Developing Niching Algorithms in Particle
Swarm Optimization

Xiaodong Li

School of Computer Science and Information Technology, RMIT University,
Melbourne, Australia
xiaodong.li@rmit.edu.au

Abstract. Niching as an important technique for multimodal optimization has
been used widely in the Evolutionary Computation research community. This
chapter aims to provide a survey of some recent efforts in developing state-
of-the-art PSO niching algorithms. The chapter first discusses some common
issues and difficulties faced when using niching methods, then describe several
existing PSO niching algorithms and how they combat these problems by taking
advantages of the unique characteristics of PSO. This chapter will also describe
a recently proposed lbest ring topology based niching PSO. Our experimental
results suggest that this lbest niching PSO compares favourably against some
existing PSO niching algorithms.

1 Introduction

Stochastic optimization algorithms such as Evolutionary Algorithms (EAs) and
more recently Particle Swarm Optimization (PSO) algorithms have shown to
be effective and robust optimization methods for solving difficult optimization
problems. The original and many existing forms of EAs and PSOs are usually
designed for locating a single global solution. These algorithms typically converge
to one final solution because of the global selection scheme used. However, many
real-world problems are “multimodal” by nature, that is, multiple satisfactory
solutions exist. For such an optimization problem, it might be desirable to locate
all global optima and/or some local optima that are also considered as being
satisfactory. Numerous techniques have been developed in the past for locating
multiple optima (global or local). These techniques are commonly referred to
as “niching” methods. A niching method can be incorporated into a standard
EA to promote and maintain the formation of multiple stable subpopulations
within a single population, with an aim to locate multiple optimal or suboptimal
solutions. Niching methods are of great value even when the objective is to locate
a single global optimum. Since a niching EA searches for multiple optima in
parallel, the probability of getting trapped on a local optimum is reduced.
Niching methods have also been incorporated into PSO algorithms to enhance
their ability to handle multimodal optimization problems. This chapter aims to

B.K. Panigrahi, Y. Shi, and M.-H. Lim (Eds.): Handbook of Swarm Intelligence, ALO 8, pp. 67
springerlink.com (© Springer-Verlag Berlin Heidelberg 2011

68 X. Li

provide a survey of several state-of-the-art PSO niching algorithms. The chapter
will begin with a brief background on niching methods in general, and then
identify some difficulties faced by existing niching methods. The chapter will
then go on to describe the development of several PSO niching algorithms and
how they are designed to resolve some of these issues by taking advantages of the
inherent characteristics of PSO. In particular, the chapter will describe in detail a
recently proposed lbest ring topology based niching PSO. Experimental results
on this lbest niching PSO will be compared against an existing PSO niching
algorithm, and their strengthes and weaknesses will be examined. Finally the
chapter concludes by summing up the important lessons learnt on developing
competent PSO niching methods, and possible future research directions.

2 Niching Methods

Just like Evolutionary Algorithms themselves, the notion of niching is inspired
by nature. In natural ecosystems, individual species must compete to survive
by taking on different roles. Different species evolve to fill different niches (or
subspaces) in the environment that can support different types of life. Instead
of evolving a single population of individuals indifferently, natural ecosystems
evolve different species (or subpopulations) to fill different niches. The terms
species and niche are sometimes interchangeable. Niching methods were intro-
duced to EAs to allow maintenance of a population of diverse individuals so
that multiple optima within a single population can be located [25]. One of the
early niching methods was developed by De Jong in a scheme called crowding.
In crowding, an offspring is compared to a small random sample taken from the
current population, and the most similar individual in the sample is replaced. A
parameter C'F' (crowding factor) is commonly used to determine the size of the
sample. The most widely used niching method is probably fitness sharing. The
sharing concept was originally introduced by Holland [16], and then adopted
by Goldberg and Richardson [I4] as a mechanism to divide the population into
different subpopulations according to the similarity of the individuals in the pop-
ulation. Fitness sharing was inspired by the sharing concept observed in nature,
where an individual has only limited resources that must be shared with other
individuals occupying the same niche in the environment. A sharing function
is often used to degrade an individual’s fitness based on the presence of other
neighbouring individuals. Although fitness sharing has proven to be a useful
niching method, it has been shown that there is no easy task to set a proper
value for the sharing radius parameter ospqre in the sharing function without
prior knowledge of the problems [13].

Apart from the above, many more niching methods have been developed over
the years, including derating [Il, deterministic crowding [24), restricted tourna-
ment selection [15], parallelization [2], clustering [37], and speciation [30} 20].
Niching methods have also been developed for PSO, such as NichePSO [31],
SPSO [26], and VPSO [33).

Developing Niching Algorithms in Particle Swarm Optimization 69

2.1 Difficulties Facing Niching Methods

Most of these niching methods, however, have difficulties which need to be over-
come before they can be applied successfully to real-world multimodal problems.
Some identified issues include the following:

Reliance on prior knowledge of some niching parameters, which must be set
with some optimal values so that the optimization algorithm can perform
well. A common use of a niching parameter is to tell how far apart two
closest optima are. A classic example is the sharing parameter ogpqre in
fitness sharing [14]. Other uses of niching parameters include crowding factor
in crowding method [12], the window size w in restricted tournament selection
[15], or the number of clusters in k-means clustering methods [37, [I7].
Difficulty in maintaining found solutions in a run. Some found solutions might
be lost in successive generations. For example, the original De Jong’s crowd-
ing has been shown unable to maintain all found peaks during a run [24]. A
good niching algorithm should be able to form and maintain stable subpop-
ulations over the run.

In traditional niching EAs, it was observed that crossover between two fit
individuals from different niches could produce far less fit offspring than the
parents [25]. How can we minimize such detrimental crossover operations
across different niches?

Some existing niching methods are designed only for locating all global op-
tima, while ignoring local optima. Examples include the sequential niche GA
(SNGA) [, clearing [30], SCGA [20], NichePSO [31], and SPSO [21] [26].
However, it might be desirable to obtain both global and local optima in a
single run.

Most niching methods are evaluated on test functions of only 2 or 3 di-
mensions. How well these niching algorithms perform on high dimensional
problems remain unclear.

