Introduction to the
OpenGL Shading Language

Randi Rost
Director of Developer Relations, 3Dlabs

08-Dec-2005




Why use graphics programmability?

Graphics hardware has changed radically
Fixed functionality is too limiting
Never-before-seen effects are possible

Now, APPLICATIONS can take control over the
processing that occurs on the graphics hardware

Think of yourself as a prisoner (to fixed
functionality) that has been set free! Anything is
possible!

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Use Programmability For...

Rendering increasingly more realistic materials

= Metals
= Stone
= Wood
= Paints
= Etc.

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Use Programmability For...

Rendering natural phenomena
= Fire
* Clouds
= Smoke
= Water
= Eftc.

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Use Programmability For...

* Procedural texturing
= Stripes

* Polka dots
= Bricks

= Stars

= Eftc.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Use Programmability For...

Non-photorealistic (NPR) effects
= Painterly

= Hatch/stroke/pen and ink

* Technical illustration

= Cartoon

= Etc.

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Use Programmability For...

Animation
= Onl/off based on threshold
= Translation/rotation/scaling of any shader parameter
= Key-frame interpolation

S = Particle systems

= Etc.

3D/ b5

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Use Programmability For...

Doing new things with texture maps (or doing old
things more easily)

= Polynomial texture maps
= BRDFs

* Bump maps

* Gloss maps

* [rradiance maps

= Environment maps

= Eftc.

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Use Programmability For...

More realistic lighting effects
= Global illumination

= Spherical harmonics lighting

* |mage based lighting

ScoutWalker model courtesy of Christophe Desse

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Use Programmability For...

More realistic shadow effects
= Ambient occlusion
= Shadow mapping

Volume shadows

Orc model courtesy of Christophe Desse

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

10



Use Programmability For...

More realistic surface effects
= Refraction

= Diffraction

= Anisotropic reflection
= BRDFs

MascotAngst model courtesy of Christophe Desse

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

11



Use Programmability For...

Imaging operations

= Color correction/transformation
= Noise removal

= Sharpening

= Complex blending

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

12



Use Programmability For...

* Better antialiasing
= Stochastic sampling
= Adaptive prefiltering
= Analytic integration
= Frequency clamping
= Etc.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

13



Use Programmability for...

Highly parallel computation

= Visualization of complex functions
= Numerical simulation

= Eftc.

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

14



Shading Languages

Key to making visual programmability accessible to ISVs
* Need to get out of the assembler dark ages

Graphics vendors busy building compiler expertise
= Soon will be as important to performance as drivers are today

Same industry APl dynamics as fixed function APIs

= Just the programming level has changed
Glide CrentiL-
Direct3D

Microsoft Proprietary Open Standard

HLSL »

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

15



Market Creation With API Standards

The foundation of 3Dlabs - Initiated OpenGL ES
professional graphics development and is chairing Khronos
and the OpenGL ES Working Group

penGL|ES.

The standard for embedded 3D graphics -
launched at SIGGRAPH 2003

3Dlabs - initiated OpenGL 2.0 development

3Dlabs - chaired Khronos Graphics and is Permanent ARB Member

Working Group

)penML.

The standard for d ' di .
° glﬁﬂoﬁng Erlagr?émg g;e a The foundation of programmable,

cross-platform, professional
SIGGRAPH 2001 graphics

OpenGL 2.0 was

® launched at
pen L 2 . [ Siglgjyraph 2004

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 16



Visual Processing Revolution

Visual processing is changing the face of
hardware, APIs and tools

Innovation is required at all three levels

OpenGL Shading Language support
released March 2004 Shader

Tools

OpenGL Shading Language is part of the OpenGL -
LQD standard as of OpenGL 2.0 — Sept. 2004. 3Dlabs Shadi ng

pen :
released compiler front-end as open source Lang ua_ges

o ] i Visual
ardware vendors are innovating
rapidly to support graphics Processors

3DZ£3£’5| programmability

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

< S



GLSL and 3Dlabs

3Dlabs shipped industry’s first OpenGL Shading Language
drivers

= Running on complete family of Wildcat VP boards
3Dlabs has placed compiler front-end into open source

* To catalyze industry adoption

*= To encourage cross-vendor consistency to error-checking

3Dlabs has placed various development tools into open
source
» GLSLdemo, GLSLparsertest, GLSLvalidate, ShaderGen
Already in use by leading-edge Toolkit Providers
= Lightwork Design
Already in use by leading-edge ISVs
= Solidworks

20
= Pandromeda pen L_HJ

= Many others that have not yet announced products

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 18



GLSL Background
and Current Status




Status

OpenGL 2.0 is here!

