
1

Benchmark Functions for CEC’2013 Special
Session and Competition on Niching Methods for

Multimodal Function Optimization
Xiaodong Li, Andries Engelbrecht, Michael G. Epitropakis

(Last updated 21 September 2016)

Population-based meta-heuristic algorithms such as Evolu-
tionary Algorithms (EAs) in their original forms are usu-
ally designed for locating a single global solution. These
algorithms typically converge to a single solution because of
the global selection scheme used. Nevertheless, many real-
world problems are “multimodal” by nature, i.e., multiple
satisfactory solutions exist. It may be desirable to locate
many such satisfactory solutions so that a decision maker can
choose one that is most proper in his/her problem domain.
Numerous techniques have been developed in the past for
locating multiple optima (global or local). These techniques
are commonly referred to as “niching” methods. A niching
method can be incorporated into a standard EA to promote and
maintain formation of multiple stable subpopulations within
a single population, with an aim to locate multiple globally
optimal or suboptimal solutions. Many niching methods have
been developed in the past, including crowding [1], fitness
sharing [2], deterministic crowding [3], derating [4], restricted
tournament selection [5], parallelization [6], stretching and
deflation [7], clustering [8], clearing [9], and speciation [10],
etc.

Although these niching methods have been around for many
years, further advances in this area have been hindered by
several obstacles: most studies focus on low dimensional mul-
timodal problems (2 or 3 dimensions), therefore it is difficult
to assess these methods’ scalability to both high modality
and dimensionality; some niching methods introduces new
parameters which are difficult to set, making these methods
difficult to use; different benchmark test functions or different
variants of the same functions are used, hence comparing the
performance of different niching methods is difficult.

We believe it is now time to adopt a unifying framework
for evaluating niching methods, so that further advances in
this area can be made with ease. In this technical report, we
put together 20 benchmark test functions (including several
identical functions with different dimension sizes), with dif-
ferent characteristics, for evaluating niching algorithms. The
first 10 benchmark functions are simple, well known and

Xiaodong Li is with the School of Computer Science and IT, RMIT
University, VIC 3001, Melbourne, Australia, email: xiaodong.li@rmit.edu.au

Andries Engelbrecht is with the Department of Computer Science, School of
Information Technology, University of Pretoria, Pretoria 0002, South Africa,
email: engel@cs.up.ac.za

Michael G. Epitropakis is with the Department of Computing Science and
Mathematics, School of Natural Sciences, University of Stirling, Stirling FK9
4LA, Scotland, email: mge@cs.stir.ac.uk

widely used functions, largely based on some recent studies on
niching [11], [12], [13]. The remaining benchmark functions
are more complex and follow the paradigm of composition
functions defined in the IEEE CEC 2005 special session on
real-parameter optimization [14].

Several of the test functions included here are scalable to
dimension, and the number of global optima can be adjusted
freely by the user. Performance measures are also defined
and suggested here for comparing different niching methods.
The source codes of the benchmark test functions are made
available in Matlab, Java, python and C++ source codes.
The competition files can be downloaded from the CEC’2013
special session on niching methods website1.

In the following sections, we will describe the mathematical
formula and properties of the included multimodal benchmark
test functions, evaluation criteria, and the ranking method for
entries submitted to this competition.

I. SUMMARY OF TEST FUNCTIONS

This benchmark set includes the following 20 multimodal
test functions:

• F1: Five-Uneven-Peak Trap (1D)
• F2: Equal Maxima (1D)
• F3: Uneven Decreasing Maxima (1D)
• F4: Himmelblau (2D)
• F5: Six-Hump Camel Back (2D)
• F6: Shubert (2D, 3D)
• F7: Vincent (2D, 3D)
• F8: Modified Rastrigin - All Global Optima (2D)
• F9: Composition Function 1 (2D)
• F10: Composition Function 2 (2D)
• F11: Composition Function 3 (2D, 3D, 5D, 10D)
• F12: Composition Function 4 (3D, 5D, 10D, 20D)
These multimodal test functions have the following proper-

ties:
• All test functions are formulated as maximization prob-

lems;
• F1, F2 and F3 are simple 1D multimodal functions;
• F4 and F5 are simple 2D multimodal functions. These

functions are not scalable;
• F6 to F8 are scalable multimodal functions. The number

of global optima for F6 and F7 are determined by the

1URL: https://titan.csit.rmit.edu.au/∼e46507/cec13-niching/

2

dimension D. However, for F8, the number of global op-
tima is independent from D, therefore can be controlled
by the user.

• F9 to F12 are scalable multimodal functions constructed
by several basic functions with different properties. F9

and F10 are separable, and non-symmetric, while F11

and F12 are non-separable, non-symmetric complex mul-
timodal functions. The number of global optima in all
composition functions is independent from D, therefore
can be controlled by the user.

