by the
forecasting problem), which is the connection patterns (how
the nodes are connected), and the whole set of connection
weights (implemented by the seed used to initialize the
connection weights as it will be explained later).

For our approach [5] to design ANN to forecast time
series, a Direct Encoding Schema for Full Connected MLP
has been considered. For this Direct Encoding Scheme the
information placed into the chromosome will be: two
decimal digits, i.e. two genes, to codify the number of inputs
nodes (i); other two for the number of hidden nodes (h); two
more for the learning factor (α); and the last ten genes for the
initialization seed value of the connection weights (s) (seed
in SNNS [20] is “long int” type, that is why it has been used
10 genes (decimal digits) to encode “s”). This way, the
values of “i”, “h”, “α” and “s” are obtained from the
chromosome as it can be seen in eq (2):

s10s9s8s7s6s5s4s3s2s1

21

h2h1

i2i1

xy

s10s9s8s7s6s5s4s3s2s121h2h1i2i1

g g g g g g g g g g s
))/100g10((g

)/100)g10((g smax_hidden h
)/100)g10((g max_inputs i

1..10y , h,i, x , 9 g 0

g g g g g g g g g g g g g g g g
 :Chrom

=
+⋅=

+⋅⋅=
+⋅⋅=

==≤≤

αα

αα

α

α
 (2)

The search process (GA) will consist of the following

steps:

1. A randomly generated population, i.e a set of randomly
generated chromosomes, is obtained.

2. The phenotypes (i.e. ANN architectures) and fitness value
of each individual of the actual generation is obtained. To
obtain the phenotype associated to a chromosome and its
fitness value:

4000

2.1 The phenotype) of an individual “i” of the actual
generation is obtained.
2.2 Then, the train and validation patterns subsets for
this neural net “i”are obtained from time series data ,
depending on the number of inputs nodes of the net
“i”, as it was commented above in section III.A.
2.3 The net is trained with BP (. The architecture
(topology and connections weights set) of the net when
the validation error (i.e. error for validation patterns
subset) is minimum during the training process is saved
(i.e. early stopping). So this architecture is the final
phenotype of the individual.

3. Once that fitness value for whole population is already
obtained, the GA operators as Elitism, Selection,
Crossover and Mutation are applied in order to generate

the population of the next generation, i.e. set of
chromosomes.

4. The steps 2 (i.e. 2.1, 2.2, 2.3) and 3 are iteratively
executed till a maximum number of generations are
reached.

A schema of the whole search process can be seen at fig. 1.

Fig. 1. ANN design by GA schema

The fitness value for each individual will be then the

minimum validation error during the learning process
(training of ANN topology), as it can be seen in eq (3):

error validation minimumnction = fitness fu (3)

The parameters for the GA are: population size, 50;

maximum number of generations, 100; percentage of the
best individuals that stay unchangeable to the next
generation (percentage of elitism), 10%; crossover:
parents are split in one point randomly selected, offspring
are the mixed of each part from parents; mutation
probability will be one divided between the length of the
chromosome (1/length_chrom) = 1/16 ≈ 0.7), and it will
be carried out for each gen of each chromosome.

Once that GA reaches the last generation, the best
individual (i.e. ANN) from the last generation is used to
forecast the future (and unknown) time series values.

The future unknown values (at+1) will be forecasted one
by one using the k previous known values (at, at-1, …, at-k).
k is the number of inputs of the ANN obtained from the
GA execution (i.e. the best ANN from the search process)
To forecast several consecutive values (at+1, at+2,…) every
time a new value is forecasted, it will be included in order
into the previous known values set of the time series and
used to forecast the next one.

C. Differential Evolution algorithm (DE)
Differential Evolution algorithms (DE), is a stochastic

nonlinear optimization algorithm by Storn and Price [21]

4001

and belongs to the class of evolution strategy optimizers.
DE tries to find the global minimum of a
multidimensional, multimodal (i.e. exhibiting more than
one minimum) function with good probability. DE
community has been growing since the mid 1990s and
today more researchers are working on and with DE
[16,22].

The crucial idea behind DE is a scheme for generating
trial parameter vectors. DE differs from other
evolutionary algorithms (EA) in their mechanism of
generating offspring. In GA, an individual plays the role
of a parent to generate an offspring. Nevertheless, DE
adds the weighted difference between two vectors, i.e.
chromosomes of the population, to a third vector. This
way no separate probability distribution has to be used
which makes the scheme completely self-organizing.

