
IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 1

BiAn: Smart Contract Source Code Obfuscation
Pengcheng Zhang, Qifan Yu, Yan Xiao, Hai Dong, Xiapu Luo, Xiao Wang and Meng Zhang

Abstract—With the rising prominence of smart contracts, security attacks targeting them have increased, posing severe threats to
their security and intellectual property rights. Existing simplistic datasets hinder effective vulnerability detection, raising security
concerns. To address these challenges, we propose BiAn, a source code level smart contract obfuscation method that generates
complex vulnerability test datasets. BiAn protects contracts by obfuscating data flows, control flows, and code layouts, increasing
complexity and making it harder for attackers to discover vulnerabilities. Our experiments with buggy contracts showed an average
complexity enhancement of approximately 174% after obfuscation. Decompilers Vandal and Gigahorse had total failure rate increments
of 38.8% and 40.5% respectively. Obfuscated contracts also decreased vulnerability detection rates in more than 50% of cases for ten
widely-used static analysis detection tools.

Index Terms—Blockchain; Ethereum; Smart Contract; Source Code; Obfuscation.

✦

1 INTRODUCTION

SMart contracts are autonomous programs that run on
the blockchain. They are developed in several high-level

languages and then compiled into bytecode [1]. Contracts
are deployed by packaging bytecode in the form of trans-
actions into the blockchain. Both blockchain and smart con-
tracts are in their infancy, and smart contracts usually han-
dle transactions related to cryptocurrencies. Consequently,
attacking smart contracts is feasible and profitable [2]. In
the past few years, there have been several serious attacks
caused by smart contract errors, which have resulted in
huge financial loss. The most notorious of these is the DAO
[3] attack, which caused users’ financial loss of 60 million
US dollars.

The reason behind this kind of attacks is that smart con-
tracts cannot be modified after being released. If a serious
vulnerability is found after release, the contract needs to be
replaced with a new contract and redeployed. Meanwhile,
users’ whole records will be lost. To ensure the security of
this code, smart contracts must be tested before release.

As a result, various smart contract vulnerability testing
tools have flourished. These tools perform vulnerability
detection on either the source code level or the bytecode
level. For example, SmartCheck is a source-code-level static
smart contract vulnerability detection tool. It has the highest
running efficiency among all the available smart contract
vulnerability detection tools [4]. The most representative
bytecode-based static detection tool for smart contracts is

• P. Zhang, Q. Yu, X. Wang and M. Zhang are with College of
Computer and Information, Hohai University, Nanjing, China. E-mail:
pchzhang@hhu.edu.cn;

• Y. Xiao is with School of Cyber Science and Technology, Sun Yat-sen
University, Shenzhen, China. E-mail: xiaoy367@mail.sysu.edu.cn,

• H. Dong is with the School of Computing Technologies and the Centre for
Cyber Security Research and Innovation, RMIT University, Melbourne,
Australia. E-mail: hai.dong@rmit.edu.au;

• X. Luo is with Department of Computing, Hong Kong Polytechnic
University, HongKong, China. E-mail: csxluo@comp.polyu.edu.hk
Corresponding Authors: Pengcheng Zhang (pchzhang@hhu.edu.cn) and
Y. Xiao (xiaoy367@mail.sysu.edu.cn)

Manuscript received XXX, XXXX; revised XXX, XXXX.

Slither [5], which has the largest number of users and is
still under maintenance. It performs detection by converting
Solidity smart contracts into an intermediate representation
called SlithIR.

Although many smart contract static detection tools have
emerged, smart contract incidents are still persistent. For
example, in 2021, Chainswap1 lost $4 million dollars due to
its smart contract security issues. These incidents indicate
that smart contract security protection mainly based on
vulnerability detection still has not reached its full potential.
The limitations of the current smart contract vulnerability
protection include:

• Lack of smart contract obfuscation tools for reverse engi-
neering prevention.
Lack of smart contract obfuscation tools for re-
verse engineering prevention. Smart contracts on
Ethereum may require obfuscation to protect intellec-
tual property, mask code defects, and prevent leak-
age of business logic [6]. However, reverse engineer-
ing the publicly accessible bytecode of these contracts
undermines these efforts. Solidity, the language for
smart contracts, lacks dedicated obfuscation tools to
prevent reverse engineering.

• Lack of sufficient evaluation on complex smart contracts.
Most detection tools have only been tested on smart
contracts with simple structures. The complexity of
those smart contracts is far lower than that of real-
world smart contracts in terms of cyclomatic com-
plexity, complexity of data flow, etc.

Our goal is to design a smart contract source code
obfuscation technique to address the above limitations. Our
approach focuses on Solidity source code obfuscation by
designing language-specific data flow obfuscation, control
flow obfuscation and layout obfuscation techniques. The
motivation behind this goal is that code obfuscation will
significantly increase the complexity of the smart contract
source code. After the obfuscation, the number of paths in

1. https://www.163.com/dy/article/GEQC6RF30512D03F.html

© © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. P. Zhang et al., "BiAn: Smart Contract Source Code Obfuscation," in IEEE Transactions on Software Engineering, vol. 49, no. 9,
pp. 4456-4476, 1 Sept. 2023, doi: 10.1109/TSE.2023.3298609.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 2

the contract code will be greatly increased compared to the
original code, while the main structure of the original code
remains unchanged.
Motivation: First explain why code obfuscation technology
is used in smart contracts:

Even though transparency is expected in smart contracts,
and the motto ”code is law” implies that the code should be
clear and unambiguous. However, code obfuscation does
not necessarily contradict this principle. Code obfuscation
technology is used in smart contracts for several reasons.

• Security: Smart contract security is becoming an
increasingly important issue, particularly with the
development of Ethereum. Attackers are exploiting
vulnerabilities in smart contracts, causing significant
economic losses. Decompilation tools are also emerg-
ing, which can pose a number of threats to smart
contract codes.
First, the core code of the smart contract may be
decompiled and leaked, resulting in being stolen by
competitors. Second, the attacker may decompile and
then insert malicious code, pretending to be the orig-
inal program, and performing malicious acts. Third,
the exposure of smart contract source code makes it
easier for attackers to mine software vulnerabilities,
making it more vulnerable to attacks.

• Intellectual Property Protection: Code obfuscation
can be used to protect the intellectual property of the
smart contract developer or to hide implementation
details that are not relevant to the contract’s function-
ality. In these cases, the obfuscation is not intended
to obscure the logic of the contract or make it difficult
to understand - it is simply a way to protect sensitive
information.
Let us assume that Jerry is the leader of an Ethereum
smart contract development team. He is aware of
safeguarding the original code of a contract ‘getWa-
geNumber.sol’ (see Fig. 4(a)) developed by his team
from public access. Such precautions are motivated
by apprehensions surrounding the preservation of
intellectual property rights. The original code of the
smart contract contains informative comments that
explain important aspects of the code. It uses mean-
ingful variable names, such as ‘DailyWage’, which
could easily be exposed to potential attackers, mak-
ing the code readable, analyzable, and vulnerable to
tampering. This poses significant risks to the security
and intellectual property of the code.

• Simple Data Set Issue: The last issue is the problem
of relatively simple data sets in the field of smart
contract vulnerability detection. While the number
and types of vulnerabilities that can be detected are
increasing, the current data sets are generally too
simple to accurately reflect the complexity of real
smart contracts on Ethereum. This makes it difficult
to train vulnerability detection tools that can accu-
rately identify complex vulnerabilities. Code obfus-
cation can help to address this issue by increasing the
complexity of the contract without changing its log-
ical function. We propose a convenient alternative:
replace the required complex smart contract with an

obfuscated vulnerability contract, thereby alleviating
the problem of simple data sets.

The above points highlight the potential benefits of
applying code obfuscation technology to smart contracts.
The following will explain the feasibility, challenges and
significance of applying code obfuscation technology to
smart contracts.

First of all, code obfuscation technology is a well-
established technique that has been widely applied in other
programming languages, such as Java, C, Python, etc. Al-
though direct application of this technology to the Solidity
language is not possible, it is feasible to adapt code ob-
fuscation techniques suitable for Solidity by analyzing the
characteristics of the language.

Secondly, the challenge of increased gas consumption in
smart contracts after code obfuscation is significant. Code
obfuscation techniques inevitably lead to higher computa-
tional costs and increased gas consumption. To mitigate this
negative impact, we have taken two approaches. Firstly,
we provide configuration files that allow users to select
the desired obfuscation technology and intensity, which
can reduce gas consumption and meet practical security
needs. Secondly, we optimize gas consumption during the
obfuscation process by using strategies that can lower gas
consumption. As a result, the original average gas consump-
tion after obfuscation increased from 100% to 82%, reducing
the average gas consumption increment by 18%.

Finally, although developers are not required to upload
source codes on Ethereum, many smart contract source
codes are uploaded, and there will likely be more in the
future. These uploaded source codes are exposed to the
risks of analysis, exploitation, tampering, and vulnerability
discovery, making it significant to apply code obfuscation
technology to smart contract source codes.

Therefore, in this paper, we propose BiAn2, a source
code level code obfuscation tool, which is the first tool that
is able to perform code obfuscation at the smart contract
source code level. BiAn can modify the layout, data flow
and control flow of the smart contract without affecting the
original function of the smart contract. We conduct exten-
sive experiments around BiAn to evaluate its performance.

In summary, we make the following contributions:

• We propose an improved chaotic mapping function,
Chebyshev-PWLCM Map (CPM), by fusing two ex-
isting one-dimensional chaotic mapping functions,
Chebyshev and PWLCM [7], in terms of trigonomet-
ric functions. CPM inherits the compelling features
of Chebyshev and PWLCM, such as high sensitivity
and randomness, and avoids their defects includ-
ing smaller value ranges and existence of unchaotic
points. CPM is demonstrated to be able to greatly
enhance the generation quality of opaque predicates
in control flow obfuscation.

• BiAn contains a set of dedicated obfuscation methods
for the unique language features of Solidity. The
proposed control flow, data flow and layout obfus-
cation methods are based on the special features
of Solidity, including keywords, type names, third-
party package dependencies, rows and columns of

2. https://github.com/Nonreq/TSE2022

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 3

two-dimensional arrays, special structures (e.g., con-
tracts, transfer, etc.), and special modifiers (e.g., view,
pure, payable, etc.). In this way, we explore a new
way of dataset generation to assess the performance
of smart contract vulnerability detection tools. The
obfuscated smart contract vulnerability datasets are
more complex and closer to real smart contracts,
which can address inadequacy and lack of complex-
ity of existing testing datasets.

• BiAn is approved to enhance the anti-decompilation
capacity of smart contracts. A decompiler can ana-
lyze and recover the assembly or source code for-
mat of the smart contract to make unauthorized
use, analysis or vulnerability discovery. The anti-
decompilation capacity of BiAn can improve the se-
curity of smart contracts.

• We conduct an extensive experimental evaluation for
BiAn. The results of our experiments on complex-
ity and gas consumption demonstrate a significant
increase in the complexity of obfuscated smart con-
tracts, with the number of paths being amplified by
approximately 174%. In contrast, the gas consump-
tion of the smart contracts after obfuscation rises by
around 82%, which is considerably lower than the
extent of complexity enhancement. Furthermore, we
have assessed the performance of ten state-of-the-
art static smart contract bug detection tools using
the obfuscated smart contracts. Our findings reveal
a substantial decrease in the detection accuracy of
almost 100% of these tools. Additionally, the results
obtained from evaluating decompilation resistance
indicate that the overall failure rate of the Vandal
and Gigahorse decompilers rises by approximately
40% after obfuscation.

The rest of this paper is organized as follows: Section
2 introduces background information in relation to this
research, including Ethereum and smart contracts, program
slicing, and code obfuscation. In Section 3, the technical
details of BiAn are provided. In Section 4, we use an open
source buggy smart contract dataset to validate our method.
Existing works are discussed in Section 5. Finally, Section 6
concludes the whole paper and plans future works.

2 BACKGROUND

2.1 Ethereum and smart contracts
The Ethereum platform has encapsulated the blockchain
technology. It allows blockchain applications to be directly
developed on the Ethereum platform [8] and developers to
fully focus on the application development without con-
cerning about the underlying infrastructure, thus signif-
icantly reducing application development complexity [9].
At present, a more complete development ecosystem has
been formed around Ethereum, including many available
development frameworks and tools as well as community
support3.