II. DEFINITIONS OF THE TEST FUNCTIONS

A. F1: Five-Uneven-Peak Trap

F1(x) =



80(2.5− x) for 0 ≤ x < 2.5,
64(x− 2.5) for 2.5 ≤ x < 5.0,
64(7.5− x) for 5.0 ≤ x < 7.5,
28(x− 7.5) for 7.5 ≤ x < 12.5,
28(17.5− x) for 12.5 ≤ x < 17.5,
32(x− 17.5) for 17.5 ≤ x < 22.5,
32(27.5− x) for 22.5 ≤ x < 27.5,
80(x− 27.5) for 27.5 ≤ x ≤ 30.

Properties:
– Variable ranges: x ∈ [0, 30];
– No. of global optima: 2;
– No. of local optima:3.

This function was originally proposed in [10]. See Fig. 1.

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

180

200

Fig. 1. Five-Uneven-Peak Trap.

B. F2: Equal Maxima

F2(x) = sin6(5πx).
Properties:

– Variable ranges: x ∈ [0, 1];
– No. of global optima: 5;
– No. of local optima: 0;

This function was originally proposed in [15]. See Fig. 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 2. Equal Maxima.

C. F3: Uneven Decreasing Maxima

F3(x) = exp

(
−2log(2)

(
x− 0.08

0.854

)2
)
sin6(5π(x3/4−0.05)).

Properties:
– Variable ranges: x ∈ [0, 1];
– No. of global optima: 1;
– No. of local optima: 4;

This function was originally proposed in [15]. See Fig. 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Uneven Decreasing Maxima.

D. F4: Himmelblau

F4(x, y) = 200− (x2 + y − 11)2 − (x+ y2 − 7)2.

Properties:
– Variable ranges: x, y ∈ [−6, 6];
– No. of global optima: 4;
– No. of local optima: 0;

This is an inverted version of Himmelblau function [15]. It
has 4 global optima with 2 closer to each other than the other
2. There are no local optima, as shown in Fig. 4.

3

Fig. 4. Himmelblau.

E. F5: Six-Hump Camel Back

F5(x, y) = −4[(4− 2.1x2 +
x4

3
)x2 + xy + (4y2 − 4)y2].

Properties:
– Variable ranges: x ∈ [−1.9, 1.9]; y ∈ [−1.1, 1.1];
– No. of global optima: 2;
– No. of local optima: 2;

This function was originally proposed in [16]. The function
has 2 global optima as well as 2 local optima. See Fig. 5.

Fig. 5. Six-Hump Camel Back.

F. F6: Shubert

F6(~x) = −
∏D

i=1

∑5
j=1 jcos[(j + 1)xi + j].

Properties:
– Variable ranges: xi ∈ [−10, 10]D, i = 1, 2, . . . , D;
– No. of global optima: D · 3D;
– No. of local optima: many;

This function is an inverted version of the Shubert function
[16], [10], where there are D · 3D global optima unevenly
distributed. These global optima are divided into 3D groups,
with each group having D global optima being close to each
other. Fig. 6 shows an example of the Shubert 2D function,
where there are 18 global optima in 9 pairs (each with an
objective function value of 186.73), with each pair very close
to each other, but the distance between any pair is much
greater. There are in total 760 global and local optima.

Fig. 6. Shubert 2D function.

G. F7: Vincent

F7(~x) =
1
D

∑D
i=1 sin(10log(xi))

Properties:
– Variable range: xi ∈ [0.25, 10]D, i = 1, 2, . . . , D
– No. of global optima: 6D;
– No. of local optima: 0;

This is an inverted version of the Vincent function [17], which
has 6D global optima (each with an objective function value of
1.0), but unlike the regular distances between global optima in
F6, in Vincent function the global optima have vastly different
spacing between them. In addition, the Vincent function has
no local optima. Fig. 7 shows an example of the Vincent 2D
function.

H. F8: Modified Rastrigin - All Global Optima

F9(~x) = −
D∑
i=1

(10 + 9cos(2πkixi)).

Properties:
– Variable ranges: xi ∈ [0, 1]D, i = 1, 2, . . . , D;
– No. of global optima:

∏D
i=1 ki;

– No. of local optima: 0;
This is a modified Rastrigin function according to [13]. The
total number of global optima is M =

∏D
i=1 ki. In [13], a

problem instance D = 16 was used, with the following setting:
ki = 1, for i = 1 − 3, 5 − 7, 9 − 11, 13 − 15, and k4 =

4

Fig. 7. Vincent 2D function.

2, k8 = 2, k12 = 3, k16 = 4. In this case, there are 48 evenly
distributed global optima, each having an identical objective
value of f = 16. Fig. 8 provides a problem instance of this
function in 2D (where D = 2, k1 = 3, k2 = 4), in which case
the total number of optima is 12.

Fig. 8. Modified Rastrigin - All Global Optima 2D function.