Higher computational complexity. Most of the niching algorithms use global
information calculated from the entire population, therefore require at least
O(N?) computational complexity (where N is the population size). Many
niching algorithms suffer from this problem.

Most existing niching methods are evaluated using static functions. When
functions can vary over time, ie., the multimodal fitness landscape may
change over time, most existing niching methods are unable to cope with
the dynamically changing environments.

Problems with Niching Parameters

Most existing niching methods, however, suffer from a serious problem - their
performance is subjected heavily to some niching parameters, which are often
difficult to set by a user. For example the sharing parameter ogspqre in fitness
sharing [14], the species distance o5 in species conserving GA (SCGA) [20],
the distance measure o¢eqr in clearing [30], and the species radius rs in the

70 X. Li

1010

Fig. 1. Inverted Shubert 2D function.

speciation-based PSO (SPSO) [26]. Sometimes niching parameters can be under
different disguises, such as the crowding factor in crowding [12], the window
size w in restricted tournament selection [15], or the number of clusters in k-
means clustering methods [37, [I7]. The performance of these EAs depend very
much on how these parameters are specified. Unfortunately, in many real-world
problems such prior knowledge are often unavailable. Some recent works by Bird
and Li [, [5] attempted to reduce the sensitivity of the SPSO to the niche radius
parameter values. However, either this parameter still remains (though made
more robust), or several new parameters are introduced. It would be desirable if
a user can be completely freed from specifying any niching parameters.

Fig. [l shows an example of a function fitness landscape that has 9 pairs of
global optima and numerous local optima. Within each pair, two global op-
tima are very close to each other but optima from different pairs are further
away. A niching algorithm relying on a fixed niche radius value to determine
a particle’s membership in a niche would have a significant difficulty to work
properly on such a landscape. To capture all peaks, a niching EA would have
to set its niche radius extremely small so that the closest two peaks can be dis-
tinguished. However, doing so would form too many small niches, with possibly
too few individuals in each niche. As a result, these niches tend to prematurely
converge. On the other hand, if the niche radius is set too large, peaks with
a distance between them smaller than this value will not be distinguished. In
short, it is likely that there is no optimal value for the niche radius parameter.
Dependency on a fixed niche radius is a major drawback for niching methods
that rely on such a parameter. For example in [20], on the inverted Shubert 2D
function (as shown in Fig.[Il), SCGA had to be tuned with a radius value of 0.98
and a population size of 1000 in order to locate all 18 global peaks reliably [20].

Developing Niching Algorithms in Particle Swarm Optimization 71

For Shubert 3D, SCGA used a population size of 4000 in order to locate all
81 global peaks. As dimension increased to 4, SCGA was only able to identify
groups of global peaks, but not individual global optima within each group.
Another similar niching algorithm SPSO [26] suffers the same problem.

3 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a Swarm Intelligence technique origi-
nally developed from studies of social behaviours of animals or insects, e.g., bird
flocking or fish schooling [I8]. In a canonical PSO, the velocity of each particle
is modified iteratively by its personal best position (i.e., the position giving the
best fitness value so far), and the position of best particle from the entire swarm.
As a result, each particle searches around a region defined by its personal best
position and the position of the population best. Let’s use v; to denote the ve-
locity of the i-th particle in the swarm, x; its position, p; the best position it
has found so far, and p, the best position found from the entire swarm (so called
global best). v; and x; of the i-th particle in the swarm are updated according
to the following two equations [10]:

Vi X(vi + R1[0,01] ® (Ps — x3) + R2[0, 2] ® (Py — %3)), (1)
X; «— X; + vy, (2)

where R4 [0, 1] and Rz [0, ¢2] are two separate functions each returning a vector
comprising random values uniformly generated in the range [0, ¢1] and [0, ¢2]
respectively. 1 and @o are commonly set to ¥ (where ¢ is a positive constant).
The symbol ® denotes point-wise vector multiplication. A constriction coefficient
X is used to prevent each particle from exploring too far away in the search
space, since x applies a dampening effect to the oscillation size of a particle over
time. This Type 1”7 constricted PSO suggested by Clerc and Kennedy is often

used with y set to 0.7298, calculated according to x = ‘2 ; 0y ‘, where
—p—\/p2—4p

© =1+ p2 =4.1 [10].

3.1 PSO Niching Methods

This section describes several representative niching methods that have been
developed in conjunction with PSO.

Stretching Method

In [27], Parsopoulos and Vrahitis introduced a method in which a potentially
good solution is isolated once it is found, then the fitness landscape is ‘stretched’
to keep other particles away from this area of the search space [28], similar to
the derating method used in SNGA [I]. The isolated particle is checked to see
if it is a global optimum, and if it is below the desired accuracy, a small pop-
ulation is generated around this particle to allow a finer search in this area.

72 X. Li

The main swarm continues its search in the rest of the search space for other
potential global optima. With this modification, Parsopoulos and Vrahitis’ PSO
was able to locate all the global optima of some selected test functions success-
fully. However, the drawback is that this stretching method introduces several
new parameters which are difficult to specify in the stretching function, as well
as the risk of introducing false optima as a result of stretching.

NichePSO

Brits et al. proposed NichePSO [31], which further extended Parsopoulos and
Vrahitis’s model. In NichePSO, multiple subswarms are produced from a main
swarm population to locate multiple optimal solutions in the search space. Sub-
swarms can merge together, or absorb particles from the main swarm. NichePSO
monitors the fitness of a particle by tracking its variance over a number of itera-
tions. If there is little change in a particle’s fitness over a number of iterations, a
subswarm is created with the particles closest neighbor. The issue of specifying
several user parameters still remains. The authors also proposed nbest PSO in
[9], where a particle’s neighbourhood best is defined as the average of the posi-
tions of all particles in its neghbourhood. By computing the Euclidean distances
between particles, the neighbourhood of a particle can be defined by its &k closest
particles, where k is a user-specified parameter. Obviously the performance of
nbest PSO depends on how this parameter is specified.

Speciation-Based PSO

The speciation-based PSO (SPSO) model was developed based on the notion of
species [21]. The definition of species depends on a parameter rs, which denotes
the radius measured in Euclidean distance from the center of a species to its
boundary. The center of a species, the so-called species seed, is always the best-
fit individual in the species. All particles that fall within the ry distance from
the species seed are classified as the same species.

