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1 Introduction
In the past decades, different kinds of metaheuristic optimization algorithms [1, 2] have been developed; Simulated
Annealing (SA) [3, 4], Evolutionary Algorithms (EAs) [5–7], Differential Evolution (DE) [8, 9], Particle Swarm
Optimization (PSO) [10, 11], Ant Colony Optimization (ACO) [12, 13], and Estimation of Distribution Algorithms
(EDAs) [14, 15] are just a few of them. These algorithms have shown excellent search abilities but often lose their
efficacy when applied to large and complex problems, e.g., problem instances with high dimensions, such as those
with more than one hundred decision variables.

Many optimization methods suffer from the “curse of dimensionality” [16, 17], which implies that their perfor-
mance deteriorates quickly as the dimensionality of the search space increases. The reasons for this phenomenon
appear to be two-fold. First, the solution space of a problem often increases exponentially with the problem dimension
[16, 17] and more efficient search strategies are required to explore all promising regions within a given time budget.
Second, also the characteristics of a problem may change with the scale. Rosenbrock’s function [18] (see also Sec-
tion 2.6), for instance, is unimodal for two dimension but becomes multimodal for higher ones [19]. Because of such
a worsening of the features of an optimization problem resulting from an increase in scale, a previously successful
search strategy may no longer be capable of finding the optimal solution.

Historically, scaling EAs to large-scale problems has attracted much interest, including both theoretical and prac-
tical studies. The earliest practical approach might be parallelizing an existing EA [20–22]. Later, cooperative co-
evolution appeared as another promising method [23, 24]. However, existing works on this topic are often limited
to test problems used in individual studies and a systematic evaluation platform is still not available in literature for
comparing the scalability of different EAs. This report aims to contribute to solving this problem. In particular, we
provide a suite of benchmark functions for large-scale numerical optimization.

Although the difficulty of a problem generally increases with its dimensionality, it is natural that some high-
dimensional problems are easier than others. For example, if the decision variables involved in a problem are indepen-
dent of each other, the problem can be easily solved by decomposing it into a number of sub-problems, each of which
involving only one decision variable while treating all others as constants. This way, even a line search or greedy
method can solve the problem efficiently [25]. This class of problem is known as separable problems, and has been
formally defined in [26] as follows:

Definition 1 A function f(x) is separable iff

arg min
(x1,··· ,xn)

f(x1, · · · , xn) =
(

arg min
x1

f(x1, · · · ), · · · , arg min
xn

f(· · · , xn)
)

(1)
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In other words, a function of n variables is separable if it can be rewritten as a sum of n functions of just one variable
[27, 28]. If a function f(x) is separable, its parameters xi are called independent. Functions which are not separable
are called nonseparable. Such functions can be defined as:

Definition 2 A nonseparable function f(x) is called m-nonseparable function if at most m of its parameters xi are
not independent. A nonseparable function f(x) is called fully-nonseparable 1 function if any two of its parameters xi

are not independent.

The definitions of separability provide us a measure of the difficulty of different problems based on which a
spectrum of benchmark problems can be designed. It is maybe interesting to notice that nonseparability here has a
similar meaning as the term epistasis more common in biology and in the area of discrete optimization [29–32].

In general, separable problems are considered to be easiest, while the fully-nonseparable ones usually are the
most difficult problems. In between these two extreme cases, there are various kinds of partially separable problems
[33–35]. Matter of fact, real-world optimization problems will most likely consist of different groups of parameters
with strong dependencies within but little interaction between the groups. This issue must be reflected in benchmark
problems in order to ensure that the optimization algorithms suggested by researcher based on their performance when
applied to test problems are as same as efficient in practical scenarios. With this in mind, we designed our test suite in
such a way that four types of high-dimensional problems are included:

1. Separable functions;

2. Partially-separable functions, in which a small number of variables are dependent while all the remaining ones
are independent;

3. Partially-separable functions that consist of multiple independent subcomponents, each of which is m-non-
separable; and