Smart contracts are programs run on Ethereum, com-
prising a collection of code and data (state) [10]. Essentially,
these automated contracts work like the if-then statements

3. https://ethereum.org/en/whitepaper/ethereum

of other computer programs. Smart contracts simply interact
with real-world assets in this way. When a pre-programmed
condition is triggered, the smart contract executes the corre-
sponding contract terms [11]. Smart contracts can be under-
stood as contracts (special transactions) that are automati-
cally executable (event-driven) and written in code on the
blockchain [12]. In Bitcoin scripts, Bitcoin transactions are
programmable, but Bitcoin scripts have many limitations
and are limited in the number of programs that can be
written [13]. In contrast, Ethereum is more complete (called
“Turing-complete” in computer science), allowing users to
write programs that can solve any reasonable computational
problem [14]. Smart contracts are ideal for applications that
require high levels of trust, security, and persistence, such as
digital currencies, digital assets, voting, insurance, financial
applications, prediction markets, property ownership man-
agement, the Internet of Things, peer-to-peer transactions,
etc [15].

2.2 Program slicing

Program slicing usually consists of three parts: 1) program
dependency extraction that mainly extracts various kinds of
information from the program [16], including control flow
and data flow information, to form a program dependency
graph, 2) slicing rule formulation where slicing criteria are de-
signed according to specific program analysis requirements
[17], and 3) slicing generation in which the corresponding
program is selected according to the aforementioned slicing
criteria. A program slicing method should be determined
by the preceding slicing guidelines based on the aforemen-
tioned slicing guidelines, and then analyzes and processes
the dependency relations extracted from the first step to
generate program slices [18]. We employ a split function
for Solidity-based smart contract program slicing, which is
shown in Algorithm 1. Its workflow is as follows. First, the
source code of the smart contract and its corresponding
json ast file are fed into the algorithm. If the input is not
null, each function in the source code is located and added
to the function list. Finally, the split function generates the
function snippets of the program.

Algorithm 1 Split function

Input: solidity source code, solidity json.ast
Output: program snippet
1: Inital solidity source code, solidity json.ast;
2: while solidity source code, solidity json.ast ! = Null

do
3: Find each function;
4: FunctionList.append(function);
5: if FunctionName ! = Null then
6: Split to multiple functions;
7: end if
8: Reset solidity source code, solidity json.ast;
9: end while

2.3 Code obfuscation

Code obfuscation has been proposed as a method to resist
software reverse analysis [19]. Code obfuscation refers to the

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 4

semantic transformation of a proposed application so that
the transformed program is functionally identical or similar
to the original program, but more difficult to be understood
and decompiled. Collberg [20] classifies code obfuscation
into three categories: layout obfuscation, data flow obfuscation,
and control flow obfuscation.

• The principle of layout obfuscation is to remove
irrelevant information from a program or to replace
the class names and method names in the program
so that it violates the software engineering principle
of “knowing the meaning by name” [21].

• Data flow obfuscation is the obfuscation of the data
domain and data structure of a program, including
variable storage and coding obfuscation, variable ag-
gregation and splitting obfuscation, and order adjust-
ment obfuscation [22]. Data flow obfuscation does
not intentionally modify the code of a program, but
only transforms it to different data structures in the
program.

• Control flow obfuscation is a widely used method
of code obfuscation. Information about the control
transformation process of a program is an important
clue to track and locate the state of the program [23].
How to protect such information is an important
part of software protection. The purpose of control
obfuscation is to alter or complicate the control flow
of a program to make it more difficult to decipher.

Control obfuscation has enhanced security protection than
the other two obfuscation types, which has been the main
research hotspot in the field of code obfuscation nowadays
[24].

2.4 Definitions of Terminologies

The key terminologies used in this paper are defined as
follows.

Obfuscating Transformation. Let P τ−→ P ′ be a trans-
formation of a source program P into a target program
P ′. P τ−→ P ′ is an obfuscating transformation, if P and
P ′ have the same observable behavior. More precisely, for
P

τ−→ P ′ to be a legal obfuscating transformation, the
following conditions must meet: if P fails to terminate or
terminates with an error condition, then P ′ may or may not
terminate; otherwise, P ′ must terminate and produce the
same output as P [25].

Transformation Potency. Let T be a behavior-conserving
transformation, such that P

τ−→ P ′ transforms a source
program P into a target program P ′. Let E(P) be the
complexity of P , Tpot(p), the potency of T with respect to a
program P , is a measure of the extent to which T changes
the complexity of P . It is defined as

Tpot(p)
def
= E(P ′)/E(P)− 1 (1)

T is a potent obfuscating transformation if (p) > 0 [25].
Chaos. Let J be a metric space with a continuous map

f : J → J and let X be a set. The map f is viewed to be
chaotic over J , given that the following three conditions are
satisfied [26]:

• f : J → J is viewed to be topologically transitive if
for any pair of open sets U, V ⊆ J there exits k > 0,
such that,

fk(U) ∩ V ̸= 0 (2)

• The periodic points of f are dense in X
• f : J → J has sensitive dependence on initial

conditions if there exists δ > 0, such that, for any
x ∈ J and any neighborhood N of x, there exists
y ∈ N and n ≥ 0, such that

|fn(x)− fn(y)| > δ (3)

Opaque Predicate. A predicate P is opaque at P if its
outcome is known before it is applied to a location in the
program. We write PF

p (PT
p) if P is always assessed to be

False (or True) at a program point P , and P ?
p if P may

sometimes be assessed to be True (or False) [27].

3 OUR METHOD

Our method targets Ethereum smart contracts encoded in
Solidity, i.e., the most widely used smart contract program-
ming language. The general architecture of our method is
shown in Figure 1. As can be seen from the figure, the
operation of the obfuscation tool focuses on the source code
of a smart contract.

The obfuscation operation is performed on the smart
contract source program by constructing a control flow
graph (CFG) to extract code blocks and program slices. The
detailed design is divided into three parts, namely control
flow obfuscation, data flow obfuscation, and layout obfuscation.

3.1 Control flow obfuscation

Control flow refers to the order in which instructions are
executed during code execution. With various control logics,
programs are executed along a specific logical sequence [28].
The general control logic includes branches, loops, function
calls, etc. In normal circumstances, the logic of the program
should be clear, and there might involve various human
interventions in the development process to make the code
logic clear and easy to maintain and extend [29]. However,
in the case of decompilation prevention, clear code logic
makes the code easy to be captured and accelerate the
cracking process. Control flow obfuscation complicates the
control flow of a smart contract by relying on the control
flow graph during compilation, thus hiding the control flow
of the original program. The module is composed of two
parts: inserting opaque predicates and flattening control flow
graph.

• Inserting opaque predicates refers to using opaque
predicates to construct branching conditions to in-
crease the number of directions for a control flow. In
code obfuscation, if the value of a certain expression
P = F (I) (where P represents a certain expression
value, F means a certain function where we can get
an expression value and I represents the input space
has been determined before embedding the program,
the expression is considered opaque. It can pre-
vent attackers from inferring values from expressions
and/or understanding the programmer’s intentions.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 5

Step1:

 Control flow obfuscation

Source code
Construct a

control flow graph
for each contract

Program slicing
for contract

content

Constructing
opaque predicates
by CPM chaotic

maps.

File control flow
information

acquisiton after
update

Insert opaque
predicates

Generate the
control flow file of

the updated
source program

Use flow graph
flattening to

disrupt the control
flow sequence

Rebuild the
control flow graph

Generate control
flow obfuscated

source file

Analyze the
abstract syntax

tree of the source
program after
control flow
obfuscation

Are there local
variables?

Convert files with
local variables into

files with global
variables

Is there a boolean
variable?

Generate static
data in a dynamic

way

Generate a file that
divides boolean

variables

Scalar to vector

Generate data
stream obfuscated

file

Delete comment

Change the layout
of the file after the

data stream is
obfuscated

Replace the
variable names of
the file after the
data stream is

obfuscated

Generate complete
obfuscated files

Y

N

Y

N

Step2:

 Data flow obfuscation

Step3:

 Layout obfuscation

Fig. 1: The overview of BiAn.

START

A

END

START

B

A

D E

F

END

Fig. 2: Insertion of opaque predicates.

START

A

B C

END

START

A B C

END

Fig. 3: Control flow graph flattening.

A sample insertion of opaque predicate is shown in
Figure 2, where predicates B, D, E, and F whose
values are already pre-determined are inserted into
the program.

• Flattening the control flow graph means re-breaking
each basic block in the source program, jumping
according to the identifier, and completely recon-
structing the corresponding control flow graph to
weaken the relationship between code blocks. Flat-
tening control flow is the opposite of changing the
structure of the source code. It destroys the internal
logic of the program code block, which makes it
difficult to perform static analysis, thereby increasing
the difficulty of reverse engineering. The flattening
of the control flow graph is shown in Figure 3. As
can be seen from the figure, A is a branch structure
connecting code blocks B and C. After the control
flow is flattened, the branch structure disappears
and is replaced by a sequential structure, whereby
the internal logical structure of the code block is
destroyed.

Our control flow obfuscation method is optimized ac-
cording to the following unique features of Solidity.

• Special keywords, e.g., modifier. The use of modifier
can easily change the behavior of the function. For
example, they can automatically check a certain con-
dition before executing the function. The modifier is
an inheritable property of the contract and may be
covered by a derived contract. Therefore, in the case
of obfuscation, it is necessary to find the execution
position of the condition according to one or more
conditions checked by the modifier. If we want to
eliminate the influence of the modifier keyword, we

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 6

need to first extract the prerequisites and adjust the
position of the prerequisites.

• Internal function calls. These function calls are trans-
lated into simple jump statements in Ethereum Vir-
tual Machine (EMV). The current memory cannot
be cleared because the functions referenced by the
memory are very efficient. Only functions in the
same contract can be called internally. We choose
to copy the function content in the internal calling
function and paste it directly into the location of
the called function. This makes the contract more
complicated and interferes with and obfuscates the
decompilation operation.

Opaque predicates are a very important part of the con-
trol flow obfuscation described above. In order to construct
opaque predicates with higher quality and maximize the
cost of cracking opaque predicates for attackers, we will use
a new chaotic mapping-based method to construct opaque
predicates below.

3.2 CPM chaotic mapping for opaque predicate con-
struction
This section presents a new algorithm for constructing
opaque predicates and squashing control flow obfuscation,
which bases on a CPM chaotic map. The main procedure
of the CPM chaotic mapping is shown in Algorithm 2. The
inputs of CPM chaotic mapping algorithm are Xn, µ, p, M ,
the description of which can be found from formula (7).
First, it is required to judge the ranges of Xn and µ. If they
are not within the specified ranges, the parameter range
error will be prompted and the parameter input will be
re-executed by requiring re-entry of parameters that fit the
ranges. If they are within the specified range, each value of
Xn will be traversed. For each iteration, the four parameters
are fed into the CPM formula to obtain the corresponding
result, where the result is appended to a list. Next, the cor-
responding Boolean value is obtained through the function
of ’BooleanValueFunction’. The rules of this function can
be varied according to actual application situations, so as
to prevent attackers from analyzing the function rules and
making corresponding cracks. The currently adopted rule is
that the result is true when the value is closer to 1, and false
when the value is closer to 0. Finally the algorithm returns
a list of Boolean values.

3.2.1 Constructing opaque predicates
For the construction of opaque predicates, it is common to
use mathematical tools to construct True and False values.
For example, for any x in Z , the expression

(x2 ≥ 0)|x(x+ 1)(x+ 2) (4)

is always real. However, this method can easily be cracked
by decompilation tools. If an attacker can easily crack the
opaque predicate generation method, it indicates that this
method has very low protection ability for the code. Com-
pared to its running and implementation cost, the benefit of
the opaque predicate generation is low.