The procedure for determining species seeds, introduced by Pétrowski in [30]
and also Li et al. in [20], is adopted here. By applying this algorithm at each
iteration step, different species seeds can be identified for multiple species and
these seeds’ p; can be used as the pg (like a neighbourhood best in a lbest
PSO) for different species accordingly. Algorithm [l summarizes the steps for
determining species seeds.

Algorithm [is performed at each iteration step. The algorithm takes as an
input Lsorted, @ list containing all particles sorted in decreasing order of their x;
fitness. The species seed set S is initially set to (). All particles’ x; are checked in
turn (from best to least-fit) against the species seeds found so far. If a particle
does not fall within the radius r, of all the seeds of S, then this particle will
become a new seed and be added to S. Fig.Rlprovides an example to illustrate the
working of this algorithm. In this case, applying the algorithm will identify s,
so and s3 as the species seeds. Note also that if seeds have their radii overlapped
(e.g., s2 and s3 here), the first identified seed (such as s3) will dominate over

Developing Niching Algorithms in Particle Swarm Optimization 73

input : Lsorteq - a list of all particles sorted in their decreasing f(x;) values
output: S - a list of all dominating particles identified as species seeds
begin
S = 0;
while not reaching the end of Lsortea do
Get best unprocessed p € Lsorted;
found — FALSE;
for all s € S do
if d(s,p) <rs then
found «— TRUE;
break;

if not found then
let S« SU{p};

end

Algorithm 1. The algorithm for determining species seeds according to all f(x;)
values.

those seeds identified later from the list Lo teq. For example, ss dominates s3
therefore p should belong to the species led by ss.

Since a species seed is the best-fit particle’s x; within a species, other par-
ticles within the same species can be made to follow the species seed’s p; as
the newly identified neighborhood best. This allows particles within the same
species to be attracted to positions that make them even fitter. Because species
are formed around different optima in parallel, making species seeds the new
neighborhood bests provides the right guidance for particles in different species
to locate multiple optima.

Since species seeds in S are sorted in the order of decreasing fitness, the more
highly fit seeds also have a potentially larger influence than the less fit seeds.
This also helps the algorithm to locate the global optima before local ones.

Once the species seeds have been identified from the population, we can then
allocate each seed’s p; to be the pg to all the particles in the same species at each
iteration step. The speciation-based PSO (SPSO) accommodating the algorithm
for determining species seeds described above can be summarized in Algorithm[2

In SPSO, a niche radius must be specified in order to define the size of a
niche (or species). Since this knowledge might not be always available a priori,
it might be difficult to apply this algorithm to some real-world problems. To
combat this problem, two extensions to SPSO aiming to improve the robustness
to such a niching parameter were proposed in [4, [5]. In [4], population statistics
were used to adaptively determine the niching parameters during a run (see
also section B]), whereas in [5], a time-based convergence measure was used to
directly enhance SPSQO’s robustness to the niche radius value. These extensions
to SPSO made it more robust. Nevertheless, the need to specify the niche radius
still remains.

74 X. Li

X

Fig. 2. An example of how to determine the species seeds from a population of particles.
s1, s2 and s3 are chosen as the species seeds. Note that p follows sa.

//initialization;
for i=1 to popSize do
randomly initialize i-th particle: vi, xi;
Pi < Xi
repeat
for i=1 to popSize do
evaluate f(xi);
if f(xi) > f(pi) then
Pi «— Xi
Sort all particles according to their fitness values (from the best-fit to the
least-fit);
Call the speciation procedure in Algorithm [Il to identify species seeds;
Assign each identified species seed’s p; as the pg to all individuals identified
in the same species;
Adjust particle positions using PSO update equations (1) and (2);
Check each species to see if the numParticles > pmaz; If so, replace the
excess particles with random particles into the search space;
until the termination condition is met ;

Algorithm 2. The species based PSO algorithm.

Adaptive Niching PSO

Instead of requiring a user to specify the niche radius r, the Adaptive Niching
PSO (ANPSO) proposed in [4, [3] adaptively determines it from the popula-
tion statistics at each iteration. More specifically, ANPSO sets r to the average
distance between every particle and its closest neighbour (see Fig. B), as follows:

N .
D iy MmN — -'I/'jH. 3)

r= N

Developing Niching Algorithms in Particle Swarm Optimization 75

P

— %

Fig. 3. Calculating the distance from each particle to the particle closest to it. r is
calculated by averaging these distances.

An undirected graph ¢ is then created containing a node for each particle. If
ANPSO finds pairs of particles that are within r of each other for several iter-
ations, a niche is formed. The remaining unconnected particles (ie., unniched)
are mapped onto a von Neumann neighbourhood. At each iterations, particles
can join or be removed from existing niches. Whereas the standard PSO updates
are applied to particles in each niche, the lbest PSO according to the von Neu-
mann neighbourhood topology is used to update particles that are classified as
unniched. The unniched particles are useful especially to search more broadly
around the problem space. ANPSO removes the need to specify niche radius r
in advance, however, at the same time, it introduces two new parameters, the
number of steps two particles must be close before forming a niche, and the
maximum number of particle in each niche. Nevertheless, at least on some mul-
timodal test functions, ANPSO’s performance was shown to be less sensitive to
these two parameters.

Fitness-Euclidean Distance Ratio Based PSO

A PSO based on Fitness-Euclidean distance Ratio (FER-PSO) was proposed in
[22]. In FER-PSO, personal bests of the particles are used to form a memory-
swarm to provide a stable network retaining the best points found so far by the
population, while the current positions of particles act as parts of an explorer-
swarm to explore broadly around the search space. Instead of using a single global
best, each particle is attracted towards a fittest-and-closest neighbourhood point
pr which is identified via computing its FER (Fitness and Euclidean-distance
Ratio) value:

f(pj) — f(pi)

) Ip; — pill

, (1)
[ls]]
F(Pg)—f(Pw)
clidean distance becomes too dominated over one another. ||s|| is the size of the

where a = is a scaling factor, to ensure that neither fitness nor Eu-

76 X. Li

input : A list of all particles in the population
output: Neighbourhood best p, based on the i-th particle’s FER value
FER «— 0, tmp «— 0, euDist — 0 ;

for j =1 to Population Size do
Calculate the Euclidean distance euDist from p; to the j-th particle’s
personal best pj;
if (euDist not equal to 0) then
Calculate FFER according to equation) ;
if (j equal to 1) then tmp — FER,;
if (FER > tmp) then
tmp — FER ;
Pn < Pj ;

return p,

Algorithm 3. The pseudocode of calculating p, for the i-th particle under consider-
ation, according to its FER value. To obtain p,, for all particles, this algorithm needs
to be iterated over the population.

search space, which can be estimated by its diagonal distance \/ ZleT (x} — 12)2

(where z} and fL‘k are the upper and lower bounds of the k-th dimension of the
search space). py, is the worst-fit particle in the current population.