4. Fully-nonseparable functions.

To produce functions which have different degrees of separability, we can first randomly divide the objective variables
into several groups, each of which contains a number of variables. Then, for each group of variables, we can decide to
either keep them independent or to make them interact with each other by using some coordinate rotation techniques
[36]. Finally, a fitness function will be applied to each group of variables. For this purpose, the following six functions
will be used as the basic functions:

1. The Sphere Function

2. The Rotated Elliptic Function

3. Schwefel’s Problem 1.2

4. Rosenbrock’s Function

5. The Rotated Rastrigin’s Function

6. The Rotated Ackley’s Function

All these basic functions are nonseparable except for the simple sphere function, which is often used for demonstration
only. We choose these basic functions because they are the most classical examples of well-known benchmark suites
[37–39] in the area of continuous optimization. Since some of these functions were separable in their original form, we
applied Salomon’s random coordinate rotation technique [36] to make them nonseparable. To control the separability
of naturally nonseparable functions such as Schwefel’s Problem 1.2 and Rosenbrock’s Function, we use the sphere
function to provide the separable part.

Although state-of-the-art EAs have shown satisfying performance on low-dimensional instances of these func-
tions with, for example, 30 decision variables, the reported results for approaches that were able to handle the high-
dimensional cases (e.g. consisting of 1000 or more decision variables) are still scarce. It can thus be considered to be
very important to provide a benchmark suite of functions with variable dimension in order to promote the competition
between researchers and, as a consequence, boost the performance of EAs in high-dimensional problems.

1We use “nonseparable” to indicate “fully-nonseparable” in this report if without any further explanation
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Before introducing the test suite in detail, we conclude this section by summing up some key points. As listed
below, this test suite consists of 20 benchmark functions. All functions are given for the special case of dimension
D = 1000. The parameter m is used to control the number of variables in each group and hence, defining the degree
of separability. We set m = 50 in this test suite, but the users can control this parameter conveniently for their
own purposes. The test suite is an improved version of the test suite released for the CEC’2008 special session and
competition on large-scale global optimization [39], which included only seven functions which were either separable
or fully-nonseparable. By incorporating the partially-separable functions, the current test suite provides an improved
platform for investigating the behavior of algorithms on high-dimensional problems in different scenarios.

The MATLAB and Java codes 2 of the test suite are available at
http://nical.ustc.edu.cn/cec10ss.php

Section 2 introduces the basic functions. The mathematical formulas and properties of these functions are described
in Section 3. Finally, evaluation criteria are given in Section 4.

1. Separable Functions (3)

(a) F1: Shifted Elliptic Function

(b) F2: Shifted Rastrigin’s Function

(c) F3: Shifted Ackley’s Function

2. Single-group m-nonseparable Functions (5)

(a) F4: Single-group Shifted and m-rotated Elliptic Function

(b) F5: Single-group Shifted and m-rotated Rastrigin’s Function

(c) F6: Single-group Shifted and m-rotated Ackley’s Function

(d) F7: Single-group Shifted m-dimensional Schwefel’s Problem 1.2

(e) F8: Single-group Shifted m-dimensional Rosenbrock’s Function

3. D
2m -group m-nonseparable Functions (5)

(a) F9: D
2m -group Shifted and m-rotated Elliptic Function

(b) F10: D
2m -group Shifted and m-rotated Rastrigin’s Function

(c) F11: D
2m -group Shifted and m-rotated Ackley’s Function

(d) F12: D
2m -group Shifted m-dimensional Schwefel’s Problem 1.2

(e) F13: D
2m -group Shifted m-dimensional Rosenbrock’s Function

4. D
m -group m-nonseparable Functions (5)

(a) F14: D
m -group Shifted and m-rotated Elliptic Function

(b) F15: D
m -group Shifted and m-rotated Rastrigin’s Function

(c) F16: D
m -group Shifted and m-rotated Ackley’s Function

(d) F17: D
m -group Shifted m-dimensional Schwefel’s Problem 1.2

(e) F18: D
m -group Shifted m-dimensional Rosenbrock’s Function

5. Nonseparable Functions (2)

(a) F19: Shifted Schwefel’s Problem 1.2

(b) F20: Shifted Rosenbrock’s Function
2An algorithm may obtain different results (e.g., fitness values) with the Matlab and Java codes. This is due to the precision threshold of the

double precision floating-point format. However, with the evaluation criteria given in this report, such difference will not influence the comparison
between algorithms.
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2 Basic Functions

