
 
 

 

  

Abstract—Accurate time series forecasting are important for 
displaying the manner in which the past continues to affect the 
future and for planning our day to-day activities. In recent 
years, a large literature has evolved on the use of evolving 
artificial neural networks (EANNs) in many forecasting 
applications. Evolving neural networks are particularly 
appealing because of their ability to model an unspecified non-
linear relationship between time series variables. This paper 
evaluates two methods to evolve neural networks architectures, 
one carried out with genetic algorithm and a second one carry 
out with differential evolution algorithm. A comparative study 
between these two methods, with a set of referenced time series 
will be shown. The object of this study is to try to improve the 
final forecasting getting an accurate system. 

I. INTRODUCTION 
N order to acquire knowledge, it is interesting to know 
what the future will look like, i.e. forecast the future from 

the observed past. Time series forecasting is an essential 
research field due to its effectiveness in human life. It is a 
discipline that finds each day more applications in areas like 
planning, management, production, maintenance and control 
of industrial processes, economy, and weather forecasting. 

The forecasting task can be performed by several 
techniques as Statistical methods [1], and others based on 
Computational Intelligence like Immune Systems [2] and 
Artificial Neural Networks (ANN) [3]. 

ANNs provide a methodology for solving many types of 
nonlinear problems that are difficult to solve by traditional 
techniques. Most time series processes often exhibit 
temporal and spatial variability, and are suffered by issues of 
nonlinearity of physical processes, conflicting spatial and 
temporal scale and uncertainty in parameter estimates. The 
ANNs have capability to extract the relationship between the 
inputs and outputs of a process, without the physics being 
explicitly provided. Thus, these properties of ANNs are well 
suited to the problem of time series forecasting. 
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This contribution reports the methodology to carry out the 
automatic design of ANN that tackles the forecasting of a 
referenced set of time series [4]. The task will consist of 
forecasting several time series, not all of them with the same 
ANN, but an automatic method will be used to obtain a 
different ANN to forecast each time series. 

Two different steps, as it was explained in an earlier work 
[5], will be done to get an ANN to forecast each time series. 
The first step will consist of setting the kind of ANN that 
will solve the forecasting task (Multilayer Perceptron), and 
the learning algorithm used (Backpropagation).  

In the second step the design of the ANN will be done, 
setting the parameter values of the ANN, i.e. number of 
input nodes, number of hidden nodes, learning rate for BP 
and finally all connections weights. These parameters are 
established  by carrying out a search process performed by 
two different evolutionary algorithms, a Genetic Algorithm 
(GA), and Differential Evolution algorithm (DE). 

The paper is organized as follows. Sec II reviews the 
related work about how to tackle forecast task with ANN, 
and design of ANN with Evolutionary Computation. Sec III 
will explain how our system designs ANN with GA and DE 
to forecast time series. In Sec IV experimental setup and 
results are shown. And finally, conclusions and future works 
are described in Sec V.  

II. RELATED WORK 

A. Time series and ANN 
Several works have tackled the forecasting time series 

task with ANN, not only computer science researchers, but 
statistics as well [1]. This shows the full consideration of 
ANN (as a data driven learning machine) into forecasting 
theory [6].  

Before using an ANN to forecast, it has to be designed, 
i.e. establishing the suitable value for each freedom degree 
of the ANN [7] (kind of net, number of input nodes, number 
of outputs neurons, number of hidden layer, number of 
hidden neurons, the connections from one node to another , 
connection weights, etc ). The design process is more an 
“art” based on test and error and the experience of human 
designer, than an algorithm. In [6] Zhang, Patuwo and Hu 
present a “state of the art” of ANN into forecasting task, in 
[8] is proposed an “extensive modeling approach” to review 
several designs of ANN. 

The problem of forecasting time series with ANN is 
considered as modeling the relationship of the value of the 
element in time "t" (due to the net will only have one output 
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neuron) and the values of previous elements of the time 
series (t-1, t-2,.., t-k) to obtain a function as it is shown in 
(1): 

 
)a,,af (aa t-kt-t-t ,  21 …=                        (1) 

B. ANN and Evolutionary Computation 
Several works show methods to obtain ANN design by an 

automatic way; among them, those that use Evolutionary 
Computation (EC) reveal that the search process carried out 
by evolutionary techniques, obtain good results 
[9,10,11,12,13]. 