I. Composition functions

In this section, we first describe the general framework for
constructing multimodal composition functions with several
global optima, then present the new composition functions
used in this technical report.

More specifically, a D-dimensional, composition function
CFj : AD ⊂ RD → R can be generally constructed as a
weighted aggregation of n basic functions fi : AD ⊂ RD →
R. Each basic function is shifted to a new position inside the
optimization space AD and can be either rotated through a
linear transformation matrix or used as is. Thus, a composition

function CFj is calculated according the following equation:

CFj(~x) =

n∑
i=1

wi

(
f̂i ((~x− ~oi)/λi ·Mi) + biasi

)
+ f jbias,

where n is the number of basic functions used to construct
the composition function, f̂i denotes a normalization of the
i-th basic function, i ∈ {1, 2, . . . , n}, wi is the corresponding
weight, ~oi is the new shifted optimum of each f̂i, Mi is the
linear transformation (rotation) matrix of each f̂i, and λi is
a parameter which is used to stretch (λi > 1) or compress
(λi < 1) each f̂i function. The composition function includes
two bias parameters biasi and f jbias. The former defines a
function value bias for each basic function and denotes which
optimum is the global optimum, while the latter defines a
function value bias for the constructed composition function.
Here, we set the biasi = 0,∀i ∈ {1, 2, . . . , n}, thus the global
optimum of each basic function is a global optimum of the
composition function. In addition, we set f jbias = 0, as such
in each composition function, all global optima have fitness
values equal to zero.

The weight wi of each basic function can be easily calcu-
lated based on the following equations:

wi = exp

(
−
∑D

k=1(xk − oik)2

2Dσ2
i

)
,

wi =

{
wi wi = max(wi)

wi(1−max(wi)
10) otherwise.

Finally, the weights are normalized according to wi =
wi/

∑n
i=1 wi. The parameter σi controls the coverage range

of each basic function, with small values to produce a narrow
coverage range to the corresponding f̂i.

The pool of basic functions may include functions with
different properties, characteristics and heights. As such to
have a better mixture of the basic functions a normalization
procedure is incorporated. The normalized function f̂i, can be
defined as: f̂i(·) = Cfi(·)/|f imax|, where C is a predefined
constant (C = 2000) and f imax is estimated using: f imax =
fi ((x

?/λi)Mi) , with x? = [5, 5, . . . , 5].

The pool of basic functions that we have used to construct
the composition functions includes the following:

– Sphere function:

fS(~x) =

D∑
i=1

x2i .

– Grienwank’s function:

fG(~x) =

D∑
i=1

x2i
4000

−
D∏
i=1

cos

(
xi√
i

)
+ 1.

– Rastrigin’s function:

fR(~x) =

D∑
i=1

(
x2i − 10 cos(2πxi) + 10

)
.

5

– Weierstrass function:

fW (~x)=

D∑
i=1

(
kmax∑
k=0

αk cos
(
2πβk(xi + 0.5)

))

−D
kmax∑
k=0

αk cos
(
2πβk(0.5)

)
,

where α = 0.5, β = 3, and kmax = 20.
– Expanded Griewank’s plus Rosenbrock’s function

(EF8F2):

F8(~x)=

D∑
i=1

x2i
4000

−
D∏
i=1

cos

(
xi√
i

)
+ 1,

F2(~x)=

D−1∑
i=1

(
100(x2i − xi+1)

2 + (xi − 1)2
)
,

EF8F2(~x)=F8F2(x1, x2, . . . , xD)

=F8(F2(x1, x2)) + F8(F2(x2, x3)) + . . .

+F8(F2(xD−1, xD)) + F8(F2(xD, x1))

It is clear that the aforementioned basic functions do
not incorporate either shifted positions, or linear transfor-
mations (rotations). Thus, in order to calculate for example
fS ((~x− ~oi)/λi ·Mi) , one can easily first calculate ~z =
(~x − ~oi)/λi ·Mi and subsequently fS(~z). It has to be noted
that all composition functions are formulated as maximization
problems.

Note on the implementation: The implementation of the
composition functions has been mostly based on the source
code of the IEEE CEC’2005 competition on real-parameter
optimization [14]. However, the source code has been re-
implemented from scratch in a simplified and scalable way.
It has to be noted that, similar implementation of composition
functions with multiple global optima was proposed in [18].
However, our implementation of the composition functions are
different in many ways: new structures, parameters, rotation
matrices, and shifted optima positions.

J. F9 : Composition Function 1

Composition Function 1 (CF1) is constructed based on six
basic functions (n = 6), thus it has six global optima in the
optimization box AD = [−5, 5]D. The basic functions used
here include the following:

– f1 − f2 : Grienwank’s function,
– f3 − f4 : Weierstrass function, and
– f5 − f6 : Sphere function.

The composition function is constructed based on the follow-
ing parameter settings:

– σi = 1,∀i ∈ {1, 2, . . . , n},
– ~λ = [1, 1, 8, 8, 1/5, 1/5],
– Mi are identity matrices ∀i ∈ {1, 2, . . . , n}.