2.1 The Sphere Function
The Sphere function is defined as follows:

Fsphere(x) =
D∑

i=1

x2
i (2)

where D is the dimension and x = (x1, x2, · · · , xD) is a D-dimensional row vector (i.e., a 1×D matrix). The Sphere
function is very simple and is mainly used for demonstration. In this test suite this function serves as separable part
when using a naturally nonseparable function to form some partially nonseparable functions.

2.2 The Rotated Elliptic Function
The original Elliptic Function is separable, and is defined as follows:

Felliptic(x) =
D∑

i=1

(
106

) i−1
D−1 x2

i (3)

where D is the dimension and x = (x1, x2, · · · , xD) is a D-dimensional row vector (i.e., a 1×D matrix). The number
106 is called condition number, which is used to transform a Sphere function to an Elliptic function [38]. To make this
function be nonseparable, an orthogonal matrix will be used to rotate the coordinates. The rotated Elliptic function is
defined as follows:

Frot elliptic(x) = Felliptic(z), z = x ∗M (4)

where D is the dimension, M is a D×D orthogonal matrix, and x = (x1, x2, · · · , xD) is a D-dimensional row vector
(i.e., a 1×D matrix).

2.3 The Rotated Rastrigin’s Function
The original Rastrigin’s function is separable, and is defined as follows:

Frastrigin(x) =
D∑

i=1

[
x2

i − 10 cos(2πxi) + 10
]

(5)

where D is the dimension and x = (x1, x2, · · · , xD) is a D-dimensional row vector (i.e., a 1×D matrix). Similarly,
to make it nonseparable, an orthogonal matrix is also used for coordinate rotation. The rotated Rastrgin’s function is
defined as follows:

Frot rastrigin(x) = Frastrigin(z), z = x ∗M (6)

where D is the dimension, M is a D×D orthogonal matrix, and x = (x1, x2, · · · , xD) is a D-dimensional row vector
(i.e., a 1 ×D matrix). Rastrigin’s function is a classical multimodal problem. It is difficult since the number of local
optima grows exponentially with the increase of dimensionality.

2.4 The Rotated Ackley’s Function
The original Ackley’s function is separable, and is defined as follows:

Fackley(x) = −20 exp


−0.2

√√√√ 1
D

D∑

i=1

x2
i


− exp

(
1
D

D∑

i=1

cos(2πxi)

)
+ 20 + e (7)

where D is the dimension and x = (x1, x2, · · · , xD) is a D-dimensional row vector (i.e., a 1×D matrix). To make it
nonseparable, an orthogonal matrix is again used for coordinate rotation. The rotated Ackley’s function is defined as
follows:

Frot ackley(x) = Fackley(z), z = x ∗M (8)

where D is the dimension, M is a D×D orthogonal matrix, and x = (x1, x2, · · · , xD) is a D-dimensional row vector
(i.e., a 1×D matrix).
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2.5 Schwefel’s Problem 1.2
Schwefel’s Problem 1.2 is a naturally nonseparable function, which is defined as follows:

Fschwefel(x) =
n∑

i=1




i∑

j=1

xi




2

(9)

where D is the dimension and x = (x1, x2, · · · , xD) is a D-dimensional row vector (i.e., a 1×D matrix).

2.6 Rosenbrock’s Function
Rosenbrock’s function is also naturally nonseparable and is defined as follows:

Frosenbrock(x) =
D−1∑

i=1

[
100(x2

i − xi+1)2 + (xi − 1)2
]

(10)

where D ≥ 2 is the dimension and x = (x1, x2, · · · , xD) is a D-dimensional row vector (i.e., a 1×D matrix).
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3 Definitions of the Benchmark Functions

3.1 Separable Functions

3.1.1 F1: Shifted Elliptic Function

F1(x) = Felliptic(z) =
D∑

i=1

(
106

) i−1
D−1 z2

i (11)