= Specification approved in September 2004

* OpenGL Shading Language is part of core

= API for shading language Is part of core

= Spec is available at OpenGL.org

= Still backwards compatible with previous versions

penGGL2.0

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

20



GLSL Book

First edition released by Addison-Wesley in Feb.
2004
Second edition due out early January 2006
Contains more detailed information

= [ntroduction and overview

= Complete reference
* Dozens of detailed examples

Companion web site
= http://3dshaders.com

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

21



Shading Language Differences

GLSL compiles directly from high level source to
machine code inside of OpenGL

HLSL translates high level source to Direct3D
source outside of DirectX

HLSL Shader
HLSL Translator
D3D Program
‘I' OpenGL 2.0 Driver
N LSL i <— OpenGL Shad
Direct3D Driver GLSL Compiler ben acet
v
Hardware Hardware

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 22



OpenGL 2.0 Logical Diagram

Vertices
Fragments

H

& Programmable Unit

-=> Textures

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 23



Vertex Processor Capabilities

Lighting, material and geometry flexibility

Vertex processor can do general processing,
Including things like:

* Vertex transformation

= Normal transformation, normalization and rescaling

= Lighting

= Color material application

= Clamping of colors

* Texture coordinate generation

= Texture coordinate transformation

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

24



Vertex Processor Capabilities

The vertex shader does NOT replace:
= Perspective divide and viewport mapping
= Frustum and user clipping
= Backface culling
* Primitive assembly
= Two sided lighting selection
= Polygon offset
= Polygon mode

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

25



Vertex Processor Overview

Standard

OpenGL Generic
attributes attributes

gl_color 0,1,2, ...

gl_normal
etc.
Vertex 4 U_ser-deflned uniforms:
" 4 epsilon, myLightPos, surfColor, etc.
Texture Maps — /Processor < Built-in uniforms:

gl_FogColor, gl_ModelViewMatrix, etc.

TN

Standard Special User-defined
Varying Variables Varying

gl_FrontColor gl_Paosition normal

gl_BackColor gl_ClipVertex refraction

3D/62£75_ etc. gl_PointSize etc.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 26



3D/.ubs.

Fragment Processor Capabilities

Flexibility for texturing and per-pixel operations

Fragment processor can do general processing,
Including things like:

= Qperations on interpolated values

= Texture access

= Texture application

* Fog

= Color sum

* Pixel zoom

= Scale and bias

= Color table lookup

= Convolution

= Color matrix

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

27



Fragment Processor Capabilities

The fragment shader does NOT replace:

= Shading model Histogram

= Coverage Minmax

= Pixel ownership test Pixel packing
= Scissor Pixel unpacking
= Stipple

= Alpha test

= Depth test

= Stencil test

= Alpha blending
= Logical ops

= Dithering

= Plane masking

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Fragment Processor Overview

Standard Special User-defined
Varying Variables Varying
gl_Color gl_FragCoord normal
gl_SecondaryColor gl_FrontFacing refraction
etc. etc.
Fragment' User-defined uniforms:
_ Y < epsilon, myLightPos, surfColor, etc.
Texture Maps ——p/Processor < Built-in uniforms:

gl_FogColor, gl_ModelViewMatrix, etc.