Fig. 9 shows the 2D version of CF1.
Properties:

– Multi-modal,
– Shifted,
– Non-Rotated,

Fig. 9. Composition Function 1.

– Non-symmetric,
– Separable near the global optima,
– Scalable,
– Numerous local optima,
– Different function’s properties are mixed together,
– Sphere Functions give two flat areas for the function,
– In the optimization box AD = [−5, 5]D, there are six

global optima ~x?i = ~oi, i ∈ {1, 2, . . . , n} with CF1(~x?i) =
0,∀i ∈ {1, 2, . . . , n}.

K. F10 : Composition Function 2

Composition Function 2 (CF2) is constructed based on eight
basic functions (n = 8), thus it has eight global optima in the
optimization box AD = [−5, 5]D. The basic functions used
here include the following:

– f1 − f2 : Rastrigin’s function,
– f3 − f4 : Weierstrass function,
– f5 − f6 : Griewank’s function, and
– f7 − f8 : Sphere function.

The composition function is constructed based on the follow-
ing parameter settings:

– σi = 1,∀i ∈ {1, 2, . . . , n},
– ~λ = [1, 1, 10, 10, 1/10, 1/10, 1/7, 1/7],
– Mi are identity matrices ∀i ∈ {1, 2, . . . , n}.

Fig. 10 shows the 2D version of CF2.
Properties:

– Multi-modal,
– Shifted,
– Non-Rotated,
– Non-symmetric,
– Separable near the global optima,
– Scalable,
– Numerous local optima,
– Different function’s properties are mixed together,
– In the optimization box AD = [−5, 5]D, there are eight

global optima ~x?i = ~oi, i ∈ {1, 2, . . . , n} with CF2(~x?i) =
0,∀i ∈ {1, 2, . . . , n}.

6

Fig. 10. Composition Function 2.

L. F11 : Composition Function 3

Composition Function 3 (CF3) is constructed based on six
basic functions (n = 6), thus it has six global optima in the
optimization box AD = [−5, 5]D. The basic functions used
here include the following:

– f1 − f2 : EF8F2 function,
– f3 − f4 : Weierstrass function, and
– f5 − f6 : Griewank’s function.

The composition function is constructed based on the follow-
ing parameter settings:

– ~σ = [1, 1, 2, 2, 2, 2],
– ~λ = [1/4, 1/10, 2, 1, 2, 5],
– Mi are different linear transformation (rotation) matrices

with condition number one.
Fig. 11 shows the 2D version of the CF3.

Fig. 11. Composition Function 3.

Properties:
– Multi-modal,
– Shifted,

– Rotated,
– Non-symmetric,
– Non-separable,
– Scalable,
– A huge number of local optima,
– Different function’s properties are mixed together,
– In the optimization box AD = [−5, 5]D, there are six

global optima ~x?i = ~oi, i ∈ {1, 2, . . . , n} with CF3(~x?i) =
0,∀i ∈ {1, 2, . . . , n}.

M. F12 : Composition Function 4
Composition Function 4 (CF4) is constructed based on eight

basic functions (n = 8), thus it has eight global optima in the
optimization box AD = [−5, 5]D. The basic functions used
here include the following:

– f1 − f2 : Rastrigin’s function,
– f3 − f4 : EF8F2 function,
– f5 − f6 : Weierstrass function, and
– f7 − f8 : Griewank’s function.

The composition function is constructed based on the follow-
ing parameter settings:

– ~σ = [1, 1, 1, 1, 1, 2, 2, 2],
– ~λ = [4, 1, 4, 1, 1/10, 1/5, 1/10, 1/40],
– Mi are different linear transformation (rotation) matrices

with condition number one.
Fig. 12 shows the 2D version of the CF4.

Fig. 12. Composition Function 4.

Properties:
– Multi-modal,
– Shifted,
– Rotated,
– Non-symmetric,
– Non-separable,
– Scalable,
– A huge number of local optima,
– Different function’s properties are mixed together,
– In the optimization box AD = [−5, 5]D, there are eight

global optima ~x?i = ~oi, i ∈ {1, 2, . . . , n} with CF4(~x?i) =
0,∀i ∈ {1, 2, . . . , n}.

7

III. PERFORMANCE MEASURES

A. How to determine if all global optima are found?

Our objective is to compare different niching algorithms’
capability to locate all global optima. To achieve this, first
we need to specify a level of accuracy (e.g., 0 < ε ≤ 1),
a threshold value under which we would consider a global
optimum is found. Second, we assume that for each test
function, the following information is available:

• The number of global optima;
• The objective function value of the global optima (or peak

height), which is known or can be estimated;
• A niche radius value that can sufficiently distinguish two

closest global optima.

