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Abstract— In this paper, we illustrate the use of a reference
point based many-objective particle swarm optimization algo-
rithm to optimize low-speed airfoil aerodynamic designs. Our
framework combines a flexible airfoil parameterization scheme
and a computational flow solver in the evaluation of particles.
Each particle, which represents a set of decision variables,
is passed through this framework to construct and evaluate
the airfoils and assign fitness. We used the baseline NLF0416
airfoil to obtain aspiration values, which are used to define
the reference point. This reference point guides the swarm
towards the preferred region of the objective landscape to find
solutions of interest to the decision maker. The proficiency of the
algorithm is highlighted by monitoring convergence and spread
of solution using a hyper-volume calculation scheme suitable for
user-preference based evolutionary many-objective algorithms.
The results comparing the reference point based approach with
a standard unguided non-dominated sorting based approach
shows that the guided algorithm performs better in this many-
objective problem instance. Final solutions found from the
reference point based algorithm reveal an evident improvement
over the NLF0416 airfoil across all operating conditions.

I. INTRODUCTION

Shape optimization is considered across a wide range of
engineering disciplines. Modifications to existing or new
geometries are performed iteratively to conform to the best
performing shape for a given objective or requirement. In
the aerospace industry, the process of aerodynamic shape
optimization to low speed Unmanned Aerial Vehicles (UAV)
is critical during all phases of design [1]. The recurring
strategy in aerodynamic shape optimization [2], [3], [4] is
the integration of three distinct modules:
• Geometry parameterization model
• Computational flow solver
• Efficient search engine
Of particular importance to aerodynamic design, are bod-

ies of which, the force parallel and opposite to the direc-
tion of motion (drag) is significantly smaller in magnitude
to the force component acting normal to the direction of
motion (lift). A discipline which has benefited greatly from
optimization theory in the recent past is airfoil design [5].
Airfoils denote the cross-section of any three-dimensional
lifting surface, such as the main wing. Subsonic forces for
main wing airfoil sections arise from surface pressure and
air viscosity. The pressure difference of the upper and lower
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surface produces the resultant lift force required to maintain
level flight for a given operating condition. The location
where the resultant lift force acts generates a moment, which
governs the magnitude and direction of the pitch inclination.
Drag is comprised of both pressure and viscous components,
the latter dominating in subsonic flight. Viscosity of the flow
in the immediate vicinity of the surface (boundary layer)
generates surface shear stress from which drag is derived.

For the stipulated operating condition, deviations to the
airfoil geometry will result in variations to the pressure and
shear stress distributions, which in turn alter the force values.
In shape optimization, an algorithm is used to determine the
necessary perturbations to the airfoil geometry in order to
reduce the desired force (objective). In airfoil design and
analysis, it is customary to express these forces as scalar
coefficients. It follows, that for a geometrically similar airfoil
at a given flow incidence angle (α), the lift (Cl), moment
(Cm) and drag (Cd) are a function of:

[Cl, Cm, Cd] = f (α,Re,Ma) (1)

where, the Reynolds number (Re) is the dimensionless ratio
of the intertial forces to viscous forces and quantifies their
respective relevance for a given operating condition. The
Mach number (Ma) is a measure of the air velocity against
the speed of sound. There are several methods that can be
used to compute these coefficients, that vary in accuracy and
computational expense. The solver employed in this paper
follows the work in [6]. Dependent on the mission phase, one
of these force coefficients is generally treated as the objective
function, while providing some constraints on the other
values. For example in cruise, designers attempt to reduce
the drag coefficient at the required lift coefficient to maintain
steady flight for fuel economy. However during take-off,
emphasis is placed on maximizing the lift coefficient [2].