Special
Variables
gl_FragColor
gl_FragDepth

gl_FragData[n]

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 29



< S

Vertex Processor Input

Vertex shader I1s executed once each time
a vertex position is specified
= Via glVertex or glDrawArrays or other vertex array calls

Per-vertex input values are called
attributes
= Change every vertex

= Passed through normal OpenGL mechanisms (per-vertex
API or vertex arrays)

More persistent input values are called
uniforms

= Can come from OpenGL state or from the application

= Constant across at least one primitive, typically constant for
many primitives

= Passed through new OpenGL API calls

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

30



Vertex Processor Output

Vertex shader uses input values to compute
output values

Vertex shader must compute gl _Position
= Mandatory, needed by the rasterizer

= Can use built-in function ftransform() to get invariance with
fixed functionality

Vertex shader may compute:
= gl _ClipVertex (if user clipping is to be performed)
= gl _PointSize (if point parameters are to be used)

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

31



Vertex Processor Output

Other output values are called varying

variables

= E.g., color, texture coordinates, arbitrary data

= Will be interpolated in a perspective-correct fashion across
the primitives

= Defined by the vertex shader

= Can be of type float, vec2, vec3, vec4, mat2, mat3, mat4, or
arrays of these

OQutput of vertex processor feeds into
OpenGL fixed functionality

= |f a fragment shader is active, output of vertex shader must
match input of fragment shader

= |f no fragment shader is active, output of vertex shader must
| match the needs of fixed functionality fragment processin
3D)/.ts Y ragment p S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

32



Vertex Processor Definition

The vertex processor executes the vertex shader

The vertex processor has knowledge of only the
current vertex

An implementation may have multiple vertex
processors operating in parallel

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 33



Vertex Processor Definition

When the vertex processor is active, the
following fixed functionality is disabled:
= The modelview matrix is not applied to vertex coordinates
= The projection matrix is not applied to vertex coordinates
= The texture matrices are not applied to texture coordinates
= Normals are not transformed to eye coordinates
= Normals are not rescaled or normalized

= Normalization of GL_AUTO_NORMAL evaluated normals is not
performed

= Texture coordinates are not generated automatically

= Per vertex lighting is not performed

= Color material computations are not performed

= Color index lighting is not performed

= Point size distance attenuation is not performed

= All of the above applies when setting the current raster position

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



< S

Intervening Fixed Functionality

Results from vertex processing undergo:

= Color clamping or masking (for built-in varying variables that
deal with color, but not user-defined varying variables)

= Perspective division on clip coordinates

= Viewport mapping

= Depth range

= Clipping, including user clipping

= Front face determination

* Flat-shading

= Color, texture coordinate, fog, point-size and user-defined
varying clipping

= Final color processing

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

35



Fragment Processor Input

Output of vertex shader is the input to the
fragment shader
= Compatibility is checked when linking occurs

= Compatibility between the two is based on varying variables
that are defined in both shaders and that match in type and

name
Fragment shader is executed for each fragment
produced by rasterization

For each fragment, the fragment shader has
access to the interpolated value for each varying

variable
= Color, normal, texture coordinates, arbitrary values

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

36



Fragment Processor Input

Fragment shader may access:

= gl _FrontFacing — contains direction (front or back) of
primitive that produced the fragment

= gl _FragCoord — contains computed window relative
coordinates x, Yy, z, 1/w
Uniform variables are also available
= OpenGL state or supplied by the application, same as for
vertex shader
If no vertex shader is active, fragment shader get
the results of OpenGL fixed functionality

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 37



Fragment Processor Output

Output of the fragment processor goes on to the
fixed function fragment operations and frame
buffer operations using built-in variables

* gl _FragColor — computed R, G, B, A for the fragment

» gl _FragDepth — computed depth value for the fragment

= gl _FragData[n] — arbitrary data per fragment, stored in
multiple render targets

= Values are destined for writing into the frame buffer if back
end tests all pass
Clamping or format conversion to the target
buffer iIs done automatically outside of the
fragment shader

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 38



< S

Fragment Processor Definition

The fragment processor executes the fragment
shader

The fragment processor has knowledge of only
the current fragment

An implementation may have multiple fragment
processors operating in parallel

When the fragment processor is active, the
following fixed functionality Is disabled:
= The texture environments and texture functions are not applied
= Texture application is not applied
= Color sum is not applied
* Fog is not applied

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

39



3D/abs.