The chaotic mapping (depicted in Section 2.4) can solve
the problem above. Since the chaotic map has a high sen-
sitivity to the initial value and can generate highly random

Algorithm 2 CPM chaotic mapping algorithm

Input: Xn, µ, p, M
Output: Opaque Predicates
1: if (Xn ≤ 1&Xn ≥ 0) and (µ > 2) then
2: for i in Xn do
3: Substitute four parameters into the chaos equation;
4: Res = ChaosEquation(Xi, u, p, M);
5: List.append(Res);
6: end for
7: Get List = a1, a2, . . . , an;
8: Remove the duplicate elements in List;
9: V auleList = BooleanValueFunction(List);

10: return V alueList;
11: else
12: Print wrong parameters;
13: Re-execute parameter input;
14: end if

results through iterations, the opaque predicate constructed
on the chaotic map can effectively prevent the encrypted
information from being cracked or increase the cracking dif-
ficulty. The more complex the opaque predicate, the harder
it is to attack. The reference can be found in [24].

Based on the Chebyshev [30] and PWLCM [7] chaotic
maps, we propose an improved chaotic map, named CPM.
CPM not only retains the advantageous characteristics of
the sensitivity and randomness of the two existing chaotic
maps, but also weakens the insufficiency of the existence
of breakpoints, leading to an improved performance. The
technical details of CPM are discussed below.

The selection of a suitable chaotic map relies on the
sensitivity, randomness and timeliness of a chaotic system.
The sensitivity refers to small changes in initial values or
related determined control parameters of a system leading
to significantly different results [31]. In this way, it is difficult
for an attacker to reversely deduce the initial parameter key
of a chaotic map based on the opaque predicate generation
result. The randomness refers to the random distribution
of chaotic mapping in the metric space [32]. The timeliness
refers to the speed of obfuscation. While multi-dimensional
chaotic system-based encryption can generate high security,
it is time-consuming [33]. Therefore, this paper mainly fo-
cuses on adopting low-dimensional chaotic maps for code
obfuscation.

We select two existing one-dimensional chaotic mapping
methods, i.e., Chebyshev and PWLCM, according to the
aforementioned criteria.

The Chebyshev chaotic map has a high sensitivity to its
initial values and long-term unpredictability for its chaotic
sequences [30]. In particular, with the continuous increase in
the number of chaotic map iterations, the Chebyshev chaotic
map can have uniformly distributed chaotic trajectories. The
Chebyshev chaotic map is defined as:

xn+1 = cos (δ arccos (xn)) , xn ∈ [−1, 1] (5)

where δ is the control parameter of the chaotic map. When
δ >= 2, xn ∈ [−1, 1], the Chebyshev chaotic map is in
a chaotic state. Its sensitivity to initial values and unpre-
dictability are high, but its chaotic range is slightly small

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 7

[30].
PWLCM (Piece Wise Linear Chaotic Map) is an in-

tuitive and clear piecewise chaotic map [7]. The chaotic
map also has high initial value sensitivity and randomness.
The chaotic trajectories of PLWCM map are uniformly dis-
tributed. It is expressed as:

xn+1 =


xn/γ 0 ≤ xn < γ

(xn − γ) /(0.5− γ) γ ≤ xn < 0.5
0 xn = 0.5

F (1− xn−1, γ) 0.5 < xn < 1.0

(6)

where γ is the control parameter of the chaotic map. When
γ ∈ (0, 0.5), xn ∈ [0, 1), PWLCM is in a chaotic state.
Although the chaotic range of PWLCM is wider in compari-
son to the Chebyshev chaotic map, there is a point (x = 0.5)
where the function value is zero. When it is at this point,
PWLCM will lose its chaotic effect, and the security and
continuity of the chaotic system are discontinued.

In view of the aforementioned advantages and disad-
vantages of the Chebyshev and PWLCM chaotic maps,
we fuse the two chaotic maps by trigonometric functions
and propose an improved one-dimensional chaotic map,
Chebyshev-PWLCM Map (CPM). The definition of the CPM
chaotic map is:

xn+1 =



mod (cos (M cos (µ arccos (xn)) + xn/p) , 1) ,

0 ≤ xn < p

mod (sin (cos (µ arccos (xn))+

(xn − p) /(0.5− p) +M), 1),

p ≤ xn < 0.5

F (1− xn, µ, p) , 0.5 ≤ xn < 1
(7)

When µ ≥ 2, p ∈ (0, 0.5), the CPM chaotic map is in a
chaotic state, M belongs to the part of the key in the chaotic
map and it is the disturbance parameter of the chaotic
map. The CPM chaotic map retains the advantages of high
initial value sensitivity and randomness of Chebyshev and
PWLCM chaotic maps, expands the chaotic range, and
increases the security and continuity of chaotic maps by
eliminating the limitation of zero function value of PWLCM.
In addition, CPM goes a step further to distribute the chaotic
trajectories more evenly, which improves the performance of
chaotic mapping. In this way, the opaque predicates can be
constructed by chaotic mapping.

3.2.2 Insertion of opaque predicates

Three forms of opaque predicates are introduced in Section
2.4: never-true opaque predicates, never-false opaque predi-
cates, and true or false opaque predicates. After constructing
the opaque predicates, we can design these three opaque
predicates as needed, and insert them into the Solidity
programs where the truth needs to be judged, such as if-else
or while statements. Opaque predicates can also be used in
ordinary statements that are executed sequentially.

When inserting a never-true opaque predicate into an
if-else statement, it is necessary to perform a logical AND
operation on the original conditional judgment expression
in the if-else statement and the never-true opaque predicate,
according to the grammar rules. In this way, if the result

of the original conditional judgment expression is true, the
output result is still true after the logical AND operation;
if the result generated by the original conditional judgment
expression is false, after the logical AND operation, the out-
put result is still false. Since the logic AND operation itself
has short-circuit characteristics, when the original condition
is true, the true or false of the always true opaque predicate
will be detected; when the original condition is false, the
true or false of the never true opaque predicate will not
be checked. The time overhead of computing never-true
opaque predicates is reduced to a certain extent.

3.2.3 Algorithm execution description
The explanation of the squashing control flow algorithm
can be referenced in Section 3.1. The source code, chaotic
map, obfuscation method and save path are the input of the
algorithm. The integrity of the input parameters is checked.
If the parameter format is correct, the opaque predicates will
be generated and inserted into smart contract source code
and the control flow of the code will be flattened; otherwise
these functions cannot be executed. Finally, the obfuscated
code will be generated.

3.3 Data flow obfuscation

Data flow obfuscation refers to modifying the data fields in
a program without processing the internal logic structure
of the program [34]. It modifies data fields by analyzing the
abstract syntax tree (AST), which is a tree-like representation
of the abstract syntax structure of the source code. Each
node on the tree represents a structural component in the
source code. It is abstract because the abstract syntax tree
does not represent the real syntax. The modification of
data fields together with detailed information in a smart
contract would make an attacker more difficult to obtain
valid information from the smart contract The process of
realizing this feature is divided into five tasks: 1) converting
local variables into global variables, 2) converting static data to
dynamic data, 3) transforming integer constants into arithmetic
expressions, 4) splitting Boolean variables and 5) converting
scalar variables into vectors. The technical details of these tasks
are depicted below:

• First, we obtain all the declared local variables by
parsing the json ast file. According to all the local
variables declared, we search for local variables with
the same names. Then, we overwrite all the variables
with the same variable names to make them as global
variables, which constructs the foundation for the
following redeclaration and removal of the state of
the local variables. Second, the state variables cor-
responding to the local variables are redeclared and
the declaration statements of the local variables are
removed. Finally, where each local variable used is
located according to the variable id, and the original
local instruction is replaced with the newly declared
variable. Some unique operations are made based on
the unique features of Solidity. There are two types
of functions in Solidity, namely pure function and
view function. It is not allowed to read or modify
the state variable in a pure function, while it is not

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 8

allowed to modify the state variable in a view func-
tion. Therefore, BiAn does not handle local variables
in pure functions. The detailed steps for converting
local variables to global variables can be found in
Algorithm 3. To illustrate this algorithm, let’s con-
sider a smart contract where a global variable is
declared outside any function, such as ‘uint256 public
globalVariable;‘. For other local variables within code
blocks, assign the local variable to the global variable
using ‘globalVariable = localVariable;‘. This assignment
changes the state of the local variable to match the
value of the global variable.

Algorithm 3 Converting local variables to global variables

Input: solidity source code, local variables
Output: solidity source code, global variables
1: Initial Smart Contract Source Code;
2: Find localV ar Post;
3: while Find ASTNode ! = Null do
4: for i = 1 to find localV ar.length do
5: if Process same name ! = Null then
6: Find same name state;
7: Over write declare state;
8: end if
9: Get corpus;

10: Str replacedLocalV ariable;
11: Reset Sol And Json;
12: end for
13: end while

• Static data is converted into dynamic data based on
four types of constants in Solidity, namely integer,
Boolean, string and hexadecimal string. Our tool first
obtains the positions and corresponding values of the
four types of constants by parsing the json ast file.
Next, we declare a new array based on the collected
values for each type of constant, i.e., the arrays for
the constants of integer, Boolean, string and hexadec-
imal string respectively. We then devise a function to
return the corresponding elements from each array.
Finally, the constant is replaced with the correspond-
ing function call. We will not try to convert constants
involving capital transactions (such as require and
assert statements) into dynamic variables. This is
because users need these constants to observe their
transactions in real-time.

• All integer constants in smart contract source files are
converted into complex arithmetic expressions (i.e.,
expressions that can generate original values). Since
Solidity does not support floating-point numbers,
the generated arithmetic expressions do not contain
floating-point numbers or use division.

• Splitting Boolean variable is to approximate all the
Boolean constants in the source code and add a suffix
after the Boolean constant. The splitting rule is: if the
original Boolean constant is true, the “∥” operator
is adopted to connect with subsequent expressions.
The subsequent expression may be a Boolean ex-
pression or an arithmetic expression. If the original
Boolean constant is false, the “&&” operator is used
to connect with subsequent expressions. The subse-

quent expression may be a Boolean expression or
an arithmetic expression. The procedure for splitting
Boolean variable is introduced in Algorithm 4. This
algorithm involves splitting boolean variables. For
instance, if we have a variable with a value of ‘true‘,
it can be modified to ‘true ∥ false‘ or ‘true && true‘.
Both alternatives yield the same result as the original
value but provide an additional level of complexity.

Algorithm 4 Split boolean variables

Input: solidity source code, boolean variables
Output: solidity source code, splited boolean variables
1: while boolList ! = findBoolList do
2: if len(boolList) == 0 then
3: return content;
4: else
5: Find V ariable Declaration Statement,

Assignment, V ariableDeclaration;
6: for statement in statementList do
7: splitBoolV ariable and append;
8: end for
9: end if

10: Replacing hash values with variable names;
11: Reset Sol And Json;
12: end while

• The scalar-to-vector function is to collectively declare
the state variables of integer, Boolean, address, string,
and bytes in a structure, and to enable the member
variables to be called through the structure. All ini-
tialization, assignment, and use of the original state
variables will be replaced with those of the corre-
sponding structure member variables. The steps of
variable name replacement are shown in Algorithm
5. Consider a variable named ‘gasConsumption‘,
its corresponding SHA-1 value can be contained
by: ‘f0eb29ec79e2b6f94bc5a4266012b74b21eb6181‘.
This cryptographic hash function provides a unique
and irreversibly transformed value for the original
variable. This kind of operations will force the call
and generation of state variables to be connected
with the structure, making the directions of data
flows more complicated.

Algorithm 5 Variable name replacement

Input: solidity source code, solidity json.ast
Output: solidity source code
1: while Identifier ! = Null do
2: Store the location of the matching identifier;
3: if Identifiers do not involve money transactions

then
4: SHA−1 hash algorithm generates hash values;
5: end if
6: Replacing hash values with variable names;
7: Reset Sol And Json;
8: end while

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 9

3.4 Layout obfuscation
Layout obfuscation refers to removal or obfuscation of aux-
iliary text information in software source code or interme-
diate code that is not related to execution, making it more
difficult for an attacker to read and understand the code [35].
The procedure of layout obfuscation is shown in Algorithm
6.