Despite advantages at one flight condition, a good design
is one that exhibits optimal aerodynamic performance over a
range of flight conditions and mission segments. Traditional
concepts of developing platforms for single mission require-
ments have resulted in a large number of UAV with difficul-
ties in operation and support. Future mission requirements
have confirmed that the single mission design concept is nei-
ther operationally nor financially feasible [1]. Alternatively, a
multi-mission platform is regarded as a viable design concept
to address the issues with the current UAV fleet. Present
UAV platforms are plagued with performance restrictions
and operations outside the intended design envelope are
not permissible. For example, long endurance platforms are
optimized for slow speed operations at low Reynolds number

WCCI 2010 IEEE World Congress on Computational Intelligence 
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 1857



operation. Performing high g-force manoeuvres with these
platforms would result in suboptimal performance [1]. The
current design philosophy focuses on designing UAV airfoils
for multi-mission capabilities.

Gradient based methods have been applied for single-
mission airfoil designs [7], [8], but the search process may
converge prematurely due to the multi-modal landscape [3].
Evolutionary Algorithms (EA) have thus received much
attention because they are less prone to get stuck in local
optimum solutions [5]. The evolution of population-based
heuristics to address many-objectives is yet another step
forward in providing a multi-mission operational spectrum
to UAV platforms. In this paper, a reference point based
Evolutionary Many-objective Optimization (EMO) algorithm
is used to explore the search-space to obtain optimal designs
for disparate conditions. The Decision Maker (DM) provides
a reference point in the objective-space to guide the EMO
algorithm towards solutions which are of most interest.
The reference point based Differential Evolution (DE) and
Particle Swarm Optimization (PSO) algorithm – MDEPSO,
described in [9] is used to explore the many-objective search-
space. Recently the use of preference mechanisms has been
gathering interest in the EMO community because of their
ability to handle problems of more than three-objectives
successfully. Multi-mission airfoil designs are a problem
domain consisting of such many-objectives. A DM of this
domain can guide EMO algorithms to obtain solutions which
are useful than trying to search the entire Pareto front. The
PSO framework described in [9] shows that using a prefer-
ence mechanism like reference points, EMO algorithms can
efficiently locate solutions without any need for dominance
comparisons. PSO algorithms are well suited to be guided
by the reference points because of their design philosophy
on following a leader.

The paper is organized as follows. Section II discusses the
adopted airfoil parameterization scheme. These parameters
are used as the decision variables for this study. Section III
presents the six-objective problem domain. The reference
point used in this problem is the benchmark low-speed
NLF0416 airfoil. The MDEPSO algorithm is described in
Section IV. We next present an extension to the Hyper-
Volume (HV) metric to propose a suitable performance
metric for user-preference EMO algorithms. We use this
HV metric to illustrate the performance of the reference
point based EMO algorithm against a traditional dominance
based PSO algorithm in Section VI. This section will also
present the improved airfoil geometries obtained from the
EMO framework. Finally, in Section VII, we present our
conclusions and avenues for future research.

II. AIRFOIL SHAPE PARAMETERIZATION

Airfoil geometry has been represented using a variety of
methods [10]. The selection of the parameterization scheme
is an important contributing factor to the efficiency of the
algorithm since it will define the objective landscape and the
topology of the design space [5], [10]. Furthermore, certain
parameterization techniques are suited to specific forms of

0 1

r
LE x

UP

x
LO

z
LO

z
UP

xx
UP

xx
LO

α
TE

β
TE z

TE

Δ
TE

Fig. 1. PARSEC method for airfoil parameterization

optimization. The development of efficient parameterization
models has therefore been given significant attention, to in-
crease the flexibility of geometrical control with a minimum
number of design variables.

A. PARSEC Method
A common method for airfoil shape parameterization is

the PARSEC method [11]. It has the advantage of strict
control over important aerodynamic features, and it allows
independent control over the airfoil geometry for imposing
shape constraints.