This information is required by Algorithm 1 (based on a
previously proposed procedure [19]), to determine if a niching
algorithm has located all the global optima (Table IV provides
an example of how this information is used for performance
measures in this competition). Basically, at the end of an
optimization run, Algorithm 1 is invoked to check all the
individuals on the sorted list Lsorted, starting from the best-
fit individual. In the first iteration, as long as this best-fit
individual is within ε distance from the fitness of the global
optima ph, it will be added to the solution list S (which
is initially empty). In the next iteration, the next best-fit
individual from Lsorted is first assigned to p. We then check
if the fitness of p is close enough to that of the global optima
(i.e., if d(ph, fit(p)) ≤ ε). If p is close enough (in other words,
p is a potential solution), then next we check if p is within the
niche radius r from all the current solutions in the solution list
S. If it is not, then p is considered as a new solution (i.e., a new
global optimum is found), and will be added to S. Otherwise
p is not considered as a distinct solution, and will be skipped.
This process is repeated until all the individuals on Lsorted

have been checked. It is important to note that Algorithm 1
is only used for performance measurement in determining
if a sufficient number of global optima has been found, but
not in any part of the optimization procedure.

The output of Algorithm 1 is S, a solution list containing
all the distinct global optima found. As long as r is set to a
value not greater than the distance between 2 closest global
optima, individuals on two found global optima would be
treated as two different solutions. Since the exact number of
global optima is known a priori, we can measure a niching
algorithm’s performance in terms of the peak ratio, success
rate, and averaged number of evaluations required to achieve
a given accuracy ε for locating all global optima over multiple
runs. These will be described in the following sections.

B. Peak ratio and success rate

We use peak ratio (PR) [20] and success rate (SR) as
two performance measures, to evaluate the performance of a
niching algorithm over multiple runs. Given a fixed maximum
number of function evaluations (MaxFEs) and a required
accuracy level ε, PR measures the average percentage of all
known global optima found over multiple runs:

input : Lsorted - a list of individuals (candidate solu-
tions) sorted in decreasing fitness values;
ε - accuracy level; r - niche radius;
ph - the objective function value of global optima
(or peak height)

output: S - a list of best-fit individuals identified as
solutions

begin
S = ∅;
while not reaching the end of Lsorted do

Get best unprocessed p ∈ Lsorted;
found← FALSE;
if d(ph, fit(p)) ≤ ε) then

for all s ∈ S do
if d(s, p) ≤ r then

found← TRUE;
break;

end
end
if not found then

let S ← S ∪ {p};
end

end
end

end

Algorithm 1: The algorithm for determining if all global
optima are found.

PR =

∑NR
run=1NPFi

NKP ∗NR
, (1)

where NPFi denotes the number of global optima found in the
end of the i-th run, NKP the number of known global optima,
and NR the number of runs. SR measures the percentage of
successful runs (a successful run is defined as a run where all
known global optima are found) out of all runs:

SR =
NSR

NR
, (2)

where NSR denotes the number of successful runs.

C. Convergence speed

We measure the convergence speed of a niching algorithm
by counting the number of function evaluations (FEs) required
to locate all known global optima, at a specified accuracy level
ε. We calculate the average FEs over multiple runs:

AveFEs =

∑NR
run=1 FEi

NR
, (3)

where FEi denotes the number of evaluations used in the i-th
run. If the algorithm cannot locate all the global optima by the
MaxFEs, then MaxFEs is used when calculating the average
FEs.

8

IV. EXPERIMENTAL SETTINGS

We evaluate niching methods by using a fixed number of
MaxFEs. A user is allowed to use any population size, but
only a fixed number of MaxFEs is allowed to be used as a
given computational budget.

A. Peak ratio and success rate

PR and SR are calculated according to equations (1) and
(2). The following parameter settings are used:

• Level of accuracy (ε): {1.0E-01,1.0E-02, . . . , 1.0E-05};
• Niche radius (r): See Table IV;
• Initialization: Uniform random initialization within the

search space;
• Termination of a run: Terminate when reaching MaxFEs.
• Number of runs: 50.
Note that ε and r are to be used only at the end of a run,

for evaluations of the final solutions. Table I shows different
MaxFEs used for the 3 ranges of test functions.

TABLE I
MAXFES USED FOR 3 RANGES OF TEST FUNCTIONS.

Range of functions MaxFEs
F1 to F5 (1D or 2D) 5.0E+04
F6 to F11 (2D) 2.0E+05

F6 to F12 (3D or higher) 4.0E+05

For F8 (2D), we set k1 = 3 and k2 = 4, as shown in
Fig. 8. Table II shows an example of presenting PR and SR
values of a typical niching algorithm. Note that in this example
the PR and SR values are calculated based on the results of
a baseline model, DE/nrand/1/bin algorithm (see details in a
section below).