FER-PSO is able to reliably locate all global optima, given that the popula-
tion size is sufficiently large. One noticeable advantage is that FER-PSO does
not require specification of niching parameters. Nevertheless, it introduces a pa-
rameter o which needs to be determined by the upper and lower bounds of the
variables. Since the algorithm uses global information, the complexity of the
algorithm is O(N?) (where N is the population size).

Vector-Based PSO

In [34] B3], a vector-based PSO (VPSO) was developed by treating each parti-
cle as a vector and simply carrying out vector operations over them. For each
particle, VPSO computes the dot product A of two differential vectors, p; — x;
and p; — x;. A niche is defined by a niche radius determined by the distance
between pg and the nearest particle with a negative dot product (ie., moving in
an opposite direction). Niche identification is done in a sequential manner. Once
a niche is determined, it is excluded from the population, and the process is re-
peated on the remaining population, until the entire population is grouped into
various niches. In VPSO it is not required to specify the niche radius parameter.
However, the distance calculations can be expensive since every particle has to
be compared with all remaining particles in the population.

Developing Niching Algorithms in Particle Swarm Optimization 7

In a subsequent work [35], PVPSO which is a parallel version of VPSO was
proposed. In PVPSO, different niches can be maintained in parallel. A special
procedure was also introduced to merge niches if they are too close to each other
(below a specified threshold ¢).

Clustering-Based PSO

The use of clustering techniques for PSO was first proposed by Kennedy in [17],
where the k-means clustering algorithm was used to identify the centers of differ-
ent clusters of particles in the population, and then use these cluster centers to
substitute the personal bests or neighborhood bests. However, Kennedy’s clus-
tering technique was used to help locate a single global optimum, rather than
multiple optima, as niching normally does. Inspired by this work, a k-means
clustering PSO (kPSO) for niching was proposed in [29]. In APSO, k-means is
repeatedly applied to the swarm population at a regular interval. Between each
interval, PSO is executed in the normal manner. Particles in different clusters
at an early stage of a run could end up in the same cluster as they converge
towards the same local optimum. The parameter k is estimated by using the
Bayesian information criterion (BIC) [36]. More specifically, k-means is repeat-
edly applied to the population with different k& values (usually from 2 to N/2),
and the resulting clustering that has the highest BIC value is chosen. By doing
this, there is no need to specify k in kPSO. It was shown that the performance
of kPSO was comparable to existing PSO niching algorithms such as SPSO and
ANPSO on some multimodal test functions.

Niching PSOs for Dynamically Changing Multimodal Environments

Many real-world optimization problems are dynamic and require optimization al-
gorithms capable of adapting to the changing optima over time. An environment
that is both multimodal and dynamic presents additional challenges. In fully dy-
namic multimodal environments, optima may shift spatially, change both height
and shape or come into or go out of existence. One useful approach in handling
this is to divide the population into several subpopulations, with each subpop-
ulation searches for a promising region of the search space simultaneously. This
is the core idea of several recently proposed PSO niching algorithms for han-
dling a dynamical multimodal landscape such as the Dynamic SPSO [26] and
the multi-swarm PSO (MPSO) [§], and rSPSO [6]. Several additional issues must
be addressed, including outdated memory, population re-diversification, change
detections and response strategies. For further information, readers can refer
to [7].

4 New Niching Methods Using a lbest PSO

In [23], a novel PSO niching method was developed using a simple ring neigh-
bourhood topology, which belongs to the class so called lbest PSO models. This

78 X. Li

PSO niching method makes use of the inherent characteristics of PSO and does
not require any niching parameters. It can operate as a niching algorithm by
using individual particles’ local memories to form a stable network retaining the
best positions found so far, while these particles explore the search space more
broadly. Given a reasonably large population uniformly distributed in the search
space, the ring topology based niching PSOs are able to form stable niches across
different local neighbourhoods, eventually locating multiple global/local optima.
This section describes several such ring topology based niching PSO variants
in detail, and how PSQO’s inherent characteristics such as memory-swarm and
explorer-swarm can be utilized to induce stable niching behaviours.

Generally speaking, two common approaches of choosing py in equation ()
are known as gbest and lbest methods. In a gbest PSO, the position of each
particle in the search space is influenced by the best-fit particle in the entire
population, whereas a lbest PSO only allows each particle to be influenced by
the best-fit particle chosen from its neighborhood. The lbest PSO with a neigh-
borhood size set to the population size is equivalent to a gbest PSO. Kennedy and
Mendes [19] studied PSOs with various population topologies. One of common
population topologies suggested was a ring topology, where each particle on the
population array is only allowed to interact with its two immediate neighbours.
Among all topologies studied, the ring topology was considered to be “the slow-
est, most indirect communication pattern”, whereas the gbest PSO represents
“the most immediate communication possible” .

Clearly the ring topology is desirable for locating multiple optima, because
ideally we would like to have individuals to search thoroughly in its local neigh-
bourhood before propagating the information throughout the population. The
consequence of any quicker than necessary propagation would result in the
population converging onto a single optimum (like gbest PSO).

As we will demonstrate in the following sections, the ring topology is able to
provide the right amount of communication needed for inducing stable niching
behaviour.