Fragment Processor Definition

The fragment processor does not affect the
behavior of the following:

= Texture image specification

= Alternate texture image specification

= Compressed texture image specification

* Texture parameters behave as specified even when a
texture is accessed from within a fragment shader

= Texture state and proxy state
= Texture object specification
* Texture comparison modes

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

40



GLSL Language
Detalls




Design Focus

Based on syntax of ANSI C

Some additions to support graphics functionality
Some additions from C++

Some differences for a cleaner language design

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

42



SD)/abs

Additions for Graphics

Vector types are supported for floats, integers, and
booleans

= Can be 2-, 3-, or 4- components
Floating point matrix types are supported
= 2%X2, 3X3, or 4x4
Type qualifiers attribute, uniform, and varying

Built-in names for accessing OpenGL state and for
communicating with OpenGL fixed functionality

A variety of built-in functions are included for common
graphics operations

= Square root, trig functions, geometric functions, texture lookups,
etc.

Keyword discard to cease processing of a fragment

Vector components are named (.rgba, .Xxyzw, .stpq) and can
be swizzled

Sampler data type is added for texture access

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

43



Additions from C++

Function overloading based on argument types
Function declarations are required
Variables can be declared when needed

Struct definition automatically performs a
corresponding typedef

Data type bool

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

44



< S

ANSI C Features Not Supported

Automatic promotion of data types

Double, byte, short, long and unsigned byte/short/int/long
Switch statements, goto statements, and labels
Pointers and pointer-related capabilities
Character and string literals

Unions

Enum
Bit-fields
Modulus and bit-wise operators

= 0%, ~, >> <A, & %=, <<=, >>=, &=, =, I=
File-based preprocessor directives

Number sign-based preprocessor operators
= # #@, H#H#, etc.
sizeof

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 45



Other Differences

Constructors are used for conversion rather than
type casts

Function parameters are passed by value-return

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

46



< S

Basics

No inherent limit on hard-to-count resources such as
registers or instructions

= But limits may exist on early implementations
Well-formed shaders are portable
lll-formed shaders may compile but are not portable

Compilers must report lexical, grammatical, and syntactical
errors

Linkers must report compatibility errors, unresolved
references, and out-of-resource errors

Shaders containing errors cannot be executed

Compilers may report warnings about code that limits
performance

Some slight differences between the language for vertex
shaders and the language for fragment shaders

= Built-in variables, type qualifiers, and built-in functions differ slightly

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

a7



< S

Source Code

The source code for a shader consists of an
array of strings

Each string may contain multiple lines of source
code, separated by new-lines

A line of source code may be made of multiple
strings

Compiler diagnostic messages identify the
source string and the line within the string that
caused the error

Source strings are numbered starting from O

When parsing, current line number is number of
new-lines processed plus 1

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

48



< S

Basic Structure

A shader is a sequence of declarations and
function bodies

Curly braces are used to group sequences of
statements

A shader must have a main function
Statements end with a semi-colon

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

49



Comments

Comments are delimited by /* and */, or by // and
a new-line

Comments cannot be nested

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

50



Basic Types — 1 of 2

float, vec2, vec3, vec4
= 1,2, 3, or 4 floating point values
= Preferred data types for most processing
Int, ivec2, ivec3, ivec4
= 1, 2, 3, or 4 integer values
= Integer for loops and array index
= Underlying hardware not expected to support integers natively
= Limited to 16 bits of precision, plus sign
= No guaranteed wrapping behavior
bool, bvec2, bvec3, bvec4
= 1,2, 3, or 4 boolean values
= As in C++, contains true or false
= Used in expressions for conditional jumps
= Underlying hardware not expected to support booleans natively
mat2, mat3, mat4
= Floating point square matrix
3D/a: b.s'.. » Used to perform transformation operations

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



Basic Types — 2 of 2

void
= Used for functions that do not return a value
samplerlD, sampler2D, sampler3D

= Handles for accessing 1D, 2D, and 3D textures
= Used in conjunction with texture access functions

samplerCube
= Handle for accessing a cube map texture
= Used in conjunction with texture access functions

samplerlDShadow, sampler2DShadow

= Handles for accessing 1D or 2D depth textures with an
Implicit comparison operation
= Used in conjunction with texture access functions