Dimension: D = 1000
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector

Properties:

1. Unimodal

2. Shifted

3. Separable

4. Scalable

5. x ∈ [−100, 100]D

6. Global optimum: x? = o, F1(x?) = 0

3.1.2 F2: Shifted Rastrigin’s Function

F2(x) = Frastrigin(z) =
D∑

i=1

[
z2
i − 10 cos(2πzi) + 10

]
(12)

Dimension: D = 1000
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector

Properties:

1. Multimodal

2. Shifted

3. Separable

4. Scalable

5. x ∈ [−5, 5]D

6. Global optimum: x? = o, F2(x?) = 0
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3.1.3 F3: Shifted Ackley’s Function

F3(x) = Fackley(z) = −20 exp


−0.2

√√√√ 1
D

D∑

i=1

z2
i


− exp

(
1
D

D∑

i=1

cos(2πzi)

)
+ 20 + e (13)

Dimension: D = 1000
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector

Properties:

1. Multimodal

2. Shifted

3. Separable

4. Scalable

5. x ∈ [−32, 32]D

6. Global optimum: x? = o, F3(x?) = 0
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3.2 Single-group m-nonseparable Functions

3.2.1 F4: Single-group Shifted and m-rotated Elliptic Function

F4(x) = Frot elliptic [z(P1 : Pm)] ∗ 106 + Felliptic [z(Pm+1 : PD)] (14)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: a random permutation of {1, 2, · · · , D}

Properties:

1. Unimodal

2. Shifted

3. Single-group m-rotated

4. Single-group m-nonseparable

5. x ∈ [−100, 100]D

6. Global optimum: x? = o, F4(x?) = 0

3.2.2 F5: Single-group Shifted and m-rotated Rastrigin’s Function

F5(x) = Frot rastrigin [z(P1 : Pm)] ∗ 106 + Frastrigin [z(Pm+1 : PD)] (15)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: a random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. Single-group m-rotated

4. Single-group m-nonseparable

5. x ∈ [−5, 5]D

6. Global optimum: x? = o, F5(x?) = 0
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3.2.3 F6: Single-group Shifted and m-rotated Ackley’s Function

F6(x) = Frot ackley [z(P1 : Pm)] ∗ 106 + Fackley [z(Pm+1 : PD)] (16)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: a random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. Single-group m-rotated

4. Single-group m-nonseparable

5. x ∈ [−32, 32]D

6. Global optimum: x? = o, F6(x?) = 0

3.2.4 F7: Single-group Shifted m-dimensional Schwefel’s Problem 1.2

F7(x) = Fschwefel [z(P1 : Pm)] ∗ 106 + Fsphere [z(Pm+1 : PD)] (17)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Unimodal

2. Shifted

3. Single-group m-nonseparable

4. x ∈ [−100, 100]D

5. Global optimum: x? = o, F7(x?) = 0
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3.2.5 F8: Single-group Shifted m-dimensional Rosenbrock’s Function

F8(x) = Frosenbrock [z(P1 : Pm)] ∗ 106 + Fsphere [z(Pm+1 : PD)] (18)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. Single-group m-nonseparable

4. x ∈ [−100, 100]D

5. Global optimum: x?(P1 : Pm) = o(P1 : Pm) + 1, x?(Pm+1 : PD) = o(Pm+1 : PD), F8(x?) = 0
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3.3 D
2m

-group m-nonseparable Functions

3.3.1 F9: D
2m -group Shifted and m-rotated Elliptic Function

F9(x) =

D
2m∑

k=1

Frot elliptic

[
z(P(k−1)∗m+1 : Pk∗m)

]
+ Felliptic

[
z(PD

2 +1 : PD)
]

(19)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: a random permutation of {1, 2, · · · , D}

Properties:

1. Unimodal

2. Shifted

3. D
2m -group m-rotated

4. D
2m -group m-nonseparable

5. x ∈ [−100, 100]D

6. Global optimum: x? = o, F9(x?) = 0

3.3.2 F10: D
2m -group Shifted and m-rotated Rastrigin’s Function

F10(x) =

D
2m∑

k=1

Frot rastrigin

[
z(P(k−1)∗m+1 : Pk∗m)