4.1 Memory-Swarm vs. Explorer-Swarm

In PSO, interactions among particles play an important role in particles’ be-
haviour. A distinct feature of PSO (which is different from many EAs) is that
each particle carries a memory of its own, i.e., its personal best. We can never
underestimate the significance of using local memory. As remarked by Clerc
in [11], a swarm can be viewed as comprising of two sub-swarms according to
their differences in functionality. The first group, explorer-swarm, is composed
of particles moving around in large step sizes and more frequently, each strongly
influenced by its velocity and its previous position (see equation () and ().
The explorer-swarm is more effective in exploring more broadly the search space.
The second group, memory-swarm, consists of personal bests of all particles. This
memory-swarm is more stable than the explorer-swarm because personal bests

Developing Niching Algorithms in Particle Swarm Optimization 79

Fig. 4. a) The ring topology used in a conventional EA. Each member interacts only
with its immediate left and right neighbours, with no local memory used; b) Graph of
influence for a lbest PSO using the same ring topology (see also p.89 in [1I]). Each
particle possesses a local memory; c) The same as b) but also showing the overlapping
subpopulations, each consisting of a particle and its two immediate neighbours, and
their corresponding memories.

represent positions of only the best positions found so far by individual particles.
The memory-swarm is more effective in retaining better positions found so far
by the swarm as a whole.

Fig. d a) shows an example of a conventional EA using a ring topology with
a population of 7 individuals. Fig. @ b) shows a swarm of 7 particles using
a ring topology, as illustrated by using a ‘graph of influence’ as suggested by
Clerc [II]. The ‘graph of influence’ can be used to explicitly demonstrate the
source and receiver of influence for each particle in a swarm. A particle that
informs another particle is called ‘informant’. Here the explorer-swarm consists
of particles as marked from numbers 1 to 7, and the memory-swarm consists of
particles as marked from m1 to m7. Each particle has 3 informants, from two
neighbouring particles’ memories and its own memory. Each particle’s memory
also has 3 informants, from two neighbouring particles and the particle itself. In
stark contrast, Fig. @ a) shows that no local memories are used in a conventional
EA using a ring topology.

The idea of memory-swarm and explorer-swarm inspired us to develop ef-
fective PSO niching algorithms. With an aim to locate and maintain multiple
optima, the more stable personal best positions retained in the memory-swarm
can be used as the ‘anchor’ points, providing the best positions found so far.
Meanwhile, each of these positions can be further improved by the more ex-
ploratory particles in the explorer-swarm.

4.2 lbest PSO Using a Ring Topology

As shown in Fig. @ in a lbest PSO with a ring topology, each particle interacts
only with its immediate neighbours. An implementation of such a lbest PSO

80 X. Li

Randomly generate an initial population
repeat
for i = 1 to Population Size do
if fit(x;) > fit(p;) then p; = x;;
end
for i = 1 to Population Size do
Pn,i = neighbourhoodBest(pi—1, Pi, Pi+1);
end
for i = 1 to Population Size do
Equation (1);
Equation (2);
end
until termination criterion is met ;

Algorithm 4. The pseudocode of a lbest PSO using a ring topology. Note that in
equation (1), py should be replaced by the i-th particle’s neighbourhood best pu,.;.

using a ring topology is provided in Algorithm [l Note that we can conveniently
use population indices to identify the left and right neighbours of each parti-
cle. Here we assume a ‘wrap-around’ ring topology, i.e., the first particle is the
neighbour of the last particle and vice versa. The neighbourhoodBest() function
returns the best-fit personal best in the i-th neighbourhood, which is recorded
as pn,; (denoting the neighbourhood best for the i-th particle). This p, ; is then
used as the local leader when updating the i-th particle in Equation (1) and (2).

(O Meighbourhood best

X Perscnal best

Fig. 5. A ring topology with each member interacting with its 2 immediate neighbours
(left and right). Local neighbourhoods are overlapped with each other. The i-th par-
ticle’s neighbourhood best py,,; is the same as those of its 2 immediate neighbouring
particles, but differs from those particles in the neighbourhoods further out.

Note that different particles residing on the ring can have different p,lJ, and
they do not necessarily converge into a single value over time. As illustrated in

! We use pn to denote a non-specific ‘neighbourhood best’.

Developing Niching Algorithms in Particle Swarm Optimization 81

Fig.[B the ring topology not only provides a mechanism to slow down information
propagation in the particle population, but also allows different neighbourhood
bests to coezist (rather than becoming homogeneous) over time. This is because
a particle’s p,, can only be updated if there is a better personal best in its
neighbourhood, but not by a better p, of its neighbouring particle. Assuming
that particles from the initial population are uniformly distributed across the
search space, niches can naturally emerge as a result of the coexistence of multiple
P» positions being the local attraction points for the particles in the population.
With a reasonable population size, such a lbest PSO is able to form stable niches
around the identified neighbourhood bests p,,.

Apart from its simplicity, the ring topology lbest PSO does not require any
prior knowledge of (neither the need to specify) any niching parameters, e.g.,
the niche radius or the number of peaks, since niches emerge naturally from the
initial population. The complexity of the algorithm is only O(N) (where N is
the population size), as the calculation to obtain a neighbourhood best is only
done locally from each particle’s local neighbourhood.

4.3 Numerical Examples

To evaluate the niching ability of the above lbest PSO with a ring topology, we
used 3 multimodal optimization test functions of different characteristics f
Equal Mazima has 5 evenly spaced global maxima, whereas fo Uneven Maxima
has 5 global maxima unevenly spaced. fs Inverted Shubert function is the in-
verted Shubert function, as shown in Fig. [[l the inverted Shubert 2D function
has 9 groups of global optima, with 2 very close global optima in each group.
For n-dimensional Shubert function, there are n - 3™ global optima unevenly
distributed. These global optima are divided into 3™ groups, with each group
having n global optima being close to each other. For f3 Shubert 3D, there are
81 global optima in 27 groups; whereas for f3 Shubert 4D, there are 324 global
optima in 81 groups. f3 will pose a serious challenge to any niching algorithm
relying on a fixed niche radius parameter.

The lbest PSO with a ring topology as described above has overlapping local
neighbourhoods. To further restrain the influence from a few dominant p,, points,
we could reduce the neighbourhood size or even completely remove the overlaps.
In our experiments, we used the following ring topology based PSO variants:

e r3pso: a lbest PSO with a ring topology, each member interacts with its
immediate member on its left and right (as in Fig. Bl);

e r2pso: a lbest PSO with a ring topology, each member interacts with only
its immediate member to its right;

e r3pso-lhc: the same as r3pso, but with no overlapping neigbourhoods.
Basically multiple PSOs search in parallel, like local hill climbers.

e r2pso-lhc: the same as r3pso-lhr, but with each member interacts with
only its next member on the population array.