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

52



< S

Arrays

An aggregation of variables of the same type

All basic types and structures can be aggregated
Into arrays

Only 1D arrays are supported

Size of array can be expressed as an integral
constant expression within square brackets ([ ])

Arrays can be declared without a size, and then
re-declared later with the same type and a size

Using an index that goes beyond an array’s
bounds results in undefined behavior

Examples:

float ramp[10];
vec4 colors|4];
bool results[3];

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

53



3D)/abs

Structures

User-defined types can be created using struct with
previously defined types

Example:
struct surfMaterial

float ambient;
float diffuse;
float specular;
vec3 baseColor;

} surf;

surfMaterial surfl, surf2;
Creates a new type called surfMaterial
Defines variables of this type called surf, surfl, and surf2

Structures can include arrays
Fields are selected using the period ( .)

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

54



Variables and Scoping

Variables, types, functions must be declared
before use

No default type, everything must be declared with
atype

A variable’s scope is determined by where it is
declared

Shared globals are permitted, types must match

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 55



3D/abs.

Type Qualifiers

const

= variable is a constant and can only be written during its declaration
attribute

= per-vertex data values provided to the vertex shader
uniform

= (relatively) constant data provided by the application or by OpenGL
for use in the shader

varying

= a perspective-correct interpolated value

= output for vertex shader

= input for fragment shader
In

= for function parameters copied into a function, but not copied out
out

= for function parameters copied out of a function, but not copied in
Inout

= for function parameters copied into and out of a function

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

56



Constants

Named constants are declared using the const qualifier,
e.g..

const float epsilon = 0.0001;

const iInt loopCount = 8;

const vec3 position = vec3 (0.0, 0.0, 0.0);

Const qualifier can only be used by itself or with uniform

Can be used to qualify local or global variables or function
parameters
Literal constants can be expressed as in C

= Decimal (e.g., 1023, 4076, 5, 0)

= Qctal (e.g., 0777, 05, 02345)

= Hexadecimal (e.g., OXFFFF, 0x11, OXFEE)

* Floating point (e.g., 1.0, 5839.37, 32.0)

= Scientific notation (e.g., 0.1e-5, 5.333e6, 1.0E10, 2.1E+3)

Character and string constants are not supported

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

57



< S

Attribute Variables

Input to the vertex processor
Data provided by the application that changes every vertex
Available as read-only in a vertex shader
Can be a standard OpenGL vertex attribute
= gl _Color, gl Normal, gl Vertex, gl_Texcoord, etc.
Can be user-defined
= Temperature, weighting factor, glossiness, refraction factor, etc.

APl is provided to tie generic vertex attributes supplied by
an application to attribute names in a shader

Specification of vertex position causes execution of the
vertex shader

Can only be used as a qualifier for float, vec2/3/4, and
mat2/3/4

Global variables only

attribute vec3 tangent;

attribute float density;

attribute vec3 binormal;

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

58



< S

Uniform Variables

Input to vertex processor or fragment processor
Data provided by the application or by OpenGL
Changes relatively infrequently (i.e., constant for one or
more primitives)
Used to make OpenGL state available to shaders
= gl_ModelViewProjectionMatrix, gl_FogColor, gl_FrontMaterial, etc.
Used by application to provide additional data to shaders
= paseColor, epsilon, eyeDir, LightPos, scaleFactors
Cannot be position dependent

Global uniforms are read-only and there is a queriable limit
on how much storage is available

Can only be used to qualify global variables

uniform vec3 BaseColor;

uniform float MixRatio;

uniform vec3 eyePosition;

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

59



3D/.ubs.

Varying Variables

Output from vertex processor

= Can be read or written
Input for fragment processor

= Read-only
Global variables only
Names/types must match or a link error will occur
Used to specify values that are interpolated across a
primitive
Can be standard OpenGL values

= gl _FrontColor, gl_TexCoord[0], gl_TexCoord[1], etc.
Can be user-defined values

= normal, halfAngle, thickness, modelCoordinate, etc.