In DE a population of solution vectors is successively
updated by addition, subtraction, and component
swapping, until the population converges, hopefully to the
optimum. No derivatives are used, very few parameters
are set and it is a simple and apparently very reliable
method. DE managed to finish 3rd at the First
International Contest on Evolutionary Computation
(1st ICEO). DE turned out to be the best genetic type of
algorithm for solving the real-valued test function.

Just a couple of studies using DE have been used in
weather time series forecasting field [16,17].
Due to this, a total automatic method, using advantages of
DE and ANN (i.e. hybrid system), in which the user
doesn’t need to be an expert, to forecast all kind of time
series, not only weather ones, is presented here.

D. ANN design carried out with DE
There are many schemes of generating individuals in

DE. In this document, it is presented the simplest and
most popular scheme, the DE/rand/1/bin, which is used in
this research. Here we have the process for a
DE/rand/1/bin:

1. Px,g <= Generate and evaluate an initial

population of x solutions where g is the
number of dimensions in the search-space.

2. Repeat for i = 0, 1, 2, …, until a stopping
criterion is met

a. A target vector (Xi) and a base vector
(Xr0) are chosen.

b. Two random different population
members (Xr1, Xr2) are also chosen.

c. Compute weighted difference vector
from Xr1 and Xr2.

d. Multiply “c” by the mutation factor
F.

e. Vi <= Add “d” to base vector (Xr0) to
obtain the mutant population Pv,g.

f. Ui <= Crossover between target
vector (Xi) and Vi.

g. Selection is carried out between Xi

and Ui.

As it can be seen at the previous pseudocode, different

steps have to be done during DE process. First we start
with a randomly chosen solution vectors as an initial
population of NP possible solutions (Px,g). As it was
commented above a target vector (Xi), a base vector (Xr0),
and two random different population members (Xr1, Xr2)
are also chosen. For each Xi in (1,… ,NP), it is formed a
“mutant vector” (Vi) using the other three elements (Xr0,
Xr1and Xr2) as it is shown in (4):

)(2r10 rri XXFXV −+= (4)

Where r0, r1, and r2 are three mutually distinct

randomly drawn indices from (1, …,NP), and also distinct
from i, and mutation factor values is 0<F<=2. Fig. 2
shows the process of forming the “mutant vector”.

Fig. 2. Forming the mutant vector

To crossover Xi and Vi to form the trial vector Ui, for

each component of vector, it is drawn a random number in
[0,1] called randj. Let the crossover ratio (i.e. CR) be a
cutoff with value 0<=CR<1. If randj<=CR, Uij= Vij, else
Uij= Xij. To ensure at least some crossover, one
component of Ui is selected at random to be directly from
Vi. For example, if we have Xi and Vi as follow:

Xi = (Xi1, Xi2, Xi3, Xi4, Xi5)
Vi = (Vi1, Vi2, Vi3, Vi4, Vi5)

Ui could be:
Ui = (Vi1, Xi2, Xi3, Xi4, Vi5)

Where index 1 (Vi1) of Ui has been randomly selected
as definitive crossover from Vi. Vi5 has been chosen from
Vi because rand5 was lower than CR, and in the rest of the
cases, randi was greater than CR. Fig. 3 shows crossover
process.

4002

Fig 3. Crossover Xi and Vi to form the trial vector

Once crossover is finished, selection has to be done.

The idea of selection in this algorithm is simple, if the
new offspring (Ui) is better (i.e. better fitness value) than
the target vector (Xi) then, Ui pass to the next generation,
otherwise it is the target vector who will be again in the
next generation. Fig. 4 shows DE whole process.

Fig. 4. DE schema

Equation 5 shows a summary of DE algorithm:

 Xj,r0 + F(Xj,r1 − Xj,r2) if (randj < CR or j = jrand)

Ui=Uj,i=
 Xj,i otherwise (5)

If we also have a look to the process for a general GA,

it would be:

1. D0 <= Generate and evaluate an initial
population of solutions

2. Repeat for k = 0, 1, 2, …, until a stopping
criterion is met

a. Elitism
kD <= Select a subset of

solutions from Dk

b. Crossover
kD <= Apply crossover to

solutions from kD

c. Mutation
kD <= Apply mutation to

solutions from Crossover
kD

d. 1+kD <= Create the new population

with solutions from Mutation
kD and

Elitism
kD

e. Evaluate solutions in 1+kD

To apply DE to our system it was necessary to replace
the GA, who is responsible of carrying out the global
search into the hybrid system, for DE.