]
+ Frastrigin

[
z(PD

2 +1 : PD)
]

(20)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. D
2m -group m-rotated

4. D
2m -group m-nonseparable

5. x ∈ [−5, 5]D

6. Global optimum: x? = o, F10(x?) = 0
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3.3.3 F11: D
2m -group Shifted and m-rotated Ackley’s Function

F11(x) =

D
2m∑

k=1

Frot ackley

[
z(P(k−1)∗m+1 : Pk∗m)

]
+ Fackley

[
z(PD

2 +1 : PD)
]

(21)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. D
2m -group m-rotated

4. D
2m -group m-nonseparable

5. x ∈ [−32, 32]D

6. Global optimum: x? = o, F11(x?) = 0

3.3.4 F12: D
2m -group Shifted m-dimensional Schwefel’s Problem 1.2

F12(x) =

D
2m∑

k=1

Fschwefel

[
z(P(k−1)∗m+1 : Pk∗m)

]
+ Fsphere

[
z(PD

2 +1 : PD)
]

(22)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Unimodal

2. Shifted

3. D
2m -group m-nonseparable

4. x ∈ [−100, 100]D

5. Global optimum: x? = o, F12(x?) = 0
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3.3.5 F13: D
2m -group Shifted m-dimensional Rosenbrock’s Function

F13(x) =

D
2m∑

k=1

Frosenbrock

[
z(P(k−1)∗m+1 : Pk∗m)

]
+ Fsphere

[
z(PD

2 +1 : PD)
]

(23)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. D
2m -group m-nonseparable

4. x ∈ [−100, 100]D

5. Global optimum: x?(P1 : PD/2) = o(P1 : PD/2) + 1, x?(PD/2+1 : PD) = o(PD/2+1 : PD), F13(x?) = 0
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3.4 D
m

-group m-nonseparable Functions

3.4.1 F14: D
m -group Shifted and m-rotated Elliptic Function

F14(x) =

D
m∑

k=1

Frot elliptic

[
z(P(k−1)∗m+1 : Pk∗m)

]
(24)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Unimodal

2. Shifted

3. D
m -group m-rotated

4. D
m -group m-nonseparable

5. x ∈ [−100, 100]D

6. Global optimum: x? = o, F14(x?) = 0

3.4.2 F15: D
m -group Shifted and m-rotated Rastrigin’s Function

F15(x) =

D
m∑

k=1

Frot rastrigin

[
z(P(k−1)∗m+1 : Pk∗m)

]
(25)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. D
m -group m-rotated

4. D
m -group m-nonseparable

5. x ∈ [−5, 5]D

6. Global optimum: x? = o, F15(x?) = 0
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3.4.3 F16: D
m -group Shifted and m-rotated Ackley’s Function

F16(x) =

D
m∑

k=1

Frot ackley

[
z(P(k−1)∗m+1 : Pk∗m)

]
(26)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. D
m -group m-rotated

4. D
m -group m-nonseparable

5. x ∈ [−32, 32]D

6. Global optimum: x? = o, F16(x?) = 0

3.4.4 F17: D
m -group Shifted m-dimensional Schwefel’s Problem 1.2

F17(x) =

D
m∑

k=1

Fschwefel

[
z(P(k−1)∗m+1 : Pk∗m)

]
(27)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Unimodal

2. Shifted

3. D
m -group m-nonseparable

4. x ∈ [−100, 100]D

5. Global optimum: x? = o, F17(x?) = 0
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3.4.5 F18: D
m -group Shifted m-dimensional Rosenbrock’s Function

F18(x) =

D
m∑

k=1

Frosenbrock

[
z(P(k−1)∗m+1 : Pk∗m)

]
(28)

Dimension: D = 1000
Group size: m = 50
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector
P: random permutation of {1, 2, · · · , D}

Properties:

1. Multimodal

2. Shifted

3. D
m -group m-nonseparable

4. x ∈ [−100, 100]D

5. Global optimum: x? = o + 1, F18(x?) = 0
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3.5 Nonseparable Functions