It mainly implements scrambling identifiers and debug-
ging information in the code to increase the workload of a
reverse attacker to read or analyze. It mainly implements
three functions: deleting comments, scrambling layout, and
replacing variable names. Deleting comments and scrambling
layout specifically focus on identifying the content in the
source code through regular expressions and replacing the
content with corresponding meaningless characters, with
the purpose of enhancing the difficulty to code content
parsing. Replacing variable names is performed by parsing
the json ast file, obtaining the name and corresponding
location of each identifier in the source code, and then using
the SHA1 hash algorithm to generate the hash value of each
identifier. The reason for choosing the SHA1 hash algorithm
is that the output of the algorithm is a hash value of 160 bits
in length, which is the same as the address type provided by
Solidity. The identifiers in the source file are then replaced
by using “OX” plus the hash value corresponding to each
identifier. Although the SHA1 algorithm can be cracked,
cracking the “variable name” is actually valueless.

Algorithm 6 Layout obfuscation

Input: file Path, json File
Output: solidity source code
1: if len ! = 3 then
2: print: wrong parameters;
3: else
4: Get configuration, file content;
5: if comment.length ! = 0 then
6: Delete comment;
7: end if
8: Disrupt format;
9: for variable name in source code do

10: while identifiers ! = Null do
11: Store the location of the matched identifiers;
12: if identifiers do not involve money

transactions then
13: SHA−1 hash algorithm generates hash

values;
14: end if
15: Replace hash values with variable names;
16: Reset Sol And Json;
17: end while
18: end for
19: end if

pragma s o l i d i t y 0 . 6 . 2 ;
/*
S o l i d i t y doesn ’ t support f l o a t i n g point Numbers very well , and a l l i n t e g e r s t h a t are
divided are rounded down . The use of i n t e g e r d i v i s i o n to c a l c u l −ate the amount of
e t h e r s may cause economic l o s s e s .
*/

c o n t r a c t getwageNumber {
uint256 publ ic c o e f f i c i e n t ;
uint256 publ ic DailyWage ;
address publ ic boss ;

c o n s t r u c t o r () publ ic{
DailyWage = 1 0 0 ;

c o e f f i c i e n t = 3 ;
boss = msg . sender ;
}

modif ier onlyowner{
requi re (msg . sender == boss) ;

;
}

func t ion setDailywage (uint256 wage) e x t e r n a l onlyowner{
Dailywage = wage ;

}

func t ion s e t c o e f f i c i e n t (uint256 co) e x t e r n a l onlyowner{
c o e f f i c i e n t = co ;

}

func t ion calculatewage (uint256 dayNumber) e x t e r n a l view onlyowner re turns (uint256)
{

//Unt i l now, S o l i d i t y doesn ’ t support decimals or f ixed −point numbers , and
a l l i n t e g e r d i v i s i o n r e s u l t s are rounded down, which can lead to a l o s s of
accuracy . Avoid using i n t e g e r d i v i s i o n to c a l c u l a t e t h e amount of e t h e r s . I f
you have to , t r y mult iplying before dividing to o f f s e t the l o s s of accuracy .
uint256 basewage = Dailywage / c o e f f i c i e n t ;
re turn baseWage * dayNumber ;

}
}

(a) Smart contract before obfuscation.
pragma s o l i d i t y 0 . 6 . 2 ; c o n t r a c t 0 x98923cc55cbcd5bd396ad8416b3622500b16e07b{c o n s t r u c t o r
() publ ic{0xb852185ad6cc3fb5baf4401da89c5ca111f8ba7e . 0 x8a9af61f0afc93a1f990b838080f8b2
d71c7da92=uint256 (0 x590599ec111c7fc88c9e703311afe5dc1c9a06f2 (0 +(9* 6) * 9 −486)) ; 0 xb
852185 ad6cc3fb5baf4401da89c5ca111f8ba7e . 0 x3ca5a127725b250dc0ca365c87f6fe7c2c44ce6e=
uint256 (0 x590599ec111c7fc88c9e703311afe5dc1c9a06f2 (8 * 6 * 6 + 5 −29 2)) ; 0 xb852185ad6c
c3fb5baf4401da89c5ca111f8ba7e . 0 x08bd1e2ac9fa91e3e4d821821297330d97e852f1 = msg . sender
;}modif ier 0 x0b8d7cc91fd21fdfa9558e31a58f72d5b1b084ce{requi re (msg . sender ==
0 xb852185ad6cc3fb5baf4401da89c5ca111f8ba7e . 0 x08bd1e2ac9fa91e3e4d821821297330d97e852f
1) ; ;} functionOxdbf2268deca82cedb034a1c6446b66763aed8016 (uint2560x6503f9dbbaod7f77e3
84965 d35cf28c3c19a4b7f) external0x0b8d7cc91fd21fdfa9558e31a58f72d5b1b084ce{0xb852185a
d6cc3fb5baf4401da89c5ca111f8ba7e . 0 x 8 a 9 a f 6 1 f 0 a f c 9 3 a 1 f 9 = 0 x6503f9dbbaod7f77e384965d35c
f28c3c19a4b7f ;} func t ion 0 x8b820cc4ab61268dff5f5bcd8a83671095fda791 (uint2560x4c f537c9
e237b8757d6228816bf43ce69eab965e) e x t e r n a l
0 x0b8d7cc91fd21fdfa9558e31a58f72d5b1b084ce{0xb852185ad6cc3fb5baf4401da89c5ca111f8ba7
e . 0 x3ca5a127725b250dco = 0 x4cf537c9e237b8757d6228816bf43ce69eab965e ;} func t ion Oxd196
ed1d3226b89f0217fe63cfb5e52339ca2029 (uint256 0 x7d77f6892719d86f56a063faded7d8616efb8
738) e x t e r n a l view 0 x0b8d7cc91fd21fdfa9558e31a58f72d5b1b084ce
re turns (uint256){uint2560x53c8587851a8853a7440e70107e8dfc73a465c9e = 0 xb852185ad6cc3
fb5baf4401da89c5ca111f8ba7e . 0 x8a9af61f0afc93a1f990b838080f8b2d71c7da
92 /0 xb852185ad6cc3fb5baf4401da89c5ca111f8ba7e . 0 x3ca5a127725b250dc0ca365c87f6fe7c2c
44 ce6e ; return0x53c8587851a8853a7440e70107e8dfc73a465c9e * 0 x7d77f6892719d86f56a063fad
ed7d8616efb8738 ;} funct ion0x590599ec111c7fc88c9e703311afe
5 dc1c9a06f2 (uint2560x33f7a7ceb1286d60232c1d9d18585b1fe758f926) in terna lv iew re turns
(uint256){ re turn Oxa6e79c78a15cdd14blefcbcd74f3d207535dcce7 [0 x33f7a7ceb1286d60232c
1 d9d18585b1fe758f926] ;} uint256 [] publ ic0xa6e79c78a15cdd14blefcbcd74f3d207535dcce7 =
[99 + 77 * 77 +8− 5936 ,2 −1+(2*1)+0] ; s truct0x66bb4925360f52eace380049e5da6ea972385b3
a {address 0 x08bd1e2ac9fa91e3e4d821821297330d97e852f1 ; u i n t 2 5 6 0 x 8 a 9 a f 6 1 f 0 a f c 9 3 a 1 f 9 9 0
b838080f8b2d71c7da92 ; uint2560x3ca5a127725b250dcoca365c87f6fe7c2c44ce6e ;}0 x66bb49253
60 f52eace380049e5da6ea972385b3a 0 xb852185ad6cc3fb5baf4401da89c5ca111f8ba7e =0x66bb49
25360 f52eace380049e5da6ea972385b3a (address (0) , 0 , 0) ;}

(b) Smart contract after obfuscation.

Fig. 4: Smart contract before and after obfuscation.

4 EXPERIMENT

Our experiment is conducted using a dataset of 1,000 buggy
smart contracts randomly obtained from the Ethereum
chain and other public sources, including the open-source
Ethereum smart contract security vulnerability test case
set SWC Registry4 provided by Smart Contract Security,
the Jiuzhou [3] smart contract security vulnerability data
dataset published by Xiao et al., the vulnerability-marked
smart contract security vulnerability dataset SB Curated5,
Ethereum ETL project6 and test data samples from smart
contract tools such as Slither, Smartcheck, Solhint, and
Mainticore. SWC Registry is an essential knowledge base
for Ethereum security personnel and developers. It contains
descriptions and consequences of common security issues in
the development of Ethereum Solidity smart contracts, such
as reentrancy, overflow, etc., It also provides CWE (Common
Weakness Enumeration) Vulnerability classification, solu-
tions and contract program code as examples. Jiuzhou is

4. https://swcregistry.io/
5. https://smartbugs.github.io/
6. https://github.com/blockchain-etl/public-datasets

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 10

a collection of statistics and classification of Ethereum smart
contracts. It also provides a brief introduction, solutions
and test cases for each bug, which helps smart contract
developers or researchers understand the current security
state of Ethereum and get a benchmark dataset for test-
ing smart contract analysis tools. SB Curated is a curated
dataset containing 143 vulnerability-labeled smart contracts
with 208 labeled vulnerabilities. It is used to evaluate the
accuracy of analytical tools. In comparison to the above
two datasets, SB Curated’s vulnerability markers are more
accurate in terms of the range of each vulnerability in
each contract. In addition, in order to broadly collect the
required smart contract data with vulnerabilities, we used
related keywords such as ”Smart Contract Bugs”, ”Smart
Contract Vulnerabilities” and ”Smart Contract Security” to
search for valid data in IEEE and ACM libraries and Github.
A total of 183 relevant papers or projects were retrieved.
Next, we manually checked the rationality and logical cor-
rectness of the relevant data. We manually recorded the
location of the corresponding vulnerability in the smart
contracts with reference to the vulnerability marker of SB
Curated, and removed some duplication of functions and
derived data. Finally, we collected 1,000 smart contracts
with vulnerabilities, including nine vulnerability data sets
(privilege control vulnerability (160), reentrant vulnerability
(167), integer overflow (106), randomness vulnerability (79),
timestamp dependency vulnerability (150), unchecked re-
turn value vulnerability (46), denial of service vulnerability
(141), front-running transaction vulnerability (55), unknown
function vulnerability (96)). We also collect a set of real
smart contracts run on Ethereum. These real contracts are
randomly selected using etherscan7, which is a blockchain
browser based on Ethereum. The 109 actual smart contract
datasets are utilized in the complexity experiment, where
we employ the box plot and Cohn’s d value to demonstrate
that the complexity of the obfuscated smart contract is closer
to the real smart contract.

All the obfuscated smart contracts in the dataset can be
compiled successfully. Each vulnerable smart contract in the
vulnerability dataset contains only one type of vulnerability.
The compiler version numbers of the smart contracts range
from 0.4.x to 0.8.x. For the current dataset of 1,000 smart
contracts, the average number of if statements is 6.2, the
average number of loops is 4.1, and the average number of
lines of code is 493.7.

The primary purpose of the experiments is to explore the
following research questions:

• RQ1: Is the chaotic performance of the CMP chaotic
map better than the existing ones?

• RQ2: Are the code functions in smart contracts un-
changed after using the BiAn tool to obfuscate the
code?

• RQ3: Are the obfuscated smart contract more resis-
tant to decompilation?

• RQ4: How the complexity of smart contracts is im-
pacted after being obfuscated by BiAn?

• RQ5: How gas consumption of smart contracts is
affected after being obfuscated by BiAn?

7. https://cn.etherscan.com/

• RQ6: How the performance of the existing smart
contract bug detection tools is varied after using
BiAn?

We use BiAn to generate obfuscated contracts for the set
of buggy contracts. A sample smart contract before and after
the obfuscation is shown in Figure 4. All the obfuscated
contracts can be compiled with solc to generate bytecode.
We recruit a group of developers to verify the functional
variation of the contracts after the obfuscation (Section 4.2).
We also conduct experiments to find out how the obfus-
cated contract can resist the mainstream decompilation tools
(Section 4.3), the complexity variation (Section 4.4) and the
gas consumption (Section 4.5) of the obfuscated contract. In
addition, we manually label the error locations in the obfus-
cated contracts and build a public buggy contract dataset.
This dataset is used to assess how the obfuscated contracts
challenge state-of-the-art static smart contract vulnerability
detection tools (Section 4.6).

4.1 Chaos mapping performance

To answer RQ1, this experiment selects two performance
indicators (chaotic bifurcation diamgram and Lyapunov
exponent [36]) to verify the superiority of the CPM chaotic
map over the traditional Chebyshev and PWLCM chaotic
maps.