It can be observed that the principal differences
between GA and DE consist of steps “a”, “b”, “c”, “d”
and “e”, and it was also necessary to add two new steps
“f” and “g” where the new selection process is carried
out.

IV. EXPERIMENTAL SETUP AND RESULTS

A. Time Series
Five time series will be used to evaluate our methods.

These time series are named Passengers, Temperature,
Dow-Jones, Quebec, and Mackey-Glass [23]. Passengers
time series has the information about the number of
passengers of an international airline in thousands,
measured monthly from January of 1949 till December of
1960, the source is Box & Jenkins (1976). Temperature
time series shows the mean monthly of air temperature
measured at Nottingham Castle from 1920 till 1939; in
this case the source is O.D. Anderson (1976). Dow-Jones
is about the monthly closings of the Dow-Jones industrial
index from August of 1968 till August of 1981, the source
is Hipel and Mcleod (1994). Quebec represents the
number of births daily measured in Quebec from 1st of
January of 1977 till 31 of December of 1978. And the last
one called Mackey-Glass is based on the Mackey-Glass
differential equation and is widely regarded as a
benchmark for comparing the generalization ability of
different methods. This series is a chaotic time series
generated from a time-delay ordinary differential
equation.

B. Experimental setup
The time series values have to be rescale, into the

numerical range value [0,1], considering not only the
known values, but the future values (those to be
forecasted).

So, the maximum and minimum limits for normalizing
(max4norm, min4norm respectively) cannot be just the
maximum (max) and minimum (min) known time series
values. A margin from max and min has to be set if future

4003

values were higher or lower than known values already
are. This margin will depend on another parameter
(Prct_inc). In those cases in which the time series is
stationary a Prct_inc of 10% will be enough, but when the
time series is increasing or decreasing Prct_inc should be
at least of 50%. As it could be forecasted new values for a
time series that will rise of a fall, it is needed a enough big
margin so the new values, obtained as output of ANN, can
be into the numerical range [0,1]. This Equation (5) shows
how are obtained max4norm and min4norm.

min))-(max (Prct_inc -min min4norm
min))-(max (Prct_inc max max4norm

⋅=
⋅+= (5)

C. GA versus DE
Both ways to forecast time series, i.e both hybrid

systems, one with GA and other with DE, have been
executed five times (200 generations each time) for each
time series. For each time series, the average result (and
standard desviation) of the five simulations is shown.

To evaluate the error for each method, forecasted
values (i.e. test set, not train or validation sets) are
compared with real values. Two sort of errors on
forecasted values are used: MSE (mean squared error) and
SMAPE (symmetric mean absolute percent error
[4]);SMAPE has been used at NN3 and NN5 forecasting
competitions. Results are shown in Tables I and II.

In Table I, it is shown the results obtained for
Passengers, Temperature, Dow-Jones, Quebec and
Mackey-Glass time series in generation number 100. In
this table, the columns show: MSE and SMAPE error in
forecasting (i.e. test set) for each time series. These errors
are relative to the average of the five times experiments
have been run, choosing each execution the best
individual from the last generation of the GA or the DE.

In Table II, it is shown the results obtained for
Passengers, Temperature, Dow-Jones, Quebec and
Mackey-Glass time series in generation number 200. In
this table, the columns will show: MSE and SMAPE error
in forecasting (i.e. test set) for each time series. These
errors are relative to the average of the five times
experiments have been run, choosing each execution the
best individual from the last generation of the GA or the
DE.