3.5.1 F19: Shifted Schwefel’s Problem 1.2

F19(x) = Fschwefel(z) =
n∑

i=1




i∑

j=1

xi




2

(29)

Dimension: D = 1000
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector

Properties:

1. Unimodal

2. Shifted

3. Fully-nonseparable

4. x ∈ [−100, 100]D

5. Global optimum: x? = o, F19(x?) = 0

3.5.2 F20: Shifted Rosenbrock’s Function

F20(x) = Frosenbrock(z) =
D−1∑

i=1

[
100(z2

i − zi+1)2 + (zi − 1)2
]

(30)

Dimension: D = 1000
x = (x1, x2, · · · , xD): the candidate solution – a D-dimensional row vector
o = (o1, o2, · · · , oD): the (shifted) global optimum
z = x− o, z = (z1, z2, · · · , zD): the shifted candidate solution – a D-dimensional row vector

Properties:

1. Multimodal

2. Shifted

3. Fully-nonseparable

4. x ∈ [−100, 100]D

5. Global optimum: x? = o + 1, F20(x?) = 0

17



4 Experimental Protocol

4.1 General Settings
1. Problems: 20 minimization problems

2. Dimension: D = 1000

3. Runs/problem: 25 (Please do not run multiple sets of 25 runs to pick the best set)

4. Max FEs: the maximum number of function evaluations is 3.0 ∗ 106, i.e., 3e6

5. Initialization: Uniform random initialization within the search space

6. Global optimum: All problems have the global optimum within the given bounds, so there is no need to perform
search outside of the given bounds for these problems. The optimum function values are 0 for all the problems.

7. Termination: Terminate when reaching Max FEs.

Table 1 presents the time required for 10000 function evaluations (FEs) using the Matlab and Java versions of the
test suite. The Java version was tested in a single thread on an Intel(R) Core(TM)2 Duo CPU T7500 processor with
2.20GHz in Eclipse Platform 3.4 using Java(TM) SE (build 1.6.0 16, 1 GiB maximum heap memory) for Microsoft
Windows 6.0 (Vista). The Matlab version was tested in a single thread on an Intel(R) Core(TM)2 Quad CPU Q6600
with 2.40GHz in Matlab R2009a for Linux. The whole experiment with 3,000,000 FEs is thereby expected to take
about 205 hours with the Matlab version and 104 hours with the Java version on a computer with similar configurations.

Table 1: Runtime of 10,000 FEs (in milliseconds) on the benchmark functions for D = 1000, m = 50.

Implementation F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

Matlab 369 566 643 646 678 754 635 535 579 886
Java 100 3461 3642 396 3621 3757 135 143 2263 5559

Implementation F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

Matlab 1086 1638 7291 7012 1115 1184 2763 9507 51893 8664
Java 6004 140 190 4324 7596 8173 144 237 84 119

4.2 Data To Be Recorded and Evaluation Criteria
Solution quality for each function when the FEs counter reaches:

• FEs1 = 1.2e5

• FEs2 = 6.0e5

• FEs3 = 3.0e6

The 1st(best), 13th(median) and 25th(worst) function values, mean and standard deviation of the 25 runs should be
recorded.

4.3 Example of Representing the Results
Participants are requested to present their results in a tabular form, following the example given by Table 2.
Competition entries will be mainly ranked based on the median results achieved when FEs = 1.2e + 5, 6.0e + 5
and 3.0e + 6. In addition, please also provide convergence curves of your algorithm on the following eight selected
functions: F2, F5, F8, F10, F13, F15, F18 and F20. For each function, a single convergence curve should be plotted
using the average results over all 25 runs.
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Table 2: Experimental Results

F1 F2 F3 F4 F5 F6 F7

FEs = 1.2e5

Best 0.00e+00 x.xxe+xx x.xxe+xx x.xxe+xx x.xxe+xx x.xxe+xx x.xxe+xx
Median
Worst
Mean
Std