Some of them use Direct Encoding Schemata (DES) 
[9,10], others use Indirect Encoding Schemata (IES) 
[11,12,13]. For DES the chromosome contains information 
about parameters of the topology, architecture, learning 
parameters, etc. of the Artificial Neural Network. In IES the 
chromosome contains the necessary information so that a 
constructive method gives rise to an Artificial Neural 
Network topology (or architecture). Abraham [14] shows an 
automatic framework for optimization ANN in an adaptive 
way, and Xin Yao et. al. [15] try to spell out the future 
trends of the field. Just a couple of studies have been done 
using ANN and DE to generate a hybrid system to forecast 
time series [16,17].  

III. ANN DESIGN WITH GA AND DE  

A. Learning pattern set 
In order to obtain a single ANN to forecast time series 

values, an initial step has to be done with the original values 
of the time series, i.e. normalize the data. And once the ANN 
gives the resulting values, the inverse process is carried out 
in order to evaluate the forecasting carried out by the ANN. 
This step is important as the ANN works with real values 
number between 0 and 1 as input values. 

Furthermore, the time series known values will be 
transformed into a pattern set, depending on the k inputs 
nodes of each  ANN generated in search process carry out by 
GA or DE. Therefore, each pattern consists in:  

 
- "k" inputs values, that correspond to "k" normalized 

previous values of period t: at-1,at-2,…,at-k. 
- One output value, that corresponds to normalized time 

series value of period t. 
 

This patterns set will be used to train and validate each 
ANN generated during the GA or DE execution. So patterns 
set will be split into two subsets, train and validation. The 
first x% from the total patterns set will generate the train 
patterns subset, and the validation subset will be obtained 
from the rest of the complete patterns set. 

B. ANN design carried out with GA 
The problem of designing ANN could be seen as a search 

problem into the space of all possible ANN. Moreover, that 

search can be done by a GA [18] using exploitation and 
exploration.  

Therefore there are three crucial issues: i) the solution's 
space, what information of the net is previously set and what 
is included into the chromosome; ii) how each solution is 
codified into a chromosome, i.e. encoding schema; iii) and 
what is being looked for, translated into the fitness function. 

In this approach it has been chosen Multilayer Perceptron 
(MLP) as computational model due to its approximation 
capability and inside this group, Full Connected MLP with 
only a hidden layer and Backpropagation (BP) as learning 
algorithm, according to [19]. This is because ANN with only 
one hidden layer are faster to be trained and easier to work 
than two or more hidden layer MLP. 

As it was mentioned before the design of the ANN will be 
done by setting the parameter values of the ANN. In the case 
of MLP with only one hidden layer and BP, the parameters 
are: number of inputs nodes, number of hidden neurons, 
number of output neurons, (only one, it is set by the 
forecasting problem), which is the connection patterns (how 
the nodes are connected), and the whole set of connection 
weights (implemented by the seed used to initialize the 
connection weights as it will be explained later). 

For our approach [5] to design ANN to forecast time 
series, a Direct Encoding Schema for Full Connected MLP 
has been considered. For this Direct Encoding Scheme the 
information placed into the chromosome will be: two 
decimal digits, i.e. two genes, to codify the number of inputs 
nodes (i); other two for the number of hidden nodes (h); two 
more for the learning factor (α); and the last ten genes for the 
initialization seed value of the connection weights (s) (seed 
in SNNS [20] is “long int” type, that is why it has been used 
10 genes (decimal digits) to encode “s”). This way, the 
values of “i”, “h”, “α” and “s” are obtained from the 
chromosome as it can be seen in eq (2):  
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The search process (GA) will consist of the following 

steps:  
 

1. A randomly generated population, i.e a set of randomly 
generated chromosomes, is obtained. 

2. The phenotypes (i.e. ANN architectures) and fitness value 
of each individual of the actual generation is obtained. To 
obtain the phenotype associated to a chromosome and its 
fitness value: 
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2.1 The phenotype) of an individual “i” of the actual 
generation is  obtained. 
2.2 Then, the train and validation patterns subsets for 
this neural net “i”are obtained from time series data , 
depending on the number of inputs nodes of the  net 
“i”, as it was commented above in section III.A. 
2.3 The net is trained with BP (. The architecture 
(topology and connections weights set) of the net when 
the validation error (i.e. error for validation patterns 
subset) is minimum during the training process is saved 
(i.e. early stopping). So this architecture is the final 
phenotype of the individual. 