Illustrated in Figure 1 are the basic eleven parameters
that are used to completely define the profile geometry.
They include the leading edge radius (rLE), the upper and
lower crest locations (xUP , zUP , xLO, zLO) and curvatures
(xxUP , xxLO), trailing edge coordinate (zTE) and thickness
(∆TE), trailing edge direction (αTE) and wedge angle
(βTE). In this study, the variable ∆TE = 0. Thus, blunt
trailing edge sections are not considered and the number of
search-space (decision-space) dimensions is reduced to ten.
The optimizer perturbs the geometrical variables to generate
different airfoil shapes, based on the performance rating
provided by the flow solver.

B. Variable boundaries
Providing feasible boundaries for the PARSEC parameters

is yet another contributing factor to increasing efficiency of
the optimization architecture. A certain class of airfoils does
not provide favourable aerodynamic performance under all
flight conditions. With knowledge of the occurring flow-field,
the PARSEC parameters may be restricted to conform to a
specific family of airfoils. This is achieved through inverse
mapping of benchmark profiles that have been developed
(either by experimental or computational methods) to per-
form favourably in low-speed flow conditions [12]. These
include representative profiles of the NLF series and the
NACA/NASA series [13]. Defining the airfoil boundaries
through inverse mapping as opposed to arbitrarily selecting
boundaries is advantageous to omit poorly performing areas
of the design space. The upper and lower values for the
parameter boundaries are shown in Table I.

III. PROBLEM DEFINITION

In this study, emphasis is placed on the ability to lo-
cate feasible solutions in a many-objective environment. Six
objectives have been formulated for this problem, which
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TABLE I
PARSEC DECISION VARIABLE RANGES

Decision Variable Upper Bound Lower Bound
rLE 0.0055 0.0215
αTE 0.3580 (-) 0.0230
βTE 0.0200 0.2600
xUP 0.2875 0.5345
zUP 0.0880 0.1195
xxUP 1.0300 (-) 0.4200 (-)
xLO 0.3060 0.5075
zLO 0.0650 (-) 0.0500 (-)
xxLO 0.0490 (-) 0.8205
zTE 0.0200 (-) 0.0200
∆TE 0 0

relate to various mission segments and requirements. The ten
PARSEC parameters constitute the decision variables. Lift
constraints are satisfied explicitly, by letting the flow solver
determine the angle of incidence that generates the desired
lift. Geometrical constraints are inherent within the defined
PARSEC variable boundaries.

The reference point airfoil selected for this application
is the NLF0416 airfoil [12]. It is considered a benchmark
profile for low-speed applications because the experimental
data are available. The NLF0416 is a 16% thick airfoil
designed for a moderate lift coefficient in cruise conditions.
It has a relatively high upper-surface curvature to maintain
favourable pressure gradients for laminar flow control, whilst
providing increased maximum lift values for manoeuvring
due to the highly cambered aft section. The NLF family
is the product of years of prior research in subsonic airfoil
aerodynamics.

A. Software Analysis Tool
The software tool XFOIL [6] is selected as the com-

putational flow solver. XFOIL is a viscous-inviscid itera-
tive software code which does not require any prior mesh
preparation. The inviscid pressure distribution is modelled
using a linear vortex strength distribution. Viscous effects
and the development of the laminar-turbulent boundary layer
are modelled using empirical integral boundary layer theory.
XFOIL provides relatively accurate results for subsonic air-
foil analysis rapidly. Such software is predominately used in
screening processes during preliminary design as a precursor
to detailed modelling and wind-tunnel simulations.

B. Objective functions
The formulated objectives cover a range of mission seg-

ments and would be typical of multi-mission UAV require-
ments. Here, we formulate all the objectives to be minimized.
It is essential that the airfoil exhibit low drag values during
cruise flight. For the first objective, minimization of the drag
coefficient at an operating lift coefficient of 0.5 is required.
The Reynolds number and Mach number are fixed at 4×106

and 0.3 respectively. This objective is represented as:

f0 = Cd at Cl = 0.5, Re = 4× 106, Ma = 0.3 (2)