B. Convergence speed

Convergence speed is calculated according to equation (3),
using the same MaxFEs settings in Table I. The accuracy
level ε is set to 1.0E-04. Other parameters are the same as
in Table IV. Table V presents the convergence speed results
of the DE/nrand/1/bin algorithm.

To further illustrate the behaviour of the niching algorithm,
we can record the number of global optima found at different
iteration steps of a run. We recommend to use figures to show
the mean global optima found averaged over 50 runs, on 5
or 6 different test functions of your choice. We encourage
authors to follow a recent paper on niching [21] on how to
better present results.

C. Baseline models

To facilitate easy comparisons for participants in the
competition, we use as baseline models two Differen-
tial Evolution (DE) niching variants, the recently proposed
DE/nrand/1/bin algorithm [21] and the well known Crowding
DE/rand/1/bin [20]. DE/nrand/1/bin is a simple DE algorithm
which incorporates spatial information about the neighborhood
of each potential solution to produce a niching formation.
On the other hand, Crowding DE/rand/1/bin produces niching

TABLE IV
PARAMETERS USED FOR PERFORMANCE MEASUREMENT.

Function r Peak height No. global optima
F1 (1D) 0.01 200.0 2
F2 (1D) 0.01 1.0 5
F3 (1D) 0.01 1.0 1
F4 (2D) 0.01 200.0 4
F5 (2D) 0.5 1.031628453 2
F6 (2D) 0.5 186.7309088 18
F7 (2D) 0.2 1.0 36
F6 (3D) 0.5 2709.093505 81
F7 (3D) 0.2 1.0 216
F8 (2D) 0.01 -2.0 12
F9 (2D) 0.01 0 6
F10 (2D) 0.01 0 8
F11 (2D) 0.01 0 6
F11 (3D) 0.01 0 6
F12 (3D) 0.01 0 8
F11 (5D) 0.01 0 6
F12 (5D) 0.01 0 8
F11 (10D) 0.01 0 6
F12 (10D) 0.01 0 8
F12 (20D) 0.01 0 8

TABLE V
CONVERGENCE SPEEDS OF THE DE/NRAND/1/BIN ALGORITHM (WITH

ACCURACY LEVEL ε = 1.0E-04).

Function F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
Mean 22886.0 1552.0 1258.0 13610.0 3806.0
St. D. 2689.056 386.106 781.179 1399.453 618.890

Function F6(2D) F7(2D) F6(3D) F7(3D) F8(2D)
Mean 200000.0 200000.0 400000.0 400000.0 9858.0
St. D. 0.000 0.000 0.000 0.000 833.015

Function F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
Mean 200000.0 181658.0 200000.0 400000.0 400000.0
St. D. 0.000 42543.630 0.000 0.000 0.000

Function F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
Mean 400000.0 400000.0 400000.0 400000.0 400000.0
St. D. 0.000 0.000 0.000 0.000 0.000

TABLE VI
CONVERGENCE SPEEDS OF THE CROWDING DE/RAND/1/BIN ALGORITHM

(WITH ACCURACY LEVEL ε = 1.0E-04).

Function F1(1D) F2(1D) F3(1D) F4(2D) F5(2D)
Mean 50000.0 3386.0 2576.0 41666.0 12980.0
St. D. 0.000 1368.749 2625.974 3772.598 2046.799

Function F6(2D) F7(2D) F6(3D) F7(3D) F8(2D)
Mean 200000.0 200000.0 400000.0 400000.0 30306.0
St. D. 0.000 0.000 0.000 0.000 1984.677

Function F9(2D) F10(2D) F11(2D) F11(3D) F12(3D)
Mean 200000.0 200000.0 200000.0 400000.0 400000.0
St. D. 0.000 0.000 0.000 0.000 0.000

Function F11(5D) F12(5D) F11(10D) F12(10D) F12(20D)
Mean 400000.0 400000.0 400000.0 400000.0 400000.0
St. D. 0.000 0.000 0.000 0.000 0.000

formation by incorporating the crowding technique to maintain
a better population diversity and therefore to prevent premature
convergence to an optimum. The results of the two baseline
models are presented in Tables II, III, and Tables V, VI. Please
note that we did not conduct any fine-tuning on the parameters
of the baseline algorithms. Instead, we used the following
default parameters: population size NP = 100, F = 0.5,
CR = 0.9, and the crowding factor equals to the population
size CF = NP.

9

V. RANKING METHOD

We will use peak ratio values in Table II as our key criterion
to rank algorithms submitted to this competition. The top
algorithm is the one that obtains the best average peak ratio,
across all test functions and 5 accuracy levels. If there is a tie,
then the algorithm having the lower AveFEs in Table V will
be the winner.

REFERENCES

[1] K. A. De Jong, “An analysis of the behavior of a class of genetic adaptive
systems.” Ph.D. dissertation, University of Michigan, 1975.

[2] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multimodal function optimization,” in Proc. of the Second International
Conference on Genetic Algorithms, J. Grefenstette, Ed., 1987, pp. 41–49.