3. Once that fitness value for whole population is already 
obtained, the GA operators as Elitism, Selection, 
Crossover and Mutation are applied in order to generate 

the population of the next generation, i.e. set of 
chromosomes.  

4. The steps 2 ( i.e. 2.1, 2.2, 2.3) and 3 are iteratively 
executed till a maximum number of generations are 
reached.  

A schema of the whole search process can be seen at fig. 1. 
 

 

 
Fig. 1. ANN design by GA schema 

 
 
The fitness value for each individual will be then the 

minimum validation error during the learning process 
(training of ANN topology), as it can be seen in eq (3): 

 
error validation minimumnction = fitness fu            (3) 

 
The parameters for the GA are: population size, 50; 

maximum number of generations, 100; percentage of the 
best individuals that stay unchangeable to the next 
generation (percentage of elitism), 10%; crossover: 
parents are split in one point randomly selected, offspring 
are the mixed of each part from parents; mutation 
probability will be one divided between the length of the 
chromosome (1/length_chrom) = 1/16 ≈ 0.7), and it will 
be carried out for each gen of  each chromosome. 

Once that GA reaches the last generation, the best 
individual (i.e. ANN) from the last generation is used to 
forecast the future (and unknown) time series values. 

The future unknown values (at+1) will be forecasted one 
by one using the k previous known values (at, at-1, …, at-k). 
k is the number of inputs of the ANN obtained from the 
GA execution (i.e. the best ANN from the search process) 
To forecast several consecutive values (at+1, at+2,…) every 
time a new value is forecasted, it will be included in order 
into the previous known values set of the time series and 
used to forecast the next one. 

C. Differential Evolution algorithm (DE) 
Differential Evolution algorithms (DE), is a stochastic 

nonlinear optimization algorithm by Storn and Price [21] 

4001



 
 

 

and belongs to the class of evolution strategy optimizers. 
DE tries to find the global minimum of a 
multidimensional, multimodal (i.e. exhibiting more than 
one minimum) function with good probability. DE 
community has been growing since the mid 1990s and 
today more researchers are working on and with DE 
[16,22].  

The crucial idea behind DE is a scheme for generating 
trial parameter vectors. DE differs from other 
evolutionary algorithms (EA) in their mechanism of 
generating offspring. In GA, an individual plays the role 
of a parent to generate an offspring. Nevertheless, DE 
adds the weighted difference between two vectors, i.e. 
chromosomes of the population, to a third vector. This 
way no separate probability distribution has to be used 
which makes the scheme completely self-organizing. 

In DE a population of solution vectors is successively 
updated by addition, subtraction, and component 
swapping, until the population converges, hopefully to the 
optimum. No derivatives are used, very few parameters 
are set and it is a simple and apparently very reliable 
method. DE managed to finish 3rd at the First 
International Contest on Evolutionary Computation 
(1st ICEO). DE turned out to be the best genetic type of 
algorithm for solving the real-valued test function. 

Just a couple of studies using DE have been used in 
weather time series forecasting field [16,17]. 
Due to this, a total automatic method, using advantages of 
DE and ANN (i.e. hybrid system), in which the user 
doesn’t need to be an expert, to forecast all kind of time 
series, not only weather ones, is presented here. 

D. ANN design carried out with DE 
There are many schemes of generating individuals in 

DE. In this document, it is presented the simplest and 
most popular scheme, the DE/rand/1/bin, which is used in 
this research. Here we have the process for a 
DE/rand/1/bin: 

 
1. Px,g <= Generate and evaluate an initial 

population of x solutions where g is the 
number of dimensions in the search-space. 

2. Repeat for i = 0, 1, 2, …, until a stopping 
criterion is met 

a. A target vector (Xi) and a base vector 
(Xr0) are chosen.  

b. Two random different population 
members (Xr1, Xr2) are also chosen. 

c. Compute weighted difference vector 
from Xr1 and Xr2. 

d. Multiply “c” by the mutation factor 
F. 

e. Vi <= Add “d” to base vector (Xr0) to 
obtain the mutant population Pv,g. 

f. Ui <= Crossover between target 
vector (Xi) and Vi. 

g. Selection is carried out between Xi 

and Ui. 
 