It is of equal importance that the airfoil obtain a high
maximum lift-to-drag ratio for climbing, as well as increased

flight endurance. Maximum endurance is a pre-requisite for
UAV which are expected to perform automated missions
for an extensive period. For each candidate solution, the
incidence angle is floated to determine the minimum drag-
to-lift ratio. The lift-to-drag objective is given as:

f1 = Cd/C
3/2
l at Re = 4× 106, Ma = 0.3 (3)

Providing a reduced drag design during cruise conditions
generally occurs at the expense of a highly aft cambered
airfoil section which results in excessive pitching moments.
Formulating the objective to minimize the zero-lift pitching
moment coefficient is desirable for stability and control. The
incidence angle which corresponds to zero-lift generation
(α0) is determined. The pitching moment at this point (Cm0 )
is recorded. Therefore, the objective to reduce the drag is:

f2 = C2
m0

at Re = 4× 106, Ma = 0.3 (4)

The preceding objectives are deemed as sufficient to
address optimal cruise performance. The UAVs are however
also required to perform manoeuvres at cruise without the
risk of stall. The objective to maximize the highest possible
lift coefficient (Clmax ) before stall occurs is given as:

f3 = 1/C2
lmax

at Re = 4× 106, Ma = 0.3 (5)

During descent and approach, a high lift value is beneficial
as it constitutes towards an increased lift-induced drag, which
is essential for landing. Here the angle of incidence is fixed
at 5◦, which is regarded as a typical incidence angle during
approach flight. Thus the objective for high lift is given as:

f4 = 1/C2
l at α = 5◦, Re = 2× 106, Ma = 0.15 (6)

Providing optimal performance in the approach condition
should not be at the expense of massive flow separation or
leading-edge boundary layer transition (xtr). In this case,
it is sought to maintain a smooth flow-field during approach
flight by maximizing the laminar portion of the upper surface
of the airfoil. Therefore, the objective to obtain a maximum
boundary layer is:

f5 = 1/xtr at α = 5◦, Re = 2× 106, Ma = 0.15 (7)

With the formulated objectives, mission phases such as
cruise/endurance, approach/descent and manoeuvring have
been addressed. Further objectives may be formulated which
consider take-off, multi-point cruise etc., but are beyond
the current scope of this study. The array of aspira-
tion values representing the NLF0416 airfoil are given as
[0.00516, 0.00606, 0.00982, 0.30806, 0.92314, 0.65460] [12].

IV. REFERENCE POINT BASED MDEPSO

We use the reference point based MDEPSO algorithm as
described in [9] to obtain solutions for the airfoil design
problem. The MDEPSO algorithm has been shown to be
effective in finding solutions in difficult multi-modal many-
objective problem instances [14]. The unique feature of this
PSO algorithm is that the leaders are generated using a
DE rule rather than selecting particles as leaders from the
population. The basic outline of the algorithm is given as:

1859



LE
α

TE
β

TE
x
UP

z
UP

xx
UP

x
LO

y
LO

xx
LO

z
TE

PARSEC

f
1

C l C m C d

XFOIL

f
2

f
3

f
4

f
5

f
0

Decision variables

Airfoil

Constraints

Compile objectives

Objectives
Flow solver

Re Ma

r

α

Fig. 2. Evaluation framework

• Step 1: Initialize the particles
A population of size N is first initialized. Here, a
particle’s 10 decision variables (position vector ~x =
[x0, . . . , x9]) are initialized using (8).

rand(0.0, 1.0)× (UB − LB) + LB (8)

where, rand(0.0, 1.0) represents a random number
generated uniformly between [0.0, 1.0]. LB and UB
are the lower-bounds and upper-bounds respectively of
the decision variables. The velocity is initialized to
a random value in the interval [0, UB − LB]. The
personal best of an individual is set to its current
position. Half of the population’s direction is reversed
by setting the velocity to negative according to a coin
toss. The particles’ position vectors are used to generate
the respective candidate airfoil shapes. These airfoils
are subsequently analyzed by XFOIL to assign fitness
values. This process is illustrated in Figure 2.
After initialization, each particle’s distance metric value
is assigned using the reference point ~z as:

dist(~x) = max
i=0,...,5

{wi(fi(~x)− zi)} (9)

where, ~z = [z0, . . . , z5] is the reference point and
~w = [w0, . . . , w5] is a set of weights. fi is the ith ob-
jective function. The DM can assign values for weights,
which represent any bias towards that objective. In this
problem we did not use any bias.