The chaotic bifurcation diagram reflects the state change
of a chaotic system, indicating whether a system has chaotic
behavior under each parameter. The more states a system
can enter under the same parameter, the better its chaotic
performance. In order to control the variables, the PWLCM,
Chebyshev and CPM chaotic maps all use the same initial
value.

(a) Chebyshev (b) PWLCM (c) CPM

Fig. 5: The chaotic bifurcation diagrams of the chaotic maps

The chaotic bifurcation diagram of three chaotic maps
is shown in Fig 5 Compared with the other two chaotic
maps, the bifurcation diagram of the Chebyshev chaotic
map has a slightly smaller chaotic range. In the diagram of
the PWLCM chaotic map, there are certain intervals where
the chaotic behavior is lost. In contrast, the points of the
CPM chaotic map can cover the entire space and are more
evenly distributed within the parameter range.

The Lyapunov exponent is an important index to mea-
sure the initial value sensitivity of a chaotic system. It quan-
tifies the separation rate between infinite and near orbits in
a dynamical system. The maximum Lyapunov exponent of
a system determines the main evolution trend of the system.
The larger the Lyapunov exponent, the worse the local
stability of the system. Therefore, whether the maximum
Lyapunov exponent of a system is greater than zero can be
used to judge whether the system is in chaos.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 11

(a) Chebyshev (b) PWLCM (c) CPM

Fig. 6: The Lyapunov exponents of the chaotic maps

The Lyapunov exponents of the three chaotic maps are
shown in Fig 6. The Lyapunov exponents of the CPM
chaotic map are all greater than 0, which indicates that they
have high sensitivity for the initial values. The average and
maximum Lyapunov exponents of the CPM chaotic map
are higher than those of the Chebyshev chaotic map, which
reveals that its chaotic performance is better. Compared
with PWLCM, the Lyapunov exponent of CPM chaotic map
is increased more steadily, which shows that the chaotic
capability of the CPM chaotic map gradually increases over
time.

4.2 Functional changes

To answer RQ2, this experiment aims to verify if the orig-
inal functionality of a smart contract is changed after the
obfuscation. This functional consistency verification com-
prises 1) compiling the smart contracts before and after the
obfuscation with Remix, the official Solidity compiler, and
2) observing whether the input, output, state variables and
implemented functions of the smart contracts are changed
after the obfuscation.

We recruited 4 developers with Ethereum smart con-
tract development experience to conduct the verification
process. We randomly assigned 1,000 pairs of original and
obfuscated smart contracts to these developers for evalua-
tion. These developers conducted the functional consistency
verification and wrote reports summarizing their findings.
According to the reports, the obfuscated smart contracts
have the same input and output as the original smart
contracts do, and the functions of the smart contracts have
not changed after the obfuscation. The developers should
verify whether the input, output and implementation of
smart contract change after obfuscation. And the reports
we write are some test cases and review results. To more
comprehensively verify the consistency of the codes before
and after obfuscation, we respectively adopted automatic
verification by using Remix (official Solidity compiler) and
manual reinspection, where manual reinspection refers to
manual observation and auditing whether the input, output
and implementation of smart contract change after obfus-
cation. The proposed data flow obfuscation, control flow
obfuscation, layout obfuscation, the chaotic mapping based
opaque predicate generation methods and flattening control
flow algorithm theoretically make equivalent conversion of
the code logic, data, and structure. We performed functional
consistency verification in both the white box and black box
modules. For white box testing, we use static analysis and
dynamic analysis. Static analysis refers to that a program is
only analyzed by code review, including program syntax,
program structure and logic review. Dynamic analysis is to

execute a program and analyze it through the basic path
method. It was found that the functions keep unchanged
after using this series of code obfuscation methods. We also
tested the functions from the black box perspective. For the
test cases of smart contracts, generally 30-80 test cases are
used, and the number of test cases needed depends on the
complexity of the smart contract. In practice, more complex
smart contracts with more lines of code, loops, and defined
functions may require more test cases than simpler ones,
and vice versa. We conducted manual detection, replayed
transactions (including state variables), and checked the in-
put and output for changes of the smart contract code before
and after the obfuscation, so as to verify the consistency of
functions. Our verification found that the functions of the
code before and after the obfuscation are the same.

4.3 Resist decompilation
To answer RQ3, this experiment aims to assess the capa-
bility of the smart contracts obfuscated by BiAn to resist
decompiling techniques. The publicly available decompi-
lation tools are Erays 8, Vandal [37] and Gigahorse [38], the
descriptions of which are as follows:

• Erays generates a readable disassembly output that
parses symbols based on the application binary in-
terface (ABI). ABI describes the low-level interface
between an application program and the operating
system or another application. Erays generates the
disassembly from runtime bytecode obtained from
the Ethernet Virtual Machine (EVM). Since the latest
version of Erays was published three years ago, it can
only support smart contracts with Solidity Version
4.0 or below. However, the smart contracts in our
dataset are coded in Solidity Version 6.0 or above.
Therefore, we have to exclude it in the following
experiment.

• Vandal is a security analysis framework for Ethereum
smart contracts. It consists of an analysis pipeline
that converts low-level EVM word code into seman-
tic logic relations. The users of this framework can
express security analysis declaratively, namely, secu-
rity analysis is expressed in a logical specification
written in Solidity. The new intermediate represen-
tation of a smart contract makes the implicit data
and control flow dependencies of the EVM bytecode
explicit. Decompiling eliminates the need for a con-
tract source and allows analysis of new and deployed
contracts.

• Gigahorse’s core is a reverse compiler (i.e., a decom-
piler) that decompiles smart contracts from EVM
bytecode into a high-level 3-address code represen-
tation.

We use the following criteria to evaluate the reverse
analysis results, i.e., PF (Partial Failure), FF (Full Failure),
SUC (success) and F-total.

PF refers to that the decompilation tool produces a CFG
and a code result but misses the jump flow information
compared to the original code. A jump flow means that a
statement in the program can perform conditional judgment

8. https://github.com/comaeio/Erays

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 12

and has the ability to jump over a workflow, including if,
switch, for, while, do-while, etc. FF means that the decom-
piler does not produce any results. More specifically, both
Vandal and Gigahorse decompilation tools take bytecode as
input, that is, the obfuscated source code will be converted
into input bytecode. The tools then restore CFG and gener-
ate semantic logic relations and CFG in the form of HTML at
runtime. If the jump flow information is lost, which leads to
incorrect information, it will be viewed as a PF. If no result
is generated, it will be viewed as a FF. SUC means that the
decompiler correctly decompiled the smart contract. F-Total
is the sum of PF and FF. The reason for introducing PF and
FF is that, in reality, the gap between decompilation failure
and decompilation success is not obvious sometimes, which
is required to introduce PF to describe them more accurately.

We define the separate semantics of PF and FF cases for
the decompilation tools as follows: Vandal converts runtime
bytecode to semantic logic relations and CFG. If Vandal
cannot find the jump address, it will miss a block and report
an error message, which is viewed as a PF case. If there is no
result generated, it will be viewed as an FF case. Gigahorse
has the same working mechanism as Vandal does.

The specific results are shown in Table 1. The comparison
between the test results of the original smart contracts and
the obfuscated smart contracts complied by these decompi-
lation tools shows that the total failure rate of the decom-
piler Vandal and Gigahorse is increased by 38.8% and 40.5%
respectively after obfuscation. The higher the total failure
rate, the stronger the anti-decompilation ability. Therefore, it
can be concluded that BiAn does generate a moderate effect
on resisting decompilation.

4.4 Complexity variation
To answer RQ4, we evaluate the effectiveness of BiAn with
regards to increasing contract complexity. We choose the
smart contract decompiler Vandal to calculate the number
of paths within an obfuscated contract and then compare it
with the original contract. Vandal is selected here, since it
has a relatively lower failure rate [39]. The path diagram of
a sample smart contract before and after the obfuscation is
shown in Figure 7. From the intuitive comparison, it can be
observed that the number of paths of the smart contract is
increased by approximately 2 times after the obfuscation.

The number of paths for each of the 1,000 buggy smart
contracts in our dataset before and after the obfuscation
process is shown in Figure 8, It shows that BiAn can ex-
ponentially increase the number of paths for almost all the
buggy contracts in the dataset.

Next, we create box plots (Figure 9) to visualize the
statistics of the original contracts, the obfuscated contracts
and the 109 real contracts on the number of paths. Based
on the experimental results, it has been observed that the
average number of paths in the dataset’s smart contracts
significantly increases by approximately 174% after the ob-
fuscation. It also shows that, while the number of paths
of the original buggy contracts is far less than that of the
real contracts deployed on Ethereum, the number of paths
of the obfuscated buggy contracts is on par with or even
partially exceeds that of the real contracts. Therefore, it
can be concluded that BiAn can effectively increase the
complexity of a smart contract.

To further verify the difference between the obfuscated
contracts and the real contracts, we adopt the number of
paths as the Effect Size parameter, which is a group of pa-
rameters to quantify the difference or correlation or indicate
the authenticity [40]. There are three major classes of Effect
Sizes: difference, correlation, and group overlap. We adopt
the Cohen’s d value, which is a commonly used Effect Size
parameter to calculate the difference between groups [41].
Here the Cohen’s d value is utilized to analyze the difference
between the obfuscated contracts and the real contracts in
terms of the number of paths. The parameters required to
calculate Cohen’s d value include two groups of mean and
standard deviation, as shown in the following formula (8)
and (9). In Formula (8), the numerator is the mean difference
and the denominator is the summary standard deviation s.
In Formula (9), n1 and n2 are the respective sample sizes of
the two groups.)

d =
x̄1 − x̄2

s
(8)

s =

√
(n1 − 1) s21 + (n2 − 1) s22

n1 + n2 − 2
(9)

The experimental results are as follows: the Cohen’s d
value between the obfuscated contracts and the original
contracts is 1.26797, while the Cohen’s d value between the
obfuscated contracts and the real contracts is 0.50064. It can
be seen that the difference between the obfuscated contracts
and the real contracts is much smaller, from which we can
also learn that the obfuscated contracts are more complex
than the original contract.

4.5 Gas consumption

To answer RQ5, in addition to evaluating the effectiveness
of BiAn on increasing the complexity of smart contracts, we
employ the Remix compiler to calculate the Gas consump-
tion of smart contracts before and after the obfuscation,
considering the Gas consumption value can partially reflect
the complexity of smart contracts [42]. This is because higher
Gas consumption means more resources are required to ex-
ecute a smart contract. Therefore, the significant difference
in the Gas consumption before and after the obfuscation
can reflect the dramatic change in the complexity of a smart
contract.

The feasibility of using Remix for gas consumption as-
sessment is explained below: Although the official remix
compiler finally gives the expected gas consumption, which
is indeed not the actual gas consumption, it is sufficient
as an experimental evaluation. The gas consumption cal-
culated by Remix is an estimated value based on several
factors, such as the current network situation and the
complexity of smart contracts. However, the actual gas
consumption of smart contracts may vary due to different
transaction data and execution paths. Nonetheless, the gap
between Remix’s estimated gas consumption and the actual
value is expected to be small. This is because Remix uses the
current state data of the Ethereum network to estimate gas
consumption and calculates it based on the code logic and
data volume of the smart contract, which are relatively close
to the actual situation. Therefore, using Remix to evaluate
gas consumption experiments is a feasible option.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 13

TABLE 1: Experimental results of anti-decompilation ability.

Original Contracts Obfuscated Contracts

PF FF SUC F-Total PF FF SUC F-Total

Vandal
6.4% 1.1% 92.5% 7.5% 42.3% 4% 53.7% 46.3%

(64/1000) (11/1000) (925/1000) (75/1000) (423/1000) (40/1000) (537/1000) (463/1000)

Gigahorse
4.5% 0.4% 95.1% 4.9% 44.7% 0.7% 54.6% 45.4%

(45/1000) (4/1000) (951/1000) (49/1000) (447/1000) (7/1000) (546/1000) (454/1000)

(a) The path diagram before obfuscation (b) The path diagram after obfuscation

Fig. 7: The path diagram of the sample smart contract before and after obfuscation

Fig. 8: Number of paths between the original smart contracts
and the obfuscated smart contracts.