[3] S. W. Mahfoud, “Crowding and preselection revisited,” in Parallel
problem solving from nature 2, R. Männer and B. Manderick, Eds.
Amsterdam: North-Holland, 1992, pp. 27–36. [Online]. Available:
citeseer.ist.psu.edu/mahfoud92crowding.html

[4] D. Beasley, D. R. Bull, and R. R. Martin, “A sequential niche technique
for multimodal function optimization,” Evolutionary Computation,
vol. 1, no. 2, pp. 101–125, 1993. [Online]. Available: citeseer.ist.psu.
edu/beasley93sequential.html

[5] G. R. Harik, “Finding multimodal solutions using restricted tournament
selection,” in Proc. of the Sixth International Conference on Genetic
Algorithms, L. Eshelman, Ed. San Francisco, CA: Morgan Kaufmann,
1995, pp. 24–31. [Online]. Available: citeseer.ist.psu.edu/harik95finding.
html

[6] M. Bessaou, A. Pétrowski, and P. Siarry, “Island model cooperating
with speciation for multimodal optimization,” in Parallel Problem
Solving from Nature - PPSN VI 6th International Conference, H.-P. S.
et al., Ed. Paris, France: Springer Verlag, 16-20 2000. [Online].
Available: citeseer.ist.psu.edu/bessaou00island.html

[7] K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global
minimizers through particle swarm optimization,” IEEE Transactions on
Evolutionary Computation, vol. 8, no. 3, pp. 211–224, 2004.

[8] X. Yin and N. Germay, “A fast genetic algorithm with sharing scheme
using cluster analysis methods in multi-modal function optimization,” in
the International Conference on Artificial Neural Networks and Genetic
Algorithms, 1993, pp. 450–457.

[9] A. Pétrowski, “A clearing procedure as a niching method for genetic
algorithms,” in Proc. of the 3rd IEEE International Conference on
Evolutionary Computation, 1996, pp. 798–803.

[10] J.-P. Li, M. E. Balazs, G. T. Parks, and P. J. Clarkson, “A species
conserving genetic algorithm for multimodal function optimization,”
Evol. Comput., vol. 10, no. 3, pp. 207–234, 2002.

[11] X. Li, “Niching without niching parameters: Particle swarm optimization
using a ring topology,” IEEE Trans. on Evol. Comput., vol. 14, no. 1,
pp. 150 – 169, February 2010.

[12] K. Deb and A. Saha, “Finding multiple solutions for multimodal
optimization problems using a multi-objective evolutionary approach,” in
Proceedings of the 12th annual conference on Genetic and evolutionary
computation, ser. GECCO ’10. New York, NY, USA: ACM, 2010, pp.
447–454.

[13] A. Saha and K. Deb, “A bi-criterion approach to multimodal optimiza-
tion: self-adaptive approach,” in Proceedings of the 8th international
conference on Simulated evolution and learning, ser. SEAL’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 95–104.

[14] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. P. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for the
CEC 2005 special session on real-parameter optimization,” Nanyang
Technological University and KanGAL Report #2005005, IIT Kanpur,
India., Tech. Rep., 2005.

[15] K. Deb, “Genetic algorithms in multimodal function optimization (mas-
ter thesis and tcga report no. 89002),” Ph.D. dissertation, Tuscaloosa:
University of Alabama, The Clearinghouse for Genetic Algorithms,
1989.

[16] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, New York, 1996.

[17] O. Shir and T. Bäck, “Niche radius adaptation in the cms-es niching
algorithm,” in Parallel Problem Solving from Nature - PPSN IX, 9th
International Conference (LNCS 4193). Reykjavik, Iceland: Springer,
2006, pp. 142 – 151.

[18] B.-Y. Qu and P. N. Suganthan, “Novel multimodal problems and
differential evolution with ensemble of restricted tournament selection,”
in Proceedings of the IEEE Congress on Evolutionary Computation,
CEC 2010. Barcelona, Spain: IEEE, 18-23 July 2010, pp. 1–7.

[19] D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by
a particle swarm model using speciation,” IEEE Trans. on Evol. Comput.,
vol. 10, no. 4, pp. 440–458, August 2006.

[20] R. Thomsen, “Multimodal optimization using crowding-based differen-
tial evolution,” in Proceedings of the 2004 IEEE Congress on Evolu-
tionary Computation. Portland, Oregon: IEEE Press, 20-23 Jun. 2004,
pp. 1382–1389.

[21] M. Epitropakis, V. Plagianakos, and M. Vrahatis, “Finding multiple
global optima exploiting differential evolution’s niching capability,” in
IEEE Symposium on Differential Evolution, 2011. SDE 2011. (IEEE
Symposium Series on Computational Intelligence), Paris, France, April
2011, p. 80–87.

10

TABLE II
PEAK RATIOS AND SUCCESS RATES OF THE DE/NRAND/1/BIN ALGORITHM.