• Step 2: Obtain leaders to guide the population
Leaders are generated using the DE rule described
in [9]. These leaders are sorted according to the distance
metric given by (9). To control the spread of solutions
the δ(> 0) value is used to define the notion of
outranking [9]. A small value for δ represents a smaller
spread, while a large value will give a larger spread.
In our experiments δ = 0.05. A subset of the sorted
leaders (for example 10% of the population) closest to
the preferred region is chosen to guide the population.

• Step 3: Move the particles
Each particle chooses its leader randomly from the
sorted set of potential leaders. Using this leader as the

global best the particle updates its velocity (~vi) and
position (~xi) according to the PSO update rules from
time t to t+ 1 as:

~vi(t+ 1) = χ(~vi(t) + φ1(~pi(t)− ~xi(t))
+ φ2(~pg(t)− ~xi(t)))

(10)

~xi(t+ 1) = ~xi(t) + ~vi(t) (11)

here, ~pi is the particle’s personal best position so far.
φ1 and φ2 are random numbers generated uniformly
between [0, ϕ

2 ]. ϕ is a constant equal to 4.1 [15]. χ is the
so called constriction factor, which is used to prevent a
particle from exploring too far into the search-space. χ
is normally set to 0.7298, which is calculated according
to 2

|2−ϕ−
√

ϕ2−4ϕ| [15].

• Step 4: Update the particles’ personal bests
Each particle updates its personal best according to the
distance metric given in (9).

• Step 5: Obtain the particles to move to the next
iteration
The population of N particles at the beginning of the
iteration is combined with the N updated particles to
create a population of size 2N . This 2N population is
sorted according to (9) to obtain a population of size N
closest to the preferred region. These N particles will
survive to the next iteration.

The steps 2 to 5 are repeated until the maximum number
of iterations is reached.

V. PERFORMANCE METRIC

There are several popular performance metrics used to
determine the convergence and spread of solutions in the
EMO literature, which are described in [16]. However, these
metrics are suitable only for problems with known Pareto
fronts. In the airfoil design problem the true Pareto fronts
are unknown, thus a performance metric which does not rely
on the true Pareto front is required. The Hyper-Volume (HV)
metric [17] can be used as performance metric because it
does not rely on the knowledge of the true Pareto front.
The HV metric provides a single measurement to assess
both the convergence and spread of solutions. Theoretical
results in [18] show that, when a solution set dominates
another solution set, the HV metric yields better values for
the dominant set of solutions. However, the standard HV
calculation procedure has to be modified to include only the
solutions points within the preferred regions, not the entire
Pareto front.

A. The Hyper-Volume metric
The HV metric gives the total volume bounded by the

solutions points on the solution front and a selected point
in the objective-space. This selected point is usually called
the nadir point. At the nadir point, all objectives are at their
worst values simultaneously [19]. The nadir point ~xnad is
given as ~xnad = [fnad

0 (~x), . . . , fnad
M−1(~x)], where fnad

i (~x) =
maxj=1...pop size{fi( ~xj)}.
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The formal definition of HV metric according to [20] is
the Lebesgue measure (Λ) of the union of all hypercubes ai

defined by a solution point ~bi ∈ B (B is the population of
all the non-dominated solution points), and the nadir point
~xnad, given in (12). ~x ≺ ~xnad denotes ~x dominates ~xnad.
The HV value is the sum of all the volumes:

hv(B) = Λ({
⋃
i

ai|~bi ∈ B}) = Λ(
⋃

~bi∈B

{~x|~bi ≺ ~x ≺ ~xnad})

(12)
In experiments where multiple runs are required to obtain

an average HV value, the population will be the sum of all
the final non-dominated individuals from each run combined
together. The nadir point is computed from this combined
population, and then will be used to obtain the HV value for
each run. This method ensures a consistent nadir point for
all runs of the experiment.