Varying values are interpolated in a perspective-correct
fashion

varying vec3 Normal;

varying vec3 EyeDir;

varying float LightlIntensity;

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

60



< S

Operators

Same as ANSI C except no:
= Modulus operator

= Bit-wise operators

= Address-of

= Dereference

= Type cast

Operators work as expected on floats, ints, bools

Operators work component-wise for vectors and
matrices

= Except for * which performs matrix multiplication
Only assignment (=), equality (==, =), and field
selection (. ) operators work with structures

Only array subscript operator (| ]) works on
arrays

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 61



Constructors

Function call syntax is used to make a value of a
desired type

“Parameters” are used to initialize the
constructed value

Can be used to:
* Do data type conversion
= Build a larger type out of several smaller types
* Reduce the size of a larger type
* Do swizzling of components

All lexically correct parameter lists are valid

Parameter list must be of sufficient size and
correct type

Parameters are assigned to the constructed
value from left to right

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



< S

Scalar Constructors

Some scalar constructor examples:

int(bool) //
int(float) //
float(bool) //
float(int) //
bool (fFloat) //
bool(int) //
float(vecl3d) //

converts a Boolean value to an iInt
converts a float value to an iInt
converts a Boolean value to a float
converts an integer value to a float
converts a float value to a Boolean
converts an integer value to a Boolean
selects first component of the vector

From float to int, fractional part is dropped

From int or float to bool, 0 and 0.0 are converted to false,
other values are converted to true

From bool to int or float, false is converted to 0 or 0.0, true to

lorl0

Copyright © 2005, 3Dlabs, Inc. Ltd

December 9, 2005

63



< S

Vector Constructors

A single scalar parameter will initialize all components of a
vector

Vector constructor examples:
vec3(float)
vec4(ivecd)
vec2(float, float)
ivec3(int, int, int)
bvec4(int, int, float, float)
vec2(vec3l)
vec3(vecd)
vec3(vec2, float)
vec3(float, vec2?)
vec4(vec3, float)
vec4(float, vec3)
vec4(vec2, vec2)

Usage:
vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 rgbha = vec4(1.0);
vec3 rgb = vec3(color);

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

64



3D/.ubs.

Matrix Constructors

A single scalar parameter is used to initialize all
components on the diagonal of the matrix, others are set to
0.0

Matrices are constructed in column major order

Examples:
mat2(float)
mat3(float)
mat4(float)
mat2(vec2, vec2);
mat3(vec3, vec3, vec3);
mat4(vec4, vecd, vecd, vecd);
mat2(float, float,
float, float);

mat3(float, float, float,
float, float, float,
float, float, float);

mat4(float, float, float, float,
float, float, float, float,
float, float, float, float,
float, float, float, float);
Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

65



Structure Constructors

Constructor for a structure is available once
structure i1s defined

Example:

struct light

{
float Intensity;

vec3 position;

}:

light newLight

1ight(3.0, vec3(1.0, 2.0, 3.0));

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

66



Vector Components

Vector components can be referred to using array syntax
or a single letter:

= [0], [1], [2], [3]
" rgba

= X, Y,Z,W

“ s, 4,p.Q

This syntax can be used to extract, duplicate, or swizzle
components

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);
vecd swiz= pPOS.wWzyX; // swiz = (4.0, 3.0, 2.0, 1.0)
vecd dup = poS.XXyy; // dup = (1.0, 1.0, 2.0, 2.0)

pos.xw = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)
pos.wx = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)
pos.xx = vec2(3.0, 4.0); // illegal - "x" used twice

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005



< S

Matrix Components

Matrix components can be accessed using array
subscripting syntax

A single subscript selects a single column

A second subscript selects a component within a
column

mat4d m;

m[1l] = vecd4(2.0); // sets the second column to all 2.0

m[O0][0] = 1.0; // sets the upper left element to 1.0

m[2]1[3] = 2.0; // sets the 4th element of the third
// column to 2.0

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

68



< S

Expressions

Constants

Constructors

Variables

Component field selectors

Subscripted array names
Scalar/vector/matrix operations as expected
+, -, *and /

Ternary selection operation (? :)
User-defined functions

Built-in functions

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

69



Function Definitions

Function names can be overloaded
= Argument lists must differ

Functions must be declared or defined before
being called

Must have a basic type as a return value
= Can be void

Arguments can be a basic type, arrays, or
structures

Return type can be a structure, but not an array
A valid shader must have a function called main
Recursion behavior is undefined

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 70



3D/ats.