2 These 3 functions are also described in [23].

82 X. Li

Table 1. Success rates.

fnc r2pso r3pso r2pso-lhc r3pso-lhc SPSO
fi 98% 100% 100% 100% 100%
f2 100% 100% 100% 100% 100%
f3(2D) 94% 100% 100% 98% 60%

For any particle with its x; exceeding the boundary of the variable range,
its position is reset to a value which is twice of the right (or left boundary)
subtracting x;.

The performance of the above PSO variants were compared with SPSO [26],
which is a typical niching algorithm requiring a user to pre-specify a niche radius
parameter.

To compare the performance of niching algorithms, we first allow a user to
specify a level of accuracy (typically 0 < e < 1), i.e., how close the computed
solutions to the expected optimal solutions are. If the distance from a computed
solution to an expected optimum is below the specified €, then we can consider
the optimum is found. For all comparing niching algorithms in this paper, we
used SPSO’s procedure for identifying species seeds (as described in the previous
section) to check if a niching algorithm has located all expected global optima.
Note that this procedure was only used for the purpose of performance measure-
ment, but not for optimization in the proposed PSO niching methods, with the
only exception of SPSO itself.

All PSO niching algorithms’ performance were measured in terms of success
rate, i.e., the percentage of runs in which all global optima are successfully lo-
cated, for a given number of evaluations in each run.

4.4 Results and Discussion

For the relatively simple f; and f3, a population size of 50 was used. The PSO
niching variants were run until all the known global optima were found, or a
maximum of 100,000 evaluations was reached. For the more challenging fs 2D
and 3D, a population size of 500 was used. For f3 3D, we allowed a maximum
of 200,000 evaluations for each run. For f3 4D, a population size of 1000 was
used, and we allowed a maximum of 400,000 evaluations. All results were aver-
aged over 50 runs. For all PSO niching methods (except SPSO) € and r (niche
radius) were used purely for the purpose of performance measurement. In order
to measure more accurately each niching algorithm’s ability in forming niches in
the vicinities of all known global optima, for fi and fo, both € and r were set to
0.01. For f3 2D, € was set to 0.1, and for f3 3D and 4D, € was set to 0.2. For all
f3 2D, 3D and 4D, r was set to 0.5.

Table[Il presents the success rates on f1, fa and f3 2D. On f; nd f2, almost all
comparing PSOs achieved a 100% success rate. However, for the more challenging
f3 2D, SPSO did not perform very well, whereas the ring topology PSOs achieved
success rates greater than 90%. Bear in mind that SPSO was tuned with the

Developing Niching Algorithms in Particle Swarm Optimization 83

T T T 60 T T T —
14 + from pBest to current i pBest position

L)
current position O neighbourhood best X
12k pBest position [] i 50 % -
: neighbourhood best X ! °
1 5 YFf » o°® ¥
o B L °
2 08 £
c o 30 F 4
£ L2) []
0.6 | £ L4 f |
20 F i O. B
0.4 | | F]
10 F Lol ° 4
02t . % 4
0 Il 0 v‘ Il L] Il Il i Il
0 0.2 0.4 0 0.2 0.4 0.6 0.8 1
X X
(a) (b)

Fig. 6. a) Niches formed when using r3pso variant on the fi at iteration 15 (a pop-
ulation size of 50 was used); b) Particles’ p; and their p, on the population array at
iteration 15, corresponding to the run in a).

Table 2. Averaged peak ratios on f11 Inverted Shubert 3D and 4d over 50 runs.

fnc e r r2pso r3pso r2pso-lhc r3pso-lhc SPSO
f3(3D)0.20.50.16 0.61 0.27 0.66 0.01
f3 (4D) 0.2 0.5 0.00 0.25 0.00 0.14 0.00

optimal niche radius, whereas the ring topology based PSOs did not depend on
any niching parameters, showing greater robustness.

Fig.[6la) shows an example of running r3pso on f;. At iteration 15, all 5 global
peaks were located by the p, points identified for individual particles on the
population array. Although particles’ x; points (i.e., current positions) tended
to be more exploratory oscillating around peaks, their p,, points converged stably
on the tips of the peaks, even if we ran the model for a large number of iterations.
Niches formed from neighbouring particles (as shown by their indices on the
population array) are clearly visible in Fig.[6b). It can be also observed that for
each of the 5 peaks, r3pso formed multiple small niches centered around the p,,
points.

Fig. [0 shows that r3pso was able to locate all 18 global peaks on f3 the
inverted Shubert 2D by iteration 75 in a single run. Multiple emerged niches are
clearly visible.

For the more challenging fs Inverted Shubert 3D and 4D functions, since no
run can find all peaks, hence we used averaged peak ratio (instead of success
rate) as the performance measure. Peak ratio measures the percentage of global
peaks found in a single run. Table[2lshows the averaged peak ratios on f3 Inverted

. %o T TG
L © o B o q,@:’O anen o 0 o 49 o o curen 0
of e o ® g0 %o e f) sf ot s o ou¥ ofm L

& o) o (G} + oETA e g * §—o 8‘00 O O O—dbeF ©
o L o P O%xo*o el %% B o P +OgS-00—o
3 @ * 4 e} o © 1S o)
oF e G éﬁ&gﬂ* 860> e ¢ % O % y’ e
- S a<d o P x A)] o}
76 * o % Saxpeeoos 2r 1 ?
677 998 RO+ o) L7 %% e 2 o} N7 i
2Tl * Lol QQ Lo o F Q00 e} o g
R e el I e RV N g ’ ! # ks
+ 4 O
R e e oI S =
o | eR Qggxo O e (T ok *o . +lx) Qd o, \ g o ©
AP, T OO BB AN o © 09 @]
Oy X9, ® O PxPeo PWge % S g -4 ° o o I}
M erd $:%o B ool [¥gPO o o |09
%) I8 % ; Og@ o) F3s ° q @
S R - — £ L g p 8*0‘ o) ° +
adox g EoCg X o %’%+ * o oo oy e
L% a5, R+ & it =P & 8 ® o ° ©
8ra OB & ° og@) © o F F2 A °© © > ¢ o
+ + o) o
o0 D e 6 q Yo ' 0 . . . D °
W s s 4 2 oz 4 & 8 10 o s s 4 2 o 2 4 o s
(a) iteration 10 (b) iteration 75

Fig. 7. The niching behaviour of the r3pso (with a population size of 500) on f3 the
inverted Shubert 2D function at iteration 10 and 75 of a run.