FEs = 6.0e5

Best
Median
Worst
Mean
Std

FEs = 3.0e6

Best
Median
Worst
Mean
Std

F8 F9 F10 F11 F12 F13 F14

FEs = 1.2e5

Best
Median
Worst
Mean
Std

FEs = 6.0e5

Best
Median
Worst
Mean
Std

FEs = 3.0e6

Best
Median
Worst
Mean
Std

F15 F16 F17 F18 F19 F20

FEs = 1.2e5

Best
Median
Worst
Mean
Std

FEs = 6.0e5

Best
Median
Worst
Mean
Std

FEs = 3.0e6

Best
Median
Worst
Mean
Std
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5 Beyond the CEC’2010 Special Session and Competition
This section briefly describes some thoughts that were relevant to the design of the test suite and the further usage of
the test suite beyond the scope of the special session and competition at CEC’2010. Lying in the heart of the design of
this test suite are two considerations:

First, the test problems must be scalable to allow researchers to carry out investigations in case of even more
decision variables (e.g., 10000). In particular, scaling up the problems to even higher dimensions should not lead to
overwhelming computational overhead.

Second, the test suite should cover a set of cases with different degrees of separability. This is to simulate real-
world problems, in which decision variables are seldom independent on each other while dependency can often be
observed though in different forms and to different extent. Existing examples can be identified from many application
domains [40] such as image processing [41, 42], chemical engineering and biomedical modeling [43], engineering
design optimization [44], and network optimization [45]. In the area of Genetic Programming, the size of the evolved
programs or trees is usually added to the raw functional objective in order to compute the fitness [46], which could be
considered to be an example for separability as well.

With the new benchmark function suite defined in this report, we continue the series of numerical optimization
competitions at the CEC and contribute to bridging the gap between practitioners and algorithm developers by

1. providing a set of scalable benchmark functions suitable for examining large-scale optimization techniques and

2. defining partially separable problems which will allow us to examine optimization algorithms from a new per-
spective from which we assume that it comes closer to real-world situations.

For creating the m-nonseparable functions mentioned in previous sections, two options were employed: First, an
inherently separable function was combined with rotated version of itself [36] and second, an inherently nonseparable
function was combined with a separable one. The rotation method has the advantages that it is, without doubt, very
elegant, that it can be universally applied, and that it has been used in some of the past competitions [38]. Moreover,
researchers can “tune” the degree of separability of the function simply by changing the rotation matrix. Its drawback
is that it requires matrix operations which scale badly and slow down the evaluation of the objective functions. In
fact, using the rotation method for 1000-dimensional nonseparable functions is already very time consuming and we
had to exclude it from the nonseparable function category in order to guarantee an interested participant to finish
his experiments before the deadline. The combination of a nonseparable function with a separable one, as done in
Section 3.2.4 with Schwefels problem 1.2 and the sphere function, is computationally more efficient. However, since
the partially-separable functions generated by this approach include components of a mathematical form different from
the original nonseparable ones, it might be difficult to conclude that any difference of an algorithm’s performance on
partially separable and nonseparable functions is caused by the degrees of separability. Instead, the reason may also
be this change of mathematical form.

Given the above discussions, we provide both variants for defining partially separable benchmark functions. By
doing so, we aim at providing a suite of tests which will provide both, researchers and practitioners, with a more com-
plete picture of the performance of optimization algorithms while ensuring backward comparability to previous test
scenarios. For researchers who are interested in how well their algorithms scale with the number of decision variables
while placing less importance on the separability issue, we would suggest starting with the inherently nonseparable
functions. Further experimental study can be carried out by using very simple and sparse matrices for rotation. For
example, one can set zi = xi +xi+1 for i = 1 to D−1, and zD = x1 +xD. This way, high-dimensional nonseparable
functions can be obtained at relatively low computational costs. Yet, such an approach should be used with caution
since the influence of such a specific rotation matrix on the problem still remains unclear.

On the other hand, researchers that are more interested in the performance of their algorithm on problems with
different degrees of separability are suggested to adhere to the rotation method used in this test suite as long as the
degree of separability of interest is of medium size.
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Eds., vol. 24. Helsinki, Finland: Nokia Research Center / Vantaa, Finland: Finnish Artificial Intelligence Society
(FAIS), Aug. 20–22, 2008, pp. 7–14.
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