Function Calling Conventions

Functions are called by value-return
Arguments can include an optional qualifier

In — for function parameters copied into a function, but not
copied out

out — for function parameters copied out of a function, but
not copied In

inout — for function parameters copied into and out of a
function

const — for function parameters that are contants
If no qualifier is specified, in is assumed

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

71



Function Examples
Declaration

vec3 computeColor (in vec3 cl, iIn vec3 c2);
float radians (float degrees);

Definition

float myFunc (in float fl1, // T1 1s copied in
inout float f2) // 2 is copied In and out

{
float myResult;
// do computations
return myResult;

+

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

72



Conditional Statements

if and if-else are supported

If expression must be type bool
Can be nested

Examples:

iIT (diffuse > 0.1)
colorl = daytimeColor;

iIT (r < GrainThreshold)

color += LightWood * LightGrains * noisevec|2];
else

color -= LightWood * DarkGrains * noisevec|[2];

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

73



lteration Statements

for, while, and do-while loops are supported as In
ANSI C

Loops can be nested
Examples:

for (i = 0; i < 8; i++)
color += contribution[i];

while (1 > 0)
color += contribution[--1];

do
total += lightContrib[i--];

3Dldb$ while (i > O);

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005




< S

Jump Statements

continue, break, and return are supported as in
ANSI C

return can return an expression

discard can be used in a fragment shader to
abandon the operation on the current fragment

Examples:

return (colorl + color2 + color3);

iIf (intensity < 0.0)
discard;

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

75



< S

Vertex Shader Built-in Variables

The following special variables are available in a

vertex shader:

vec4d gl Position; // must be written to
float gl _PointSize; // may be written to
vec4d gl ClipVertex; // may be written to

Every execution of a vertex shader must write the
homogeneous vertex position into gl_Position
= Can use the built-in function ftransform() to achieve
iInvariance with fixed functionality
Vertex shaders may write the size of points to be
rasterized (measured in pixels) into the built-in
variable gl_PointSize

Vertex shaders may write the transformed
coordinate to be used in conjunction with user
clipping planes into gl _ClipVertex

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

76



3D/ats.

Vertex Shader Built-in Attributes

The following are available from a vertex shader

for accessing standard OpenGL vertex attributes:

attribute
attribute
attribute
attribute
attribute
attribute

attribute
attribute

Copyright © 2005, 3Dlabs, Inc. Ltd

vec4
vec4
vec3
vec4
vec4d
vec4d

vec4d

gl Color;
gl _SecondaryColor;
gl Normal;
gl Vertex;
gl _MultiTexCoordO;
gl MultiTexCoordl;

gl MultiTexCoordN-1;

float gl FogCoord;

December 9, 2005

77



< S

Built-in Constants

The following built-in constants are defined:
gl _MaxLights = 8
gl MaxClipPlanes = 6
gl MaxTextureuUnits = 2
gl MaxTextureCoords = 2
gl _MaxVertexAttribs = 16
gl _MaxVertexUniformComponents = 512
gl _MaxVaryingFloats = 32
gl _MaxVertexTexturelmageunits = 0
gl MaxTexturelmageUnits = 2

gl _MaxFragmentUniformComponents 64

gl MaxCombinedTexturelmageUnits = 2
Can be used within a shader

Have the same value as queriable values of the
same name in OpenGL

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

78



3D/.ubs.