When comparing two EMO algorithms, the one which
gives a larger HV value is considered to be better. The
volume calculated by this metric gives a measure on both
the spread and the closeness of the solutions to the Pareto
front.

B. HV metric for user-preference EMO algorithms
The goal of user-preference EMO algorithms is to locate

solutions in the preferred regions. Therefore, the HV cal-
culation should also incorporate this information to make
it suitable for such algorithms. We propose to exclude the
solutions points outside the preferred regions so that the
nadir point used for the HV calculation lies within the
preferred region. This will favour the HV calculation towards
algorithms that converge onto the preferred regions.

We propose to extend the standard HV metric in the
following manner for one preferred region. The experiments
in this paper have only one preferred region, defined by the
given reference point.
• Step 1: Obtain the solution point closest to the ideal

point
First, all the final solutions points from every run
of each algorithm is combined to make a single
population. Next, the Euclidean distance is calculated
for each solution point in this population from the ideal
point. The solution point with the lowest Euclidean
distance is selected to define a volume.

• Step 2: Define a volume for HV calculation
A volume is defined around the solution point with the
lowest Euclidean distance. As seen in Figure 3, for
a two-objective minimization problem the ideal point
is (0.0, 0.0). The DM can provide value to define the
volume. We represent this value as δ′, so that a volume
is defined having 2δ′ for each objective. The DM can
adjust this δ′ value such that a sufficient number of
solution points lie within the defined volume.

• Step 3: Filter solutions points and calculate the HV
Solution points from the final set of solutions (from
all algorithms and runs in consideration) are removed if

algorithm 1

x

’

nad

δ

(0.0, 0.0) − ideal point

ideal point
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algorithm 2

f0

f1

reference point

{

Fig. 3. Defining a volume around the closest solution point to the ideal
point
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they reside outside this common volume. The remaining
solution points are used to obtain the nadir point, which
will be located within the defined volume. The calcula-
tion of the HV values for each run of each algorithm is
done using this common nadir point and solution points
within the volume.

VI. EXPERIMENTS

To perform a comparative analysis of the reference point
based approach against the traditional dominance based
approach in airfoil designs we used the original MDEPSO
algorithm described in [14] and the reference point based
algorithm. Both algorithms used a population of size 100
for 100 iterations. The evaluation process of individuals are
computationally expensive, due to the complex nature of the
matrix operations within the analysis process. We decided
on these parameter values for the EMO algorithm as a trade-
off for the heavy time consumption. Initial results indicated
that 10, 000 evaluations take about 36 hours on a 2.3GHz
dual-core CPU machine. CR = 0.2 and F = 0.4 was used
for the DE operator in MDEPSO. We used a spread value of
δ = 0.05 for the reference point approach. The results shown
here are an average of 10 independent runs.
A. Convergence and spread of solutions

Figure 4 illustrates the average HV values at each iteration
of the runs. We used δ′ = 0.5 to define a volume in the
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Fig. 5. Final solutions obtained on MDEPSO: (a) with reference point; (b) without reference point (Each line represents a solution point, where the
intersection at the objectives axis represents the value for that objective. The bold dashed line is the reference point.)

preferred region, so that at least 90% of the particles of the
algorithm, which has better convergence, is selected. Then
as described in Section V-B a nadir point was selected and
the HV values at each iteration was calculated. To promote
diversity in the algorithm, particles will follow the leaders
generated by the DE step in the original MDEPSO algorithm
from time to time, rather than following leaders closest
to preferred regions. These incidents can be seen by the
abrupt changes of the HV values. This is due to the fact
that particles might move away from the preferred region
to explore the search-space and avoid getting stuck at local
optima. It is clear from the results that as the iterations
progresses the reference point based algorithm converges
better than the dominance based algorithm. The results also
show that the reference point based algorithm has converged
to an optimum at about iteration 50, while the dominance
based algorithm fails to converge even after the maximum
number of iterations have been reached. These results show
that the reference point based MDEPSO algorithm performs
much better in a six-objective problem instance as opposed
to a standard non-dominance sorting based approach.