As it can be seen at the previous pseudocode, different 

steps have to be done during DE process. First we start 
with a randomly chosen solution vectors as an initial 
population of NP possible solutions (Px,g). As it was 
commented above a target vector (Xi), a base vector (Xr0), 
and two random different population members (Xr1, Xr2) 
are also chosen. For each Xi in (1,… ,NP), it is formed a 
“mutant vector” (Vi) using the other three elements (Xr0, 
Xr1and Xr2) as it is shown in (4): 

 
       )( 2r10 rri XXFXV −+=                                       (4) 

 
Where r0, r1, and r2 are three mutually distinct 

randomly drawn indices from (1, …,NP), and also distinct 
from i, and mutation factor values is 0<F<=2. Fig. 2 
shows the process of forming the “mutant vector”. 

 

 
Fig. 2. Forming the mutant vector 

 
To crossover Xi and Vi to form the trial vector Ui, for 

each component of vector, it is drawn a random number in 
[0,1] called randj. Let the crossover ratio (i.e. CR) be a 
cutoff with value 0<=CR<1. If randj<=CR, Uij= Vij, else 
Uij= Xij. To ensure at least some crossover, one 
component of Ui is selected at random to be directly from 
Vi. For example, if we have Xi and Vi as follow: 

 
Xi = (Xi1, Xi2, Xi3, Xi4, Xi5) 
Vi = (Vi1, Vi2, Vi3, Vi4, Vi5) 

Ui could be: 
Ui = (Vi1, Xi2, Xi3, Xi4, Vi5) 
 

Where index 1 (Vi1) of Ui has been randomly selected 
as definitive crossover from Vi. Vi5 has been chosen from 
Vi because rand5 was lower than CR, and in the rest of the 
cases, randi was greater than CR. Fig. 3 shows crossover 
process. 
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Fig 3. Crossover Xi and Vi to form the trial vector 

 
Once crossover is finished, selection has to be done. 

The idea of selection in this algorithm is simple, if the 
new offspring (Ui) is better (i.e. better fitness value) than 
the target vector (Xi) then, Ui pass to the next generation, 
otherwise it is the target vector who will be again in the 
next generation. Fig. 4 shows DE whole process. 

 

 
Fig. 4. DE schema 

 
Equation 5 shows a summary of DE algorithm: 
 
     Xj,r0 + F(Xj,r1 − Xj,r2) if (randj < CR or j = jrand)  

Ui=Uj,i=   
     Xj,i otherwise            (5) 
 
If we also have a look to the process for a general GA, 

it would be: 
 

1. D0 <= Generate and evaluate an initial 
population of solutions 

2. Repeat for k = 0, 1, 2, …, until a stopping 
criterion is met 

a. Elitism
kD <= Select a subset of 

solutions from Dk 

b. Crossover
kD <= Apply crossover to 

solutions from kD  

c. Mutation
kD <= Apply mutation to 

solutions from Crossover
kD  

d. 1+kD  <= Create the new population 

with solutions from Mutation
kD  and 

Elitism
kD  

e. Evaluate solutions in 1+kD  
 

To apply DE to our system it was necessary to replace 
the GA, who is responsible of carrying out the global 
search into the hybrid system, for DE. 

It can be observed that the principal differences 
between GA and DE consist of steps “a”, “b”, “c”, “d” 
and “e”, and it was also necessary to add two new steps 
“f” and “g” where the new selection process is carried 
out. 

IV. EXPERIMENTAL SETUP AND RESULTS 

A. Time Series 
Five time series will be used to evaluate our methods. 

These time series are named Passengers, Temperature, 
Dow-Jones, Quebec, and Mackey-Glass [23]. Passengers 
time series has the information about the number of 
passengers of an international airline in thousands, 
measured monthly from January of 1949 till December of 
1960, the source is Box & Jenkins (1976). Temperature 
time series shows the mean monthly of air temperature 
measured at Nottingham Castle from 1920 till 1939; in 
this case the source is O.D. Anderson (1976). Dow-Jones 
is about the monthly closings of the Dow-Jones industrial 
index from August of 1968 till August of 1981, the source 
is Hipel and Mcleod (1994). Quebec represents the 
number of births daily measured in Quebec from 1st of 
January of 1977 till 31 of December of 1978. And the last 
one called Mackey-Glass is based on the Mackey-Glass 
differential equation and is widely regarded as a 
benchmark for comparing the generalization ability of 
different methods. This series is a chaotic time series 
generated from a time-delay ordinary differential 
equation. 