State-Tracking

Existing OpenGL state is available to shaders
= Uniform variables with reserved prefix “gl " are used to
automatically track OpenGL 1.5 state
Variables can be used by shaders to access
current OpenGL state

= These are built-in uniform variables so do not need to be
declared or included

State tracking will occur for all such variables
that are used in a shader

Examples:

gl _ModelViewMatrix

gl _ModelViewProjectionMatrix
gl _LightSource[gl MaxLights]
gl _Fog

gl _ClipPlane[gl MaxClipPlanes]

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

79



< S

Built-in Varying Variables

Available to be written in a vertex shader:

varying vec4
varying vec4
varying vec4
varying vec4
varying vec4

gl_FrontColor;

gl_BackColor;
gl_FrontSecondaryColor;
gl_BackSecondaryColor;

gl _TexCoord[gl MaxTextureCoords];

varying float gl FogFragCoord;
Available to be read in a fragment shader

varying vec4
varying vec4
varying vec4

gl _Color;
gl_SecondaryColor;
gl_TexCoord[gl_MaxTextureCoords];

varying float gl FogFragCoord;
Can be used to interface to the fixed functionality

of OpenGL

Copyright © 2005, 3Dlabs, Inc. Ltd

December 9, 2005

80



Fragment Shader Built-in Variables

The following special variables are available as read-only in
a fragment shader:

vec4 gl FragCoord; // window relative coords

bool gl FrontFacing; // is primitive frontfacing?

The following special variables are available for writing in a
fragment shader:
vec4d gl FragColor; // final color value
float gl FragDepth; // fTinal depth value
vecd gl FragData[n]; // arbitrary data
= gl _FragCoord and gl_FrontFacing contain values computed by

fixed functionality in between the vertex processor and the
fragment processor

= gl _FragColor and gl_FragDepth should be written with the values
to be used by the back end of the processing pipeline

= |If gl_FragDepth is not written, the depth value computed by fixed
functionality will be used as the depth

= gl_FragData|n] can be used to write arbitrary date to multiple
render targets

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

81



< S

Bullt-in Functions

Trigonometry/angle
= radians, degrees, sin, cos, tan, asin, acos, atan

Exponential
= pow, exp2, log2, sqrt, inversesqrt
Common
= abs, sign, floor, ceil, fract, mod, min, max, clamp, mix, step,
smoothstep

Geometric and matrix

* |length, distance, dot, cross, normalize, ftransform,
faceforward, reflect, matrixCompMult

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

82



Bullt-in Functions

Vector relational
= |essThan, lessThanEqual, greaterThan, greaterThanEqual,
equal, any, all
Texture lookup

= texturelD/2D/3D, texturelD/2D/3DProj, textureCube,
texturelD/2DShadow, texturelD/2DShadowProj

Fragment shader only
= dFdx, dFdy, fwidth

Noise
= noisel/2/3/4

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

83



Preprocessor

Preprocessor processes strings before they are
compiled

Support for all ANSI C preprocessor directives
except file-based ones

= e.g., #include

Predefined macros LINE , FILE
__VERSION___

No number sign operators or sizeof

Two pragmas are defined:
= Turn optimization on and off
= Turn debugging on and off

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

84



API Detalls




< S

Objects

Objects are OpenGL-managed data structures
that consist of state and data

Where GLSL Is concerned, objects are named
(given handles) by OpenGL, and these names are
used by the application to subsequently refer to
the created object

Applications can provide data for objects and
modify their state

All objects can be shared across contexts

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

86



Shader Source Code

Source code intended for an OpenGL processor
IS called a shader
Shaders are defined as an array of strings

= Strings need not be null-terminated, as length of strings are
passed as well

= Pass a string length less than 0 to indicate a null-terminated
string

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 87



Usage Model

Four steps to using a shader
= Send shader source to OpenGL
= Compile the shader
= Create an executable (i.e., link compiled shaders together)
» |nstall the executable as part of current state

Goal was to mimic C/C++ source code
development model

Key benefits:
= Shader source is highly portable
= NoO need to change app when compiler improvements occur

= Shaders can be compiled at any time (e.g., at app
Initialization time or just before use)

= Executables can be created at any time (e.g., at app
Initialization time or just before use)

= Supports development of modular shaders

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

88



Shader Objects

Shader objects are created with:
= shaderlD = glCreateShader(shaderType);

Shader source code is supplied to OpenGL using:
= glShaderSource(shaderlD, numStrings, strings, lengths)

Shader objects are compiled with:

= glCompileShader(shaderlD);

= Call glGetShaderiv with the constant GL_ COMPILE_STATUS
to determine whether