1F A ChIneeerdiiiiiig
0.8
[0]
&
T o6}
[%]
[0}
Q
5
o 04F X
r2pso —+—
13pso -~
0.2 r2pso-lhc ——-+--

. «f3pso-lhg -t
; -7 SPSO ——x-
% N N 1 1 1

100 150 200 250 300 350 400 450 500
Population Size

Fig. 8. Success rates for varying population sizes on f3 the inverted Shubert 2D
function.

Shubert 3D and 4D over 50 runs. As can be seen in Table Pl r3pso and r3pso-
Ihc are the best performers, whereas SPSO is the worst. r2pso and r2pso-lhc
were able to find a few global peaks on f3 3D, but failed to find almost any peaks
on f3 4D.

4.5 Effect of Varying Population Size

For the proposed ring topology based PSOs, the only parameter that needs to be
specified is population size. Given a reasonably large population size, these PSOs
are able to locate all global optima reliably. Fig. 8 shows that on f3 2D, with a
population size of 450 or above, the ring topology based PSOs achieved 90% or

Developing Niching Algorithms in Particle Swarm Optimization 85

above success rates. In contrast, even with a population size of 500, SPSO only
managed to achieve 60% success rate. Another similar niching algorithm, SCGA
[20], which also required a user to specify a niche radius parameter, needed a
population size of 1000 or above in order to locate all 18 global optima.

It is worth noting that the local hill-climber variants r2pso-lhc and
r3pso-lhc performed better than r2pso and r3pso on f3 2D. This indicates
that when handling problems with a large number of global optima, it might be
more effective to have multiple local hill climbers each optimizing independently
than a niching algorithm working with a single large population.

5 Conclusions

Niching methods have been developed mostly in the context of EAs, and have
been around for more than two decades. Recent advances in Swarm Intelligence
and in particular PSO has made possible to design novel and competent niching
methods for multimodal optimization. This chapter has presented a survey of
several state-of-the-art PSO niching algorithms, and described how some of the
challenging issues faced by classic niching methods can be addressed. Apart from
the fact that existing niching methods developed in the early days of EAs can be
easily incorporated into a PSO, more importantly, it has been shown here that
the inherent characteristics of PSO can be utilized to design highly competitive
niching algorithms. In particular, it is shown that in a lbest PSO, local memory
and slow communication topology are the two key elements for its success as an
effective niching algorithms. In fact it is foreseeable that other population based
stochastic optimization methods characterized by these two key elements can be
also used to induce stable niching behaviour.

In future, we will be interested in investigating how to increase the search
capability of small niches so that the performance of these niches will scale
well with increasing dimensions, since lbest PSO niching algorithms tend to
generate multiple small niches. Ideally a function generator suitable for this kind
of evaluation will need to offer controllable features such as the number global
optima and local optima, which are independent from the number of dimensions.
One recently proposed function generator for multimodal function optimization
in [32] seems to be a promising tool for this purpose. We will be also interested
in developing techniques to adapt or self-adapt the population size, as this is
the only parameter that still needs to be supplied by a user. Anther interesting
research topic will be to apply the lbest niching PSO to tracking multiple peaks
in a dynamic environment [26].

References

1. Beasley, D., Bull, D.R., Martin, R.R.: A sequential niche technique for multi-
modal function optimization. Evolutionary Computation 1(2), 101-125 (1993),
citeseer.ist.psu.edu/beasley93sequential.html

citeseer.ist.psu.edu/beasley93sequential.html

86

10.

11.

12.

13.

14.

15.

16.

X. Li

Bessaou, M., Pétrowski, A., Siarry, P.: Island model cooperating with speciation for
multimodal optimization. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoe-
nauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 16-20.
Springer, Heidelberg (2000), citeseer.ist.psu.edu/bessaou00island.html
Bird, S.: Adaptive techniques for enhancing the robustness and performance of
speciated psos in multimodal environments, phd thesis. Ph.D. dissertation, RMIT
University, Melbourne, Australia (2008)

Bird, S., Li, X.: Adaptively choosing niching parameters in a PSO. In: Cattolico, M.
(ed.) Proceedings of Genetic and Evolutionary Computation Conference, GECCO
2006, Seattle, Washington, USA, July 8-12, pp. 3-10. ACM, New York (2006),
http://doi.acm.org/10.1145/1143997.1143999

Bird, S., Li, X.: Enhancing the robustness of a speciation-based PSO. In: Yen, G.G.
(ed.) Proceedings of the 2006 IEEE Congress on Evolutionary Computation, July
16-21, pp. 843-850. IEEE Press, Vancouver (2006),
http://ieeexplore.ieee.org/servlet/opac?punumber=11108

Bird, S., Li, X.: Using regression to improve local convergence. In: Proceedings of
the 2007 IEEE Congress on Evolutionary Computation, Singapore, pp. 1555-1562
(2007)

Blackwell, T., Branke, J., Li, X.: Particle swarms for dynamic optimization prob-
lems. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence - Introduction and Ap-
plications, pp. 193-217. Springer, Heidelberg (2008)

Blackwell, T.M., Branke, J.: Multi-swarm optimization in dynamic environments.
In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y.,
Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero,
G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 489-500. Springer, Heidelberg
(2004)

Brits, R., Negelbrecht, A., van den Bergh, F.: Solving systems of unconstrained
equations using particle swarm optimizers. In: Proc. of the IEEE Conference on
Systems, Man, Cybernetics, October 2002, pp. 102-107 (2002)

Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans. on Evol. Comput. 6, 58-73
(February 2002)

Clerc, M.: Particle Swarm Optimization. ISTE Ltd., London (2006)

De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
Ph.D. dissertation, University of Michigan (1975)