TABLE I
SMAPE AND MSE PASSENGERS, TEMPERATURE, DOW-JONES, QUEBEC

AND MACKEY-GLASS WITH GA AND DE FOR 100 GENERATIONS
100 Generations GA DE

Passengers SMAPE (%) 3.180 3.358
MSE 0.00061 0.00065

Temperature SMAPE (%) 4.308 3.907
MSE 0.00358 0.00294

Dow-Jones SMAPE (%) 6.662 8.188
MSE 0.02150 0.03229

Quebec SMAPE (%) 12.643 13.739
MSE 0.02540 0.02662

Mackey-Glass SMAPE (%) 8.672 5.988
MSE 0.00363 0.00175

TABLE II

SMAPE AND MSE PASSENGERS, TEMPERATURE, DOW-JONES, QUEBEC
AND MACKEY-GLASS WITH GA AND DE FOR 200 GENERATIONS

200 Generations GA DE

Passengers SMAPE (%) 3.148 3.118
MSE 0.00058 0.00058

Temperature SMAPE (%) 4.239 3.907
MSE 0.00347 0.00294

Dow-Jones SMAPE (%) 6.307 5.810
MSE 0.01993 0.01735

Quebec SMAPE (%) 12.121 13.682
MSE 0.02149 0.02663

Mackey-Glass SMAPE (%) 8.042 3.744
MSE 0.00309 0.00064

As it can be observed in Table I, applying DE instead

of GA to these time series doesn’t achieve better
forecasting (MSE/SMAPE) in many of the time series
when the experiment has been run only 100 generations.
Just Mackey-Glass and Temperature obtain a better
SMAPE result with DE and in Mackey-Glass case; the
improvement is about 2.6%.

But if the experiment is run over 200 generations, it can
be seen in Table II an important improvement in almost
all the time series, where DE obtain a better forecast than
GA in four of the five time series. Only in Quebec time
series GA is still better than EDA although both results
are close. A special consideration has to be taken on
Mackey-Glass time series where the SMAPE error result
is 3.744%, being the values forecasted by our approach
almost identical to the real time series values.

The better results obtained by DE, compared with GA,
after having run the experiments 200 generations could be
explained because in DE, more variation in population
(because solution has not converged yet) leads to more
varied search over solution space. That is why it can take
more time to DE to arrive to a better solution.

To have a better idea about the forecast of each time
series and how close to the real values each forecasting

4004

method was, a graph for each time series showing all the
forecasts done by each method will be carried out. Figure
5 shows Passengers forecast for each method. Figure 6
shows Temperature, Figure 7 shows Dow-Jones, Figure 8
shows Quebec and Figure 9 Mackey-Glass. A zoom of
Quebec will be done in Figure 10. A zoom of Mackey-
Glass will be done in Figure 11. TS(tr+val) represents the
known values of the time series with which we have
worked and TS(test) shows the future unknown real
values that have to be forecasted (i.e. test subset).

Fig. 5. Passengers forecast with GA and DE

Fig. 6. Temperature forecast with GA and DE

Fig. 7. Dow-Jones forecast with GA and DE

Fig. 8. Quebec forecast with GA and DE

Fig. 9. Mackey-Glass forecast with GA and DE

Fig. 10. Zoom of Quebec forecast with GA and DE

Fig. 11. Zoom of Mackey-Glass forecast with GA and DE

4005

V. CONCLUSIONS AND FUTURE WORKS
The results of the experiments disclose that using DE

instead of GA obtain different results, depending on the
number of generations they are executed. With only 100
generations, DE results don’t improve too much
compared to GA. But if 200 generations are reached, it
can be observed a significant improvement, some times
with a gain of 4.3% in the results, as it happens in
Mackey-Glass time series.

As it was commented before, obtaining better results by
DE than with GA after having run the experiments 200
generations could be explained because in DE more
variation in population (because solution has not
converged yet) leads to more varied search over solution
space. That is why it can take more time to DE to arrive to
a better solution.

 As it is a totally automatic method, it will not be
necessary any previous knowledge from the user. So the
user will not have to be an expert in time series, statistics,
mathematics or computational intelligence. The user just
have to give the time series he wants to forecast and the
number of future elements he wants to be forecasted to
the system; and this method will give these forecasted
values as result to the user.

This approach was presented as an automatic method to
design ANN in NN5 competition, getting the 6th position
with SMAPE error of 21.9% in Neural Nets and
Computational Intelligence methods (NNCI) ranking, for
the reduced dataset (i.e. 11 time series). Best result on
NNCI ranking and reduced data was a SMAPE error of
19.0%. Autobox tool [24] based on Box-Jenkins
forecasting methodology got an error of 23.9%.

Future works with additional time series, with similar
characteristics to Quebec, Mackey-Glass will allow us to
obtain more accurate conclusions about the effect of using
DE in stead of GA. On the other hand, it would be really
interesting to try to improve the system with some ideas
like: in stead of using a random Xr0, use the best one (i.e.
the one with the best fitness value); or instead of using
single difference (i.e. Xr1-Xr2), to use more vectors for
more variation, for example (Xr1-Xr2+Xr3-Xr4).