Accuracy level ε F1 (1D) F2 (1D) F3 (1D) F4 (2D) F5 (2D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-02 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-03 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-04 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-05 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Accuracy level ε F6 (2D) F7 (2D) F6 (3D) F7 (3D) F8 (2D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 0.450 0.000 0.347 0.000 0.108 0.000 0.097 0.000 1.000 1.000
1.0E-02 0.438 0.000 0.346 0.000 0.105 0.000 0.095 0.000 1.000 1.000
1.0E-03 0.440 0.000 0.349 0.000 0.113 0.000 0.099 0.000 0.998 0.980
1.0E-04 0.434 0.000 0.337 0.000 0.112 0.000 0.095 0.000 1.000 1.000
1.0E-05 0.000 0.000 0.333 0.000 0.113 0.000 0.094 0.000 1.000 1.000

Accuracy level ε F9 (2D) F10 (2D) F11 (2D) F11 (3D) F12 (3D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 0.683 0.000 0.855 0.240 0.667 0.000 0.667 0.000 0.522 0.000
1.0E-02 0.673 0.000 0.837 0.220 0.667 0.000 0.667 0.000 0.535 0.000
1.0E-03 0.683 0.000 0.815 0.140 0.667 0.000 0.667 0.000 0.507 0.000
1.0E-04 0.673 0.000 0.815 0.160 0.667 0.000 0.667 0.000 0.502 0.000
1.0E-05 0.670 0.000 0.777 0.100 0.667 0.000 0.667 0.000 0.507 0.000

Accuracy level ε F11 (5D) F12 (5D) F11 (10D) F12 (10D) F12 (20D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 0.677 0.000 0.345 0.000 0.403 0.000 0.227 0.000 0.130 0.000
1.0E-02 0.663 0.000 0.325 0.000 0.343 0.000 0.167 0.000 0.127 0.000
1.0E-03 0.663 0.000 0.295 0.000 0.323 0.000 0.152 0.000 0.130 0.000
1.0E-04 0.663 0.000 0.290 0.000 0.270 0.000 0.125 0.000 0.125 0.000
1.0E-05 0.657 0.000 0.287 0.000 0.250 0.000 0.127 0.000 0.123 0.000

TABLE III
PEAK RATIOS AND SUCCESS RATES OF THE CROWDING DE/RAND/1/BIN ALGORITHM.

Accuracy level ε F1 (1D) F2 (1D) F3 (1D) F4 (2D) F5 (2D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-02 0.710 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-03 0.090 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1.0E-04 0.020 0.000 1.000 1.000 1.000 1.000 0.995 0.980 1.000 1.000
1.0E-05 0.000 0.000 1.000 1.000 1.000 1.000 0.420 0.040 1.000 1.000

Accuracy level ε F6 (2D) F7 (2D) F6 (3D) F7 (3D) F8 (2D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 1.000 1.000 0.703 0.000 0.847 0.000 0.271 0.000 1.000 1.000
1.0E-02 0.999 0.980 0.724 0.000 0.835 0.000 0.272 0.000 1.000 1.000
1.0E-03 0.972 0.740 0.715 0.000 0.716 0.000 0.274 0.000 1.000 1.000
1.0E-04 0.107 0.000 0.709 0.000 0.290 0.000 0.274 0.000 1.000 1.000
1.0E-05 0.000 0.000 0.716 0.000 0.038 0.000 0.270 0.000 1.000 1.000

Accuracy level ε F9 (2D) F10 (2D) F11 (2D) F11 (3D) F12 (3D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 0.937 0.720 0.380 0.000 0.837 0.400 0.683 0.000 0.730 0.000
1.0E-02 0.690 0.040 0.055 0.000 0.683 0.020 0.667 0.000 0.690 0.000
1.0E-03 0.667 0.000 0.007 0.000 0.667 0.000 0.667 0.000 0.627 0.000
1.0E-04 0.667 0.000 0.007 0.000 0.667 0.000 0.667 0.000 0.490 0.000
1.0E-05 0.667 0.000 0.002 0.000 0.667 0.000 0.667 0.000 0.375 0.000

Accuracy level ε F11 (5D) F12 (5D) F11 (10D) F12 (10D) F12 (20D)
PR SR PR SR PR SR PR SR PR SR

1.0E-01 0.697 0.000 0.567 0.080 0.517 0.080 0.000 0.000 0.502 0.380
1.0E-02 0.667 0.000 0.425 0.000 0.250 0.000 0.000 0.000 0.013 0.000
1.0E-03 0.667 0.000 0.280 0.000 0.200 0.000 0.000 0.000 0.000 0.000
1.0E-04 0.667 0.000 0.115 0.000 0.173 0.000 0.000 0.000 0.000 0.000
1.0E-05 0.667 0.000 0.047 0.000 0.170 0.000 0.000 0.000 0.000 0.000