Figure 10 shows the comparison of Gas consumption
between the original and obfuscated smart contracts, where
the blue line represents the amount of Gas consumed before
obfuscation, and the red line represents the amount of
Gas consumed after obfuscation. It is evident that the gas
consumption of the majority of original contracts increases
by approximately 82% after the obfuscation.

The optimization of gas consumption plays a vital role in
smart contracts, and extensive research has been conducted
to optimize gas usage. In [43], the authors propose a com-
prehensive set of 14 design patterns categorized into five

Fig. 9: Path statistics among the original smart contracts, the
obfuscated smart contracts and the real smart contracts

areas: external transactions, storage, space saving, method
functionality, and other aspects. These patterns serve as
valuable guidelines for developers aiming to optimize gas
consumption in their smart contracts. Another notable work
by Chen et al. [44] focuses on refactoring smart contracts to
achieve gas optimization through data type conversion. This
approach involves significant modifications to the underly-

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 14

Fig. 10: Gas consumption between the original smart con-
tracts and the obfuscated smart contracts.

Fig. 11: Gas consumption statistics among the original smart
contracts, the obfuscated smart contracts and the real smart
contracts

ing data structures, requiring developers to experiment with
different data structures to achieve desired gas efficiency. We
have referred to these methods of reducing gas consumption
and applied them to BiAn. The detailed methods we use can
be found in the next paragraph.

To further enhance the obfuscated smart contract source
code, we implemented several optimization measures, in-
cluding:

1. Reducing storage and read operations. Maximizing
the use of local variables: In a smart contract, variables
are stored on the blockchain. Reading and writing these
variables need to consume gas. Therefore, local variables
should be used as much as possible to avoid frequent
storage and read operations. To avoid frequent storage and
read operations, we used local variables wherever possible.
In data flow obfuscation, we also reduced the frequency
of converting local variables into global variables. Employ-
ing view functions: Functions that only read contract state
variables without modifying them can be declared as view
functions. Gas is not consumed when executing them. We
identified such functions and converted them into view
functions to reduce gas consumption.

2. Optimizing loops. Minimizing loop calculations:
Loops directly affect gas consumption, so we minimized
all types of loop calculations to reduce gas consumption.
Minimizing modification of state variables in loops: State
variables are contract variables stored on the Ethereum
blockchain. Their values can be accessed and modified
throughout a contract’s lifecycle, and can be considered
as global variables of the contract. However, modifying

state variables in loops consumes more gas. To reduce gas
consumption, we avoided modifying state variables in loops
as much as possible, or stored them in local variables and
modified them uniformly after the loop ended.

3. Avoiding expensive (high gas consumption) opera-
tions. Minimizing string concatenation: In Solidity, string
concatenation is an expensive operation. We thus used
the bytes32 type instead of strings to avoid the expensive
operation of string concatenation. Minimizing large integer
calculations: Large integer calculations in Solidity consume
a lot of gas. To avoid high gas consumption, we avoided
large integer calculations as much as possible. If the range of
calculation is small, the integer types without large storage
capacity were used. Minimizing the use of complex data
types: Since using complex data types leads to more gas
consumption, large integer calculations were used as less as
possible to avoid high gas consumption.

4. Using appropriate data structures. Choosing appro-
priate data structures is important for reducing gas con-
sumption. For example, using mapping instead of arrays
can reduce gas consumption because it does not need to
occupy continuous space in storage and has faster speed
in lookup operations. In addition, using fixed-length ar-
rays instead of dynamic-length arrays can also reduce gas
consumption because space is only allocated once during
storage, without the need for reallocation when adding or
removing elements.

5. Using appropriate modifiers, etc. Modifiers are a com-
monly used feature in Solidity that can check or operate on
functions before or after execution. Some modifiers can bet-
ter control and reduce gas consumption. For example, using
the ”view” or ”pure” modifier can ensure that a function
does not modify state variables and does not consume gas.

The experimental results show that the average gas
consumption after obfuscation has increased by about 82%,
which is about 18% less than the previous increase of about
100% in BiAn. This demonstrates that these gas optimization
measures are effective in reducing gas consumption.

Figure 11 illustrates the statistical differences among the
original contracts, the obfuscated contracts and the real con-
tracts. Our experiments demonstrate that our proposed code
obfuscation technique effectively increases the complexity
of smart contracts by 174%, surpassing the corresponding
rise in gas consumption, which is 82%. The significantly
enhanced smart contract complexity can greatly improve
the security of smart contracts and prevent users’ financial
loss. In addition, the obfuscated contracts will inspire the
development of more advanced smart contract vulnerability
detection solutions.

4.6 Performance analysis
To answer RQ6, we use the obfuscated contracts to evaluate
how the obfuscation influences the vulnerability detection
performance of the state-of-the-art static smart contract vul-
nerability detection tools. We select ten state-of-the-art tools
(shown in Table 2) based on the following two criteria: 1) the
tool is open-sourced; and 2) the tool can work on Solidity
contracts or compiled bytecode.

The selected ten static smart contract vulnerability de-
tection tools include Mythril [45], Slither [5], Maian [12], Se-
curify [46], Remix, Smartcheck [4], Manticore [47], Oyente [48],

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 15

TABLE 2: Types of bugs that the smart contract detection tools claim to detect

Mythril Slither Maian SecurifyRemix SmartCheck Manticore Oyente Solhint HoneyBadger

Access Control Y Y Y Y Y Y N N Y N

Reentrancy Y Y Y Y Y Y Y Y Y Y

Arithmetic Y N N N N Y Y Y N Y

Bad Randomless Y N N N N N N N Y N

Time Manipulation Y Y N Y Y Y N N Y Y

Unchecked Calls Y Y N N Y Y Y N N N

Denial of Service N Y Y Y N N N N Y N

Front Running Y N N Y N N N N N N

Unknowns N Y Y N N Y Y N Y N

Osiris [49], Solhint 9, and HoneyBadger [50]. we use these
11 tools to detect the bugs from the original contracts and
the obfuscated contracts respectively. It is worth noting
that these 11 tools claim to detect different types of bugs.
Since there is no authoritative bug classification standard
for the types of bugs in smart contracts. To facilitate the
evaluation, we chose the widely circulated Distributed Ap-
plication Security Project (DASP) standard [51]. This is an
open collaborative project dedicated to discovering smart
contract vulnerabilities within the security community and
counting the top ten bug types that occur most frequently
each year.

Table 2 shows the bugs claimed to be detected by these
ten tools, where nine types of bugs are included. ’Y’ rep-
resents that the tool can detect this type of bug and ’N’
represents that the tool cannot detect the type of bug. The
only excluded bug type is Short Address, which occurs
when a function named transfer in a contract is called,
EVM cannot verify the incoming bytecode. Our experiments
only focus on the bugs within smart contracts and inter-
contract interactions, and do not verify the dependency on
the blockchain transaction order. Thus, it is impossible to
verify the error type of Short Address (actually there are no
tools to detect these types of errors in obfuscated contracts).

Figure 12(a) and Figure 12(b) respectively show the recall
and accuracy of these 11 tools when analyzing the original
and obfuscated contracts. The evaluation results show that
the performance of the analysis tools is significantly weak-
ened after the obfuscation. For example, the recall rate drops
by more than 50% for eight tools for the vulnerability of
Reentrancy.

Among these tools, the variation on Mythril’s bug de-
tection performance is the most remarkable, with a more
than 50% drop and even complete failure on the recall rates
for five of its claimed nine error types after the obfusca-
tion. In addition, most of the tools experience remarkable
degradation on Reentrancy. The reentrancy vulnerability
stems from the fact that a contract allows functions without

9. Solhint is an open source project created byprotofire
(https://protofire.io). Its goal is to provide a linting utility for
Solidity code.

function names, parameters and return values. When the
contract is obfuscated, the number of the above functions is
reduced, which leads to a sharp decrease in the effectiveness
of the vulnerability detection. In terms of precision, due
to the cautious strategy adopted by these tools to find
errors (e.g., some static analysis tools mark the occurrence
of specific keywords as error alerts), the variations are not
as significant as them on recall.

It is noteworthy that out of the ten tools evaluated,
Oyente, HoneyBadger, and Solhint encounter significant chal-
lenges in running the obfuscated contracts. These tools
exhibit various unknown errors, despite the fact that the
obfuscated contracts have undergone solc compilation and
are deployable on the blockchain. This is because the in-
crease in the complexity of the contract structure after ob-
fuscation leads to the failure of these tools to execute certain
functions. The data flow obfuscation has obvious effects on
the data processing and variable range of a program. The
control flow obfuscation usually poses a clear impact on
the branch structure of smart contracts, while the layout
obfuscation plays a role in the appearance and layout of
the program (variable names, identifiers, etc.). For example,
the reentrant vulnerability is caused by the recursive call
of the fallback function to the external contract function.
Therefore, the data flow and layout obfuscation has a greater
impact on the detection of this vulnerability. For integer
overflow vulnerabilities, the impact of data flow obfuscation
is more distinct. In addition to the impact of control flow
obfuscation, layout obfuscation, and data flow obfuscation
on vulnerability detection tools mentioned above, we also
considered the impact of CPM on vulnerability detection
tools. CPM plays a crucial role in enhancing the quality of
opaque predicate generation and improving resistance to
decompilation. It has a great impact on RQ3 (experiment
of anti-decompilation ability), but has a minor effect on
RQ6 (experiment of vulnerability detection tool after ob-
fuscation). The reason is that CPM generates a value that
is less prone to be cracked by attackers. Such a value is
used in On opaque predicates, thereby rendering them more
challenging to crack. Moreover, the values generated by
Chebyshev or PWLCM are weaker than those produced by

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 16

(a) Evaluation of the 11 static analysis tools based on the original smart contracts.

(b) Evaluation of the 11 static analysis tools based on the obfuscated smart contracts.

Fig. 12: Evaluation of the 11 static analysis tools based on the original and obfuscated smart contracts.

CPM. In summary, the CPM technique has a direct impact
on enhancing opaque predicates. These opaque predicates,
in turn, significantly influence the quality of control flow
obfuscation. The quality of control flow obfuscation, which
affects the program flow, subsequently impacts the detection
performance of vulnerability tools in RQ6. However, it is
important to note that the influence of CPM on RQ6 is
relatively limited.

4.7 Threats to validity
This section describes the threats to the validity of the
BiAn. As the first source code obfuscation tool of Ethereum
smart contracts, BiAn successfully obfuscates smart con-
tracts through methods such as data flow obfuscation, lay-
out obfuscation, and control flow obfuscation fused with
chaotic mapping. However, some factors would affect the
performance of BiAn.

Internal Validity. First, BiAn cannot handle contract files
containing multiple smart contracts. Our approach can only
target source code of a single contract source code and its
corresponding jsonAst file.

Second, BiAn cannot handle contracts that generate
warnings during compiling. We use a local compiler (solc) to
compile smart contracts. solc will not generate compilation
results if a warning is generated during compiling.

Next, our solution may cause the bug of Solidity key-
word replacement during the variable name replacement

process, when a user-defined variable and a Solidity global
variable have the same name. To alleviate this problem, we
narrowed the scope of variable names to be replaced.

Finally, an inherent problem of code obfuscation is that
the gas consumption of an obfuscated smart contract will
increase. However, this is worthwhile, since the extent of
increase in cyclomatic complexity after BiAn obfuscation is
more than it in gas consumption. To alleviate this prob-
lem, we provide a configuration file (Configuration.json).
By modifying the configuration file, users or developers
can choose to skip certain obfuscation steps, and specify
the activation probability of each function to balance the
confusion and gas consumption.

External Validity. The subjective verification on func-
tional consistency before and after confusion may affect the
correctness of the results.

5 IMPLEMENTATION

This section describes the specific implementation of the tool
BiAn.

All the code and scripts used for implementing this
tool are written in Python. The input of this tool has two
parts: smart contract source code and abstract syntax tree
generated from smart contract source code. The output is
obfuscated smart contract code. We describe the mecha-
nisms for implementing the control flow obfuscation, data
flow obfuscation and layout obfuscation as follows:

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 17

Control flow obfuscation. First, the program needs to verify
whether the smart contract source code and the abstract
syntax tree file are correctly located; otherwise an error
message will be returned. By using the logistic chaotic map-
ping algorithm to generate opaque predicates, we enhance
the uncertainty and complexity of the partial generation of
opaque predicates, and increase the ability of a contract
to resist decompilation to a certain extent. Second, for the
code file containing the Solidity code, the program traverses
all the code in the file and extracts all the functions in the
code. For each extracted function, it divides the function into
corresponding basic blocks, and inserts opaque predicates
in the basic blocks according to the method of inserting
opaque predicates described previously. Finally, we use the
squeeze control flow algorithm to flatten the control flow of
the function.