Figure 5 shows the solution points obtained from best runs
of each algorithm. Here, the reference point is given as the
dashed line, while the solid lines represent the candidate
solutions. It is clear that the reference point based algorithm
converges better in all objectives than the other algorithm.
We’ll next present an analysis of the designs for each
operating condition (objective) separately, which shows that
the reference point based algorithm provides better solutions
than the benchmark NLF0416 design.

B. Final designs
From our perspective, the airfoil which exhibits the most

feasible compromise between all objectives is considered the
most preferred solution. In this case, the preferred solution
is the one which has the minimum distance metric. It
follows that the candidate solution, the closest compromising
solution, to the NLF0416 is the most improved design. The
variation in airfoil geometry is shown in Figure. 6.

Consistent with low-speed airfoil design theory, the pre-
ferred solution has a relatively large leading edge radius,

Fig. 6. Comparison of the preferred solution and the reference NLF0416
solution

which results in an approximately 16.5% thick airfoil. The
upper surface is highly cambered, prolonging laminar flow
during cruise. The lower surface is quite flat, which induces a
lower moment value and is beneficial for stability. The airfoil
has a highly cambered aft section for lift generation. The
trailing edge is drooped and the wedge angle is significantly
small. Further study has proven that the trailing edge wedge
geometry may be impractical to manufacture. Additional
constraints must be imposed on the design variables to re-
strict such geometries. The drooped trailing edge is essential
to limit separation of the boundary layer, which results in
lower drag values and less chaotic flow when generating
increased lift. The function values of the preferred airfoil are
listed in Table. II. Also tabulated are airfoils which exhibit
the most optimal value for the respective objectives. It is ob-
served that with a marginal increase in the objectives 0 and 3
compared to the NLF0416, an improvement of approximately
13%, 27% and 9% is obtained for the preferred solution
for objectives 1, 4 and 5 respectively. Despite improvements
in these objectives, the NLF0416 still exhibits greater sta-
bility characteristics with a 30% lower value in objective
2 over the preferred airfoil. Figure 7 feature the pressure
coefficient distribution of the preferred airfoil against the
NLF0416 for the cruise operating condition. The curve which
predominately has a negative pressure is the upper (suction)
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TABLE II
RESULTS OF OPTIMIZATION SEQUENCE

Airfoil Obj. 0 Obj. 1 Obj. 2 Obj. 3 Obj. 4 Obj. 5
NLF0416 0.00516 0.00606 0.00982 0.30806 0.92314 0.65460
Preferred 0.00536 0.00537 0.01281 0.31430 0.67285 0.59530
min Obj. 0 0.00407 0.00726 0.01713 0.28737 0.91924 0.64170
min Obj. 1 0.00408 0.00404 0.02883 0.30024 0.97161 0.62610
min Obj. 2 0.00559 0.00671 0.00413 0.33868 0.96098 0.57380
min Obj. 3 0.00412 0.00472 0.03984 0.23977 0.88731 0.70100
min Obj. 4 0.00604 0.00523 0.01968 0.27611 0.58638 0.64360
min Obj. 5 0.00536 0.00477 0.01145 0.32364 0.93441 0.45250