B. Experimental setup 
The time series values have to be rescale, into the 

numerical range value [0,1], considering not only the 
known values, but the future values (those to be 
forecasted). 

So, the maximum and minimum limits for normalizing 
(max4norm, min4norm respectively) cannot be just the 
maximum (max) and minimum (min) known time series 
values. A margin from max and min has to be set if future 
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values were higher or lower than known values already 
are. This margin will depend on another parameter 
(Prct_inc). In those cases in which the time series is 
stationary a Prct_inc of 10% will be enough, but when the 
time series is increasing or decreasing Prct_inc should be 
at least of 50%. As it could be forecasted new values for a 
time series that will rise of a fall, it is needed a enough big 
margin so the new values, obtained as output of ANN, can 
be into the numerical range [0,1]. This Equation (5) shows 
how are obtained max4norm and min4norm. 

 

min))-(max  (Prct_inc -min   min4norm
min))-(max (Prct_inc max   max4norm

⋅=
⋅+=          (5) 

 

C. GA versus DE 
Both ways to forecast time series, i.e both hybrid 

systems, one with GA and other with DE, have been 
executed five times (200 generations each time) for each 
time series. For each time series, the average result (and 
standard desviation) of the five simulations is shown. 

To evaluate the error for each method, forecasted 
values (i.e. test set, not train or validation sets) are 
compared with real values.  Two sort of errors on 
forecasted values are used: MSE (mean squared error) and 
SMAPE (symmetric mean absolute percent error 
[4]);SMAPE has been used at NN3 and NN5 forecasting 
competitions. Results are shown in Tables I and II. 

In Table I, it is shown the results obtained for 
Passengers, Temperature, Dow-Jones, Quebec and 
Mackey-Glass time series in generation number 100. In 
this table, the columns show: MSE and SMAPE error in 
forecasting (i.e. test set) for each time series. These errors 
are relative to the average of the five times experiments 
have been run, choosing each execution the best 
individual from the last generation of the GA or the DE.  

In Table II, it is shown the results obtained for 
Passengers, Temperature, Dow-Jones, Quebec and 
Mackey-Glass time series in generation number 200. In 
this table, the columns will show: MSE and SMAPE error 
in forecasting (i.e. test set) for each time series. These 
errors are relative to the average of the five times 
experiments have been run, choosing each execution the 
best individual from the last generation of the GA or the 
DE. 

 

TABLE I 
SMAPE AND MSE PASSENGERS, TEMPERATURE, DOW-JONES, QUEBEC 

AND MACKEY-GLASS WITH GA AND DE FOR 100 GENERATIONS 
100 Generations GA DE

Passengers SMAPE (%) 3.180 3.358 
MSE 0.00061 0.00065 

Temperature SMAPE (%) 4.308 3.907 
MSE 0.00358 0.00294 

Dow-Jones SMAPE (%) 6.662 8.188 
MSE 0.02150 0.03229 

Quebec SMAPE (%) 12.643 13.739 
MSE 0.02540 0.02662 

Mackey-Glass SMAPE (%) 8.672 5.988 
MSE 0.00363 0.00175 

 
TABLE II 

SMAPE AND MSE PASSENGERS, TEMPERATURE, DOW-JONES, QUEBEC 
AND MACKEY-GLASS WITH GA AND DE FOR 200 GENERATIONS 

200 Generations GA DE

Passengers SMAPE (%) 3.148 3.118 
MSE 0.00058 0.00058 

Temperature SMAPE (%) 4.239 3.907 
MSE 0.00347 0.00294 

Dow-Jones SMAPE (%) 6.307 5.810 
MSE 0.01993 0.01735 

Quebec SMAPE (%) 12.121 13.682 
MSE 0.02149 0.02663 

Mackey-Glass SMAPE (%) 8.042 3.744 
MSE 0.00309 0.00064 

 
As it can be observed in Table I, applying DE instead 

of GA to these time series doesn’t achieve better 
forecasting (MSE/SMAPE) in many of the time series 
when the experiment has been run only 100 generations. 
Just Mackey-Glass and Temperature obtain a better 
SMAPE result with DE and in Mackey-Glass case; the 
improvement is about 2.6%. 