Goldberg, D.E., Deb, K., Horn, J.: Massive multimodality, deception, and genetic
algorithms. In: Méanner, R., Manderick, B. (eds.) PPSN 2. Elsevier Science Publish-
ers, B. V., Amsterdam (1992), |citeseer.ist.psu.edu/goldberg92massive.html
Goldberg, D.E., Richardson, J.: Genetic algorithms with sharing for multimodal
function optimization. In: Grefenstette, J. (ed.) Proc. of the Second International
Conference on Genetic Algorithms, pp. 41-49 (1987)

Harik, G.R.: Finding multimodal solutions using restricted tournament se-
lection. In: Eshelman, L. (ed.) Proc. of the Sixth International Conference
on Genetic Algorithms, pp. 24-31. Morgan Kaufmann, San Francisco (1995),
citeseer.ist.psu.edu/harik95finding.html

Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan
Press, Ann Arbor (1975)

citeseer.ist.psu.edu/bessaou00island.html
http://doi.acm.org/10.1145/1143997.1143999
http://ieeexplore.ieee.org/servlet/opac?punumber=11108
citeseer.ist.psu.edu/goldberg92massive.html
citeseer.ist.psu.edu/harik95finding.html

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Developing Niching Algorithms in Particle Swarm Optimization 87

Kennedy, J.: Stereotyping: Improving particle swarm performance with cluster
analysis. In: Proc. of IEEE Int. Conf. Evolutionary Computation, pp. 303-308
(2000)

Kennedy, J., Eberhart, R.: Swarm Intelligence. Morgan Kaufmann, San Francisco
(2001)

Kennedy, J., Mendes, R.: Population structure and particle swarm performance.
In: Proc. of the 2002 Congress on Evolutionary Computation, pp. 1671-1675 (2002)
Li, J.-P., Balazs, M.E., Parks, G.T., Clarkson, P.J.: A species conserving genetic
algorithm for multimodal function optimization. Evol. Comput. 10(3), 207-234
(2002)

Li, X.: Adaptively choosing neighbourhood bests using species in a particle swarm
optimizer for multimodal function optimization. In: Deb, K., et al. (eds.) GECCO
2004. LNCS, vol. 3102, pp. 105-116. Springer, Heidelberg (2004)

Li, X.: Multimodal function optimization based on fitness-euclidean distance ratio.
In: Thierens, D. (ed.) Proc. of Genetic and Evolutionary Computation Conference
2007, pp. 78-85 (2007)

Li, X.: Niching without niching parameters: Particle swarm optimization using a
ring topology. IEEE Trans. on Evol. Comput. 14(1), 150-169 (2010)

Mahfoud, S.W.: Crowding and preselection revisited. In: Manner, R., Manderick,
B. (eds.) Parallel Problem Solving From Nature 2, pp. 27-36. North-Holland, Am-
sterdam (1992), |citeseer.ist.psu.edu/mahfoud92crowding.html

Mahfoud, S.W.: Niching methods for genetic algorithms. Ph.D. dissertation, Ur-
bana, IL, USA (1995), http://citeseer.ist.psu.edu/mahfoud95niching.html
Parrott, D., Li, X.: Locating and tracking multiple dynamic optima by a particle
swarm model using speciation. IEEE Trans. on Evol. Comput. 10(4), 440-458
(2006)

Parsopoulos, K., Vrahatis, M.: Modification of the particle swarm optimizer for
locating all the global minima. In: Kurkova, R.N.M.K.V., Steele, N. (eds.) Artificial
Neural Networks and Genetic Algorithms, pp. 324-327. Springer, Heidelberg (2001)
Parsopoulos, K., Vrahatis, M.: On the computation of all global minimizers through
particle swarm optimization. IEEE Trans. on Evol. Compu. 8(3), 211-224 (2004)
Passaro, A., Starita, A.: Particle swarm optimization for multimodal functions: a
clustering approach. J. Artif. Evol. App. 2008, 1-15 (2008)

Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms.
In: Proc. of the 3rd IEEE International Conference on Evolutionary Computation,
pp. 798-803 (1996)

Brits, A.E.R., van den Bergh, F.: A niching particle swarm optimizer. In: Proc. of
the 4th Asia-Pacific Conference on Simulated Evolution and Learning 2002 (SEAL
2002), pp. 692-696 (2002)

Ronkkoénen, J., Li, X., Kyrki, V., Lampinen, J.: A generator for multimodal test
functions with multiple global optima. In: Li, X., Kirley, M., Zhang, M., Green, D.,
Ciesielski, V., Abbass, H.A., Michalewicz, Z., Hendtlass, T., Deb, K., Tan, K.C.,
Branke, J., Shi, Y. (eds.) SEAL 2008. LNCS, vol. 5361, pp. 239-248. Springer,
Heidelberg (2008)

Schoeman, I.: Niching in particle swarm optimization, phd thesis. Ph.D. disserta-
tion, University of Pretoria, Pretoria, South Africa (2009)

citeseer.ist.psu.edu/mahfoud92crowding.html
http://citeseer.ist.psu.edu/mahfoud95niching.html

88

34.

35.

36.

37.

X. Li

Schoeman, I., Engelbrecht, A.: Using vector operations to identify niches for par-
ticle swarm optimization. In: Proc. of the 2004 IEEE Conference on Cybernetics
and Intelligent Systems, Singapore, pp. 361-366 (2004)

Schoeman, 1., Engelbrecht, A.: A parallel vector-based particle swarm optimizer.
In: Proc. of the 7th International Conference on Artificial Neural Networks and
Genetic Algorithms (ICANNGA 2005), Coimbra, Portugal (2005)

Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6(2), 461—
464 (1978)

Yin, X., Germay, N.: A fast genetic algorithm with sharing scheme using clus-
ter analysis methods in multi-modal function optimization. In: The International
Conference on Artificial Neural Networks and Genetic Algorithms, pp. 450-457
(1993)

	Developing Niching Algorithms in Particle Swarm Optimization
	Introduction
	Niching Methods
	Difficulties Facing Niching Methods

	Particle Swarm Optimization
	PSO Niching Methods

	New Niching Methods Using a lbest PSO
	Memory-Swarm vs. Explorer-Swarm
	lbest PSO Using a Ring Topology
	Numerical Examples
	Results and Discussion
	Effect of Varying Population Size

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