Data flow obfuscation. The program needs to traverse the
file code and syntax tree file and save the local variables
traversed. Second, it converts local variables to global vari-
ables. Next, it judges whether there is a Boolean variable. If
it exists, the program divides the Boolean variable. In this
regard, it is necessary to ensure the correctness of traversal
and judgment.

Layout obfuscation. First, the program traverses all the
code in the file, and extracts and saves all the class names,
function names, and variable names into the memory. In this
regard, only one name can be saved in the case of duplicated
names. Second, for each extracted name, we use the method
of random string generation to generate a unique, random
and meaningless identifier. Next, we delete all the comment
information and blank line information in the code. Finally,
the program traverses all the file again and replaces the
function names, class names, and variable names with the
generated identifiers.

6 RELATED WORK

We review related work from the following three aspects:
source code obfuscation, smart contract static analysis and
reverse engineering.

6.1 Source code obfuscation

Many source code obfuscation approaches have been pro-
posed for traditional languages such as C and Java. C
language is a widely used programming language, but it
faces some security issues such as unethical hacking, code
spoofing, reverse engineering, etc. To protect C programs
from anonymous attackers, Qing [52] presents a series of
C source code obfuscation solutions, primarily comprising
layout obfuscation, data flow obfuscation and control struc-
ture flow obfuscation. Ahire et al. [53] introduce four novel
data obfuscation techniques being applied to ‘+’ arithmetic
operator that may lead to the new obfuscation area. To meet
the platform-independent characteristics, Java introduces a
symbolic link technique that can facilitate decompilation.
Therefore, malicious users can directly extract the entire
decrypted code, by which the security of Java programs
is threatened. Zhang et al. [54] devise an inter-classes soft-
ware obfuscation technique. It can extract the code of some
methods from user-defined classes and embed them into

other objects’ methods in the object pool. Thus, this method
can drastically obscure the Java program flow. Zambon [55]
describes a functional dynamic Java byte code obfuscator
based on the general ideas introduced by Aucsmith’s al-
gorithm [56]. This tool provides a high level of security
for the obfuscated code due to the fact that the executed
code is invisible in the initial jar file, at the cost of extreme
performance overhead.

However, in summary all these approaches focus on
traditional languages such as C and Java. To the best of our
knowledge, our work is the first effort towards source-code-
level smart contract obfuscation. At present, there are four
main directions of code obfuscation techniques: control flow
obfuscation, data flow obfuscation, layout obfuscation and
preventive obfuscation [57]. Among them, preventive ob-
fuscation needs to be formulated for a specific decompiler.
Traditional obfuscation methods are mostly used for specific
languages, which cannot directly be applied to Solidity
code. Therefore, our approach focuses on Solidity source
code obfuscation by designing language-specific data flow
obfuscation, control flow obfuscation and layout obfusca-
tion techniques.

6.2 Smart contract static analysis

ContractFuzzer [58] generates fuzzy test inputs based on the
ABI specification of smart contracts. It defines test oracles
to detect security vulnerabilities, configures the EVM to
log smart contract runtime behavior, and analyzes these
logs to report the vulnerabilities. Oyente [48] uses a largely
unsound symbolic execution/tracking semantic approach
to explore certain program paths of smart contracts to
detect corresponding program vulnerabilities. Mythril [45]
automatically scans security vulnerabilities in Ethereum and
other EVM-based blockchain smart contracts. Slither [5]
is a static analysis framework designed to provide rich
information about Ethereum smart contracts. It works by
converting Solidity smart contracts into an intermediate
representation called SlithIR, which uses a static single
assignment (SSA) to form and a streamlined instruction set
to simplify the implementation of the analysis while pre-
serving semantic information that would be lost when con-
verting Solidity to bytecode. Smartcheck [4] converts Solidity
source code into an XML-based intermediate representation
and checks it against the XPath schema. Securify [46], a
security analyzer for Ethereum smart contracts, is scalable,
fully automated, and can validate if contract behavior is
secure or unsecured relative to a given asset. It combines
symbolic execution and taint analysis to accurately find
integer errors in Ethereum smart contracts. Compared to
the existing tools, Osiris [49] detects a larger range of errors
while providing better detection specificity. Manticore [47]
is an open-source dynamic symbolic execution framework
for analyzing binaries and Ethereum smart contracts. Its
flexible architecture allows it to support both traditional
and exotic execution environments. Its API allows users to
customize its analysis. sCompile [59] automatically identifies
critical program paths in smart contracts (including multiple
functional calls such as inter-contract functional calls), ranks
paths based on their critically, and discards them if they
are infeasible or otherwise send user-friendly warnings to

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 18

the path for user inspection. It identifies paths that involve
monetary transactions as critical and prioritizes those that
may violate important attributes. ZEUS [60] is a framework
for verifying the correctness and fairness of smart contracts.
Correctness is first proposed as an adherence to secure
programming practices, while fairness is an adherence to
agreed high-level business logic. ZEUS leverages the power
of abstract interpretation and symbolic model checking as
well as constrained clauses to quickly verify the security of
contracts. ZEUS claims zero false negatives, a low false pos-
itive rate, and an order of magnitude reduction in analysis
time compared to existing techniques.

The experimental results show that BiAn can greatly
challenge the performance of the aforementioned tools on
smart contract vulnerability detection with the obfuscated
smart contracts.

6.3 Reverse engineering

Reverse engineering and anti-reverse research has been
conducted for decades, and many approaches have been
proposed for different platforms. As mentioned previously,
there are also some papers focusing on decompiling and
analyzing EVM bytecode. However, to the best of our
knowledge, there is no work on protecting smart contracts
from reverse engineering from the source code level. Erays7

is the first reverse engineering tool for Ethereum smart con-
tracts that generates readable Solidity-like source code from
EVM bytecode due to the high failure rate. Madmax [61]
is a static program analysis tool for detecting gas-centric
vulnerabilities in smart contracts that uses Vandal to decom-
pile bytecode. Gigahorse [62] performs better in decompiling
unmodified bytecode. Eshield [63], an automated security
enhancement tool, is used to protect smart contracts from
reverse engineering. It replaces the original instructions that
manipulate jump addresses with anti-patterns to interfere
with the recovery of control flows from the bytecode.

Reverse engineering and decompilation tools impose a
significant impact on the security of smart contracts. By
employing BiAn to obfuscate smart contracts, it can improve
the anti-decompilation ability of the contracts and thus
enhance their security and stability.

7 CONCLUSIONS

This paper presents the first smart contract obfuscation
tool, BiAn, which can enhance the security of smart con-
tracts from two aspects. First, it enhances the capacity of
smart contract to resist reverse engineering. Second, the
obfuscated smart contracts can significantly degrade the
performance of existing static smart contract vulnerability
detection tools, as demonstrated via our experiments. The
proposed obfuscation tool can thus help identify defects
or flaws in the existing detection tools, including logical
aspects of vulnerability identification. Since BiAn does not
change the input and functional characteristics of smart
contract, it can be used as a complement to create additional
labelled smart contract vulnerability detection datasets, the
complexity of which is close to the real contracts run on
Ethereum. Furthermore, due to the increased complexity,
BiAn also reduces the risk of plagiarism in the source code

of smart contracts, thereby better protecting the intellectual
property rights of smart contracts.

To mitigate code obfuscation in smart contracts, dynamic
analysis and program synthesis can be employed. Dynamic
analysis entails executing the smart contract code in a
controlled environment to observe its runtime behavior,
including execution flow, variable values, and interactions
with external dependencies. This process aids in identifying
obfuscated code patterns and detecting suspicious or mali-
cious activities. On the other hand, program synthesis au-
tomates code generation based on high-level specifications
or desired properties. In the context of code obfuscation,
program synthesis techniques can be used to reconstruct
the original, non-obfuscated code from its obfuscated ver-
sion. By combining these approaches with code reviews,
documentation, simplicity, modularity, naming conventions,
code audits, testing, and open-source collaboration, a com-
prehensive strategy can be formed to effectively mitigate
code obfuscation.

Currently, our obfuscation method only focuses on the
control flows, data flows and layout within the smart con-
tract source code. We do not consider the functionality
achieved by inter-contract calls. Therefore, in the future,
we will consider how to implement obfuscation on cross-
contract operations to achieve interference with the data
flows transferred between smart contracts. In addition, code
obfuscation methods can be categorized into source code
obfuscation and bytecode obfuscation, which have both sim-
ilarities and differences. While source code obfuscation is
more adept at increasing the attacker’s understanding costs,
bytecode obfuscation has better resistance to decompilers
and similar tools. In the future, if we combine the strengths
of both methods, we may achieve better results. We also
target to lower the gas consumption of obfuscated contracts
by incorporating gas consumption optimization into code
obfuscation [64].

ACKNOWLEDGMENTS

The work is supported by the National Natural Science
Foundation of China (No.62272145 and No.U21B2016), the
Fundamental Research Funds for the Central Universities
of China (B220202072, B210202075), the Natural Science
Foundation of Jiangsu Province (BK20191297), CloudTech-
RMIT Green Cryptocurrency Joint Research Program, and
Hong Kong ITF Project (No. GHP/052/19SZ).

REFERENCES

[1] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart
contract and use cases in blockchain technology,” in 2018 9th In-
ternational Conference on Computing, Communication and Networking
Technologies (ICCCNT), pp. 1–4, IEEE, 2018.

[2] W. Zou, D. Lo, P. S. Kochhar, X. D. Le, X. Xia, Y. Feng, Z. Chen,
and B. Xu, “Smart contract development: Challenges and oppor-
tunities,” IEEE Transactions on Software Engineering, pp. 1–1, 2019.

[3] P. Zhang, F. Xiao, and X. Luo, “A framework and dataset for bugs
in ethereum smart contracts,” 36th IEEE ICSME ’20, 2020.

[4] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: Static analysis of
ethereum smart contracts,” in Proceedings of the 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain,
pp. 9–16, 2018.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 19

[5] J. Feist, G. Grieco, and A. Groce, “Slither: a static analysis frame-
work for smart contracts,” in 2019 IEEE/ACM 2nd International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), pp. 8–15, IEEE, 2019.

[6] Y. Zhang, S. Ma, J. Li, K. Li, S. Nepal, and D. Gu, “Smartshield:
Automatic smart contract protection made easy,” in 2020 IEEE
27th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pp. 23–34, IEEE, 2020.

[7] J. Liu, S. Peng, C. Long, L. Wei, and Z. Tian, “Blockchain for
data science,” in ICBCT’20: 2020 The 2nd International Conference
on Blockchain Technology, 2020.

[8] S. Azzopardi, J. Ellul, and G. J. Pace, “Monitoring smart contracts:
Contractlarva and open challenges beyond,” in International Con-
ference on Runtime Verification, pp. 113–137, Springer, 2018.

[9] M. Di Angelo and G. Salzer, “A survey of tools for analyzing
ethereum smart contracts,” in 2019 IEEE International Conference on
Decentralized Applications and Infrastructures (DAPPCON), pp. 69–
78, IEEE, 2019.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
tech. rep., Manubot, 2019.

[11] A. Mavridou and A. Laszka, “Designing secure ethereum smart
contracts: A finite state machine based approach,” in International
Conference on Financial Cryptography and Data Security, pp. 523–540,
Springer, 2018.

[12] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding
the greedy, prodigal, and suicidal contracts at scale,” in Proceed-
ings of the 34th Annual Computer Security Applications Conference,
pp. 653–663, 2018.

[13] H. Chen, M. Pendleton, L. Njilla, and S. Xu, “A survey on
ethereum systems security: Vulnerabilities, attacks, and defenses,”
ACM Computing Surveys (CSUR), vol. 53, no. 3, pp. 1–43, 2020.