But if the experiment is run over 200 generations, it can 
be seen in Table II an important improvement in almost 
all the time series, where DE obtain a better forecast than 
GA in four of the five time series. Only in Quebec time 
series GA is still better than EDA although both results 
are close. A special consideration has to be taken on 
Mackey-Glass time series where the SMAPE error result 
is 3.744%, being the values forecasted by our approach 
almost identical to the real time series values. 

The better results obtained by DE, compared with GA, 
after having run the experiments 200 generations could be 
explained because in DE, more variation in population 
(because solution has not converged yet) leads to more 
varied search over solution space. That is why it can take 
more time to DE to arrive to a better solution. 

To have a better idea about the forecast of each time 
series and how close to the real values each forecasting 
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method was, a graph for each time series showing all the 
forecasts done by each method will be carried out. Figure 
5 shows Passengers forecast for each method. Figure 6 
shows Temperature, Figure 7 shows Dow-Jones, Figure 8 
shows Quebec and Figure 9 Mackey-Glass. A zoom of 
Quebec will be done in Figure 10. A zoom of Mackey-
Glass will be done in Figure 11. TS(tr+val) represents the 
known values of the time series with which we have 
worked and TS(test) shows the future unknown real 
values that have to be forecasted (i.e. test subset). 

 

 
Fig. 5. Passengers forecast with GA and DE 

 

 
Fig. 6. Temperature forecast with GA and DE 

 

 
Fig. 7. Dow-Jones forecast with GA and DE 

 

 
Fig. 8. Quebec forecast with GA and DE 

 

 
Fig. 9. Mackey-Glass forecast with GA and DE 

 

 
Fig. 10. Zoom of Quebec forecast with GA and DE 

 

 
Fig. 11. Zoom of Mackey-Glass forecast with GA and DE 
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V. CONCLUSIONS AND FUTURE WORKS 
The results of the experiments disclose that using DE 

instead of GA obtain different results, depending on the 
number of generations they are executed. With only 100 
generations, DE results don’t improve too much 
compared to GA. But if 200 generations are reached, it 
can be observed a significant improvement, some times 
with a gain of 4.3% in the results, as it happens in 
Mackey-Glass time series. 

As it was commented before, obtaining better results by 
DE than with GA after having run the experiments 200 
generations could be explained because in DE more 
variation in population (because solution has not 
converged yet) leads to more varied search over solution 
space. That is why it can take more time to DE to arrive to 
a better solution. 

 As it is a totally automatic method, it will not be 
necessary any previous knowledge from the user. So the 
user will not have to be an expert in time series, statistics, 
mathematics or computational intelligence. The user just 
have to give the time series he wants to forecast and the 
number of future elements he wants to be forecasted to 
the system; and this method will give these forecasted 
values as result to the user.  

This approach was presented as an automatic method to 
design ANN in NN5 competition, getting the 6th position 
with SMAPE error of 21.9% in Neural Nets and 
Computational Intelligence methods (NNCI) ranking, for 
the reduced dataset (i.e. 11 time series). Best result on 
NNCI ranking and reduced data was a SMAPE error of 
19.0%. Autobox tool [24] based on Box-Jenkins 
forecasting methodology got an error of 23.9%. 

Future works with additional time series, with similar 
characteristics to Quebec, Mackey-Glass will allow us to 
obtain more accurate conclusions about the effect of using 
DE in stead of GA. On the other hand, it would be really 
interesting to try to improve the system with some ideas 
like: in stead of using a random Xr0, use the best one (i.e. 
the one with the best fitness value); or instead of using 
single difference (i.e. Xr1-Xr2), to use more vectors for 
more variation, for example (Xr1-Xr2+Xr3-Xr4). 

Other interesting future works are: to use “cross 
validation” into the GA for a better evaluation of each 
individual; using sparsely connected ANN to try to 
improve the forecast to obtain an accurate system.  
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