TABLE III
IMPROVEMENT OVER NLF0416 FOR RESPECTIVE OBJECTIVES

Airfoil % Improvment
min (2) 21.1% for Obj. 0
min (3) 33.3% for Obj. 1
min (4) 57.9% for Obj. 2
min (5) 22.1% for Obj. 3
min (6) 36.5% for Obj. 4
min (7) 30.9% for Obj. 5

surface. Similarly, the lower (pressure) surface is denoted
by the curve which is predominately experiencing positive
pressure. The difference between these two curves yields the
resultant force. Figure 8 shows that the pressure differences
between the highest and lowest points of the x-coordinates
are on average greater on the preferred airfoil compared with
the NLF0416. This indicates that for the stipulated operating
condition (objective 4) a greater lift is achieved (or a reduced
inverse, as indicated in Table. II). Figures 9 and 10 feature
the drag polar and lift curves. The drag polar demonstrates
that for incidence angles up to α = 6◦, the preferred airfoil
exhibits greater aerodynamic efficiency, as denoted by the
reduced drag-to-lift ratio (corresponding to objectives 1 and
4). The lift curve of the preferred airfoil shows a consistently
greater lift is achieved for values up to α ≈ 7◦, after which
boundary layer separation on the suction surface results in
lower lift values. This phenomenon is validated by objective
3, which indicates a lower maximum lift (or higher inverse)
is achieved compared with NLF0416.

Table II also demonstrates the improvement over the
NLF0416 for solutions which exhibit minimum values for
particular objectives. This is beneficial if the DM was in-
clined towards a particular objective, rather than a feasible
compromise. It is observed that there is one solution which
improves on the NLF0416 for at least one objective at a time.
The percentage improvements for the respective objectives
are shown in Table III.

VII. CONCLUSIONS

In this paper we illustrated the use of a reference point
based many-objective PSO algorithm in the optimization
of airfoil designs. This study described six conflicting ob-
jectives, which represents six operational conditions un-
der which an airfoil design may be optimized. Using the

Fig. 7. Pressure distribution, Cl = 0.5, M = 0.3, Re = 4× 106

Fig. 8. Pressure distribution, α = 5◦, M = 0.15, Re = 2× 106

NLF0416 airfoil as a reference design, we defined a ref-
erence point using the aspiration values of NLF0416 at
each operating condition. The PARSEC method is used to
define the shape of an airfoil using ten decision variables.
The evaluation framework first creates an airfoil using the
decision variables, then is given to the flow solver with
explicit constraints, to obtain values for the lift (Cl), moment
(Cm) and drag (Cd) coefficients. We have used XFOIL as the
flow solver in this study. Using these coefficients, objectives
are formulated to be minimization functions. The MDEPSO
algorithm incorporates this evaluation framework to guide the
particles towards the preferred region of the objective-space
indicated by the reference point.
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Fig. 9. Drag to lift ratio polar, M = 0.15, Re = 2× 106

Fig. 10. Lift coefficient curve, M = 0.15, Re = 2× 106

The experimental results suggests that by using a reference
point, the EMO algorithm is more effective and efficient
in locating useful solutions than using a standard non-
dominated sorting based approach. We have illustrated this
feature using an HV metric suitable for user-preference EMO
algorithms. This modified calculation of the HV metric takes
into consideration only the solutions within the preferred
region. This process of excluding solutions outside the
preferred region defined by the DM is suitable for EMO
algorithms which only concentrate on certain regions of the
search-space. Our results also illustrate the improvements
of the derived airfoils compared with the NLF0416 airfoil.
We have also described the best solutions obtained for each
operating condition (objective). The results show that using
a population based approach the DM now has the ability to
obtain airfoils that perform better in all operating conditions
or on selected operating conditions, without requiring to re-
run experiments with different parameter settings. This is a
very useful feature of this approach, because the evaluation
process in airfoil designs are computationally intensive.

We have found some shortcomings of the derived airfoils,
which need to be fixed before the manufacturing process. In
future we plan to incorporate more objectives to the evalua-
tion framework, which will address these issues. We also plan
to explore other problems where a similar evaluation process
can be used within a user-preference EMO framework.
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