[14] Y. Wang, S. K. Lahiri, S. Chen, R. Pan, I. Dillig, C. Born, and
I. Naseer, “Formal specification and verification of smart contracts
for azure blockchain,” arXiv preprint arXiv:1812.08829, 2018.

[15] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y. Wang, “An
overview of smart contract: Architecture, applications, and future
trends,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 108–
113, 2018.

[16] F. Feyzi and S. Parsa, “A program slicing-based method for
effective detection of coincidentally correct test cases,” Computing,
vol. 100, no. 9, pp. 927–969, 2018.

[17] A. Shatnawi, H. Mili, M. Abdellatif, J. Privat, Y.-G. Guéhéneuc,
N. Moha, and G. E. Boussaidi, “A static program slicing ap-
proach for output stream objects in jee applications,” arXiv preprint
arXiv:1803.05260, 2018.

[18] X. Wang, Y. Zhang, L. Zhao, and X. Chen, “Dead code detection
method based on program slicing,” in 2017 International Conference
on Cyber-Enabled Distributed Computing and Knowledge Discovery
(CyberC), pp. 155–158, IEEE, 2017.

[19] D. Xu, J. Ming, and D. Wu, “Generalized dynamic opaque pred-
icates: A new control flow obfuscation method,” in Information
Security (M. Bishop and A. C. A. Nascimento, eds.), (Cham),
pp. 323–342, Springer International Publishing, 2016.

[20] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proceedings of the
25th ACM SIGPLAN-SIGACT, POPL ’98, (New York, NY, USA),
p. 184–196, Association for Computing Machinery, 1998.

[21] G. Arboit, “A method for watermarking java programs via opaque
predicates,” in The Fifth International Conference on Electronic Com-
merce Research (ICECR-5), pp. 102–110, Citeseer, 2002.

[22] S. Chow, Y. Gu, H. Johnson, and V. A. Zakharov, “An approach to
the obfuscation of control-flow of sequential computer programs,”
in International Conference on Information Security, pp. 144–155,
Springer, 2001.

[23] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy,
“Columbus-reverse engineering tool and schema for c++,” in
International Conference on Software Maintenance, 2002. Proceedings.,
pp. 172–181, IEEE, 2002.

[24] L. Zobernig, S. D. Galbraith, and G. Russello, “When are
opaque predicates useful?,” in 2019 18th IEEE TrustCom/Big-
DataSE, pp. 168–175, 2019.

[25] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfus-
cating transformations,” technical report, 1997.

[26] R. L. Devaney and J. Eckmann, “An introduction to chaotic
dynamical systems,” Acta Applicandae Mathematica, vol. 40, no. 7,
pp. 72–72, 1987.

[27] G. Arboit, “A method for watermarking java programs via opaque
predicates,” Proc.int.conf.electronic Commerce Research, 2002.

[28] G. Wroblewski, “General method of program code obfuscation,”
2002.

[29] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of ob-
fuscating transformations,” tech. rep., Department of Computer
Science, The University of Auckland, New Zealand, 1997.

[30] P. Mcminn, “Search-based software test data generation: a survey,”
Software Testing Verification Reliability, vol. 14, no. 2, pp. p.105–156,
2004.

[31] B. R. Hunt and E. Ott, “Defining chaos,” Chaos An Interdisciplinary
Journal of Nonlinear Science, vol. 25, no. 9, pp. 985–992, 2015.

[32] E. Biham, “Cryptanalysis of the chaotic-map cryptosystem sug-
gested at eurocrypt’91,” Springer-Verlag, 1991.

[33] X. Di, X. Liao, and P. Wei, “Analysis and improvement of a chaos-
based image encryption algorithm,” Chaos Solitons Fractals, vol. 40,
no. 5, pp. 2191–2199, 2009.

[34] C. Collberg, C. Thomborson, and D. Low, “Manufacturing cheap,
resilient, and stealthy opaque constructs,” in Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pp. 184–196, 1998.

[35] S. M. Awan, Security through obscurity: Layout obfuscation of digital
integrated circuits using don’t care conditions. PhD thesis, University
of Maryland, College Park, 2015.

[36] A. Wolf, Quantifying Chaos With Lyapunov Exponents. Nonlinear
Science: Theory and Applications, 1986.

[37] L. Brent, A. Jurisevic, M. Kong, E. Liu, and B. Scholz, “Vandal: A
scalable security analysis framework for smart contracts,” 2018.

[38] “Gigahorse: thorough, declarative decompilation of smart con-
tracts,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE), 2019.

[39] L. Brent, A. Jurisevic, M. Kong, E. Liu, F. Gauthier, V. Gramoli,
R. Holz, and B. Scholz, “Vandal: A scalable security analysis
framework for smart contracts,” arXiv preprint arXiv:1809.03981,
2018.

[40] Kelley, KenPreacher, Kristopher, and J., “On effect size.,” Psycho-
logical Methods, 2012.

[41] R. P. Kadel and K. E. Kip, “A sas macro to compute effect size
(cohen’s) and its confidence interval from raw survey data,” in
South East SAS Users Group (SESUG), 2012.

[42] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart
contracts devour your money,” arXiv e-prints, 2017.

[43] L. Marchesi, M. Marchesi, G. Destefanis, G. Barabino, and
D. Tigano, “Design patterns for gas optimization in ethereum,”
in 2020 IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), pp. 9–15, 2020.

[44] Y. Chen, Y. Wang, M. Goyal, J. Dong, Y. Feng, and I. Dillig,
“Synthesis-powered optimization of smart contracts via data type
refactoring,” Proc. ACM Program. Lang., vol. 6, oct 2022.

[45] D. Prechtel, T. Groß, and T. Müller, “Evaluating spread of ‘gasless
send’in ethereum smart contracts,” in 2019 10th IFIP International
Conference on New Technologies, Mobility and Security (NTMS), pp. 1–
6, IEEE, 2019.

[46] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli,
and M. Vechev, “Securify: Practical security analysis of smart
contracts,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 67–82, 2018.

[47] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco,
J. Feist, T. Brunson, and A. Dinaburg, “Manticore: A user-friendly
symbolic execution framework for binaries and smart contracts,”
in 2019 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pp. 1186–1189, IEEE, 2019.

[48] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making
smart contracts smarter,” in Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 254–269,
2016.

[49] C. F. Torres, J. Schütte, and R. State, “Osiris: Hunting for integer
bugs in ethereum smart contracts,” in Proceedings of the 34th Annual
Computer Security Applications Conference, pp. 664–676, 2018.

[50] C. F. Torres, M. Steichen, and R. State, “The art of the scam:
Demystifying honeypots in ethereum smart contracts,” in 28th
USENIX Security Symposium (USENIX Security 19), (Santa Clara,
CA), pp. 1591–1607, USENIX Association, Aug. 2019.

[51] A. Abdelkrim and J. Y. Duclos, “Dasp: Stata modules for distribu-
tive analysis,” Statistical Software Components, 2007.

[52] S. Qing, W. Zhi-yue, W. Wei-min, L. Jing-liang, and H. Zhi-wei,
“Technique of source code obfuscation based on data flow and

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 20

control flow tansformations,” in 2012 7th International Conference
on Computer Science Education (ICCSE), pp. 1093–1097, 2012.

[53] P. Ahire and J. Abraham, “Mechanisms for source code obfusca-
tion in c: Novel techniques and implementation,” in 2020 Inter-
national Conference on Emerging Smart Computing and Informatics
(ESCI), pp. 52–59, 2020.

[54] X. Zhang, F. He, and W. Zuo, “An inter-classes obfuscation method
for java program,” in 2008 International Conference on Information
Security and Assurance (isa 2008), pp. 360–365, 2008.

[55] A. Zambon, “Aucsmith-like obfuscation of java bytecode,” in 2012
IEEE 12th International Working Conference on Source Code Analysis
and Manipulation, pp. 114–119, 2012.

[56] “Tamper resistant software: an implementation,” in International
Workshop on Information Hiding, 1996.

[57] S. Schrittwieser and S. Katzenbeisser, “Code obfuscation against
static and dynamic reverse engineering,” in Information Hiding,
2011.

[58] B. Jiang, Y. Liu, and W. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pp. 259–269, IEEE, 2018.

[59] J. Chang, B. Gao, H. Xiao, J. Sun, Y. Cai, and Z. Yang, “scompile:
Critical path identification and analysis for smart contracts,” in
International Conference on Formal Engineering Methods, pp. 286–304,
Springer, 2019.

[60] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing
safety of smart contracts.,” in Ndss, pp. 1–12, 2018.

[61] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smarag-
dakis, “Madmax: Surviving out-of-gas conditions in ethereum
smart contracts,” Proc. ACM Program. Lang., vol. 2, Oct. 2018.

[62] N. Grech, L. Brent, B. Scholz, and Y. Smaragdakis, “Gigahorse:
thorough, declarative decompilation of smart contracts,” in 2019
IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 1176–1186, IEEE, 2019.

[63] W. Yan, J. Gao, Z. Wu, Y. Li, Z. Guan, Q. Li, and Z. Chen, “Eshield:
protect smart contracts against reverse engineering,” in Proceedings
of the 29th ACM SIGSOFT ISSTA ’20, pp. 553–556, 2020.

[64] E. Albert, J. Correas, P. Gordillo, G. Román-Dı́ez, and A. Rubio,
“GASOL: gas analysis and optimization for ethereum smart con-
tracts,” in Tools and Algorithms for the Construction and Analysis of
Systems - 26th International Conference, TACAS 2020, Held as Part
of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, Part
II (A. Biere and D. Parker, eds.), vol. 12079 of Lecture Notes in
Computer Science, pp. 118–125, Springer, 2020.

Pengcheng Zhang received the Ph.D. degree in
computer science from Southeast University in
2010. He is currently a full professor in College
of Computer and Information, Hohai University,
Nanjing, China, and was a visiting scholar at San
Jose State University, USA. His research inter-
ests include software engineering, service com-
puting and data science. He has published re-
search papers in premiere or famous computer
science journals, such as TBD, TCC, TETC, TR,
TSE, TSC, TMC, and TKDE. He was the co-

chair of IEEE AI Testing 2019 conference. He served as a technical
program committee member on various international conferences. He is
a member of the IEEE.

Qifan Yu received the bachelor’s degree in com-
puter science and technology from Nanjing uni-
versity of finance and economics in 2021. He is
currently working toward the M.S. degree with
the College of Computer and Information, Hohai
University, Nanjing, China. His current research
interests include data mining and software engi-
neering.

Yan Xiao is an Associate Professor in School
of Cyber Science and Technology at Sun Yat-
sen University. She received her Ph.D. degree
from the City University of Hong Kong and held
a research fellow position at the National Uni-
versity of Singapore. Her research focuses on
the trustworthiness of deep learning systems
and AI applications in software engineering.
More information is available on her homepage:
https://yanxiao6.github.io/.

Hai Dong received a PhD from Curtin University,
Perth, Australia. He is currently a senior lecturer
at the School of Computing Technologies, RMIT
University, Melbourne, Australia. His primary re-
search interests include: Services Computing,
Edge Computing, Blockchain, Cyber Security,
Machine Learning and Data Science. His pub-
lications appear in CSUR, TIE, TII, TMC, TSC,
TSE, etc. He is a Senior Member of the IEEE.

Xiapu Luo is an assistant professor with the
Department of Computing and an Associate Re-
searcher with the Shenzhen Research Institute,
The Hong Kong Polytechnic University. He re-
ceived the Ph.D. degree in Computer Science
from The Hong Kong Polytechnic University, and
was a Post-Doctoral Research Fellow with the
Georgia Institute of Technology. His research fo-
cuses on smartphone security and privacy, net-
work security and privacy, and Internet measure-
ment.

Xiao Wang received the bachelor’s degree in
data science and big data technology from Nan-
jing Audit University in 2022. He is currently
working toward the M.S degree with the College
of Computer and Information, Hohai University,
Nanjing, China. His current research interest is
smart contract of blockchain.

IEEE TRANSACTION ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXXXXX 21

Meng Zhang received the bachelor’s degree in
computer science and technology from Anhui
university of Science and Technology in 2019.
He is currently working toward the M.S. degree
with the College of Computer and Information,
Hohai University, Nanjing, China. His current re-
search interests include data mining and soft-
ware engineering.