Other interesting future works are: to use “cross
validation” into the GA for a better evaluation of each
individual; using sparsely connected ANN to try to
improve the forecast to obtain an accurate system.

REFERENCES
[1] Spyros G. Makridakis, Steven C. Wheelwright, Rob J Hyndman.

Forecasting: Methods and Applications.
[2] Ian Nunn, Tony White.”The application of antigenic search

techniques to time series forecasting”. Genetic and Evolutionary
Computation Conference 2005. ISBN:1-59593-010-8.

[3] Paulo Cortez, José Machado, José Neves. “An evolutionary
artificial neural network time series forecasting system”. IASTED
1996.

[4] Time Series Forecastig Competition for Neural Networks and
Computational Intelligence. http://www.neural-forecasting-
competition.com. Accessed on October 2008.

[5] J. Peralta, G. Gutierrez, A. Sanchis, "ADANN: Automatic Design
of Artificial Neural Networks”. ARC-FEC 2008 (GECCO 2008).
ISBN 978-1-60558-131-6.

[6] Zhang, G.; Patuwo, B.E. & Hu, M.Y. Forecasting with artificial
neural networks: The state of the art International Journal of
Forecasting, 1998, 14, 35-62.

[7] Haykin, S. Simon & Schuster (ed.) Neural Networks. A
Comprehensive Foundation Prentice Hall, 1999.

[8] Crone, S. F. Stepwise Selection of Artificial Neural Networks
Models for Time Series Prediction Journal of Intelligent Systems,
Department of Management Science Lancaster University
Management School Lancaster, United Kingdom, 2005.

[9] T. Ash. Dynamic Node Creation in Backpropagation Networks
ICS Report 8901, The Institute for Cognitive Science, University
of California, San Diego (Saiensu-sh, 1988), 1988.

[10] D.B. Fogel, Fogel L.J. and Porto V.W. Evolving Neural Network,
Biological Cybernetics, 63, 487-493, 1990.

[11] Gruau F. "Genetic Synthesis of Boolean Neural Networks with a
Cell Rewriting Developmental Process". Proceedings of
COGANN-92 International Workshop on Combinations of Genetic
Algorithms and Neural Networks, pp. 55-74, IEEE Computer
Society Press, 1992.

[12] Yao, X. and Lin, Y. A new evolutionary system for evolving
artificial neural networks, Transactions on Neural Networks, 8(3):
694-713, 1997.

[13] Kitano, H.: Designing Neural Networks using Genetic Algorithms
with Graph Generation System, Complex Systems, 4, 461-476,
1990.

[14] Ajith Abraham, Meta-Learning Evolutionary Artificial Neural
Networks, Neurocomputing Journal, Elsevier Science,
Netherlands, Vol. 56c, pp. 1-38, 2004.

[15] X. Yao (1993), “A review of evolutionary artificial neural
networks”, International Journal of Intelligent Systems, 8(4):539-
567.

[16] R. A. Araujo, G. C. Vasconselos and A. E. Ferreria. Hybrid
differential evolutionary system for financial time series
forecasting. 2007.

[17] H. M. Abdul-Kader. Neural networks training based on differential
evolution algorithm compared with other architectures for weather
forecasting34. 2009.

[18] Fogel, D. Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Wiley-IEEE Press, 1998.

[19] G. Cybenko. Approximation by superposition of a sigmoidal
function. Mathematics of Control, Signals and Systems, 2, 303-
314, 1989.

[20] Prof. Dr. Andreas Zell,, WSI Computer Science Department,
Computer Arquitecture, Software, Artificial Neural Networks
http://www-ra.informatik.uni-tuebingen.de/SNNS/

[21] Storn, Rainer, and Kenneth Price. Differential Evolution –A
Simple and Efficient Heuristic for Global Optimization over
Continuous Spaces. Journal of Global Optimization11, 1997, pp.
341-359.

[22] Wickramasinghe, W. and Li, X. (2008), "Choosing Leaders for
Multi-objective PSO Algorithms using Differential Evolution", in
Proceedings of the seventh International Conference on Simulated
Evolution and Learning (SEAL'08), Lecture Notes in Computer
Science (LNCS 5361), Springer, p.249 - 258.

[23] Hyndman, R.J. (n.d.) Time Series Data Library,
http://www.robjhyndman.com/TSDL. Accessed on February 1st
2010.

[24] Automatic Forecasting Systems. http://www.autobox.com.
Accessed on October 2008.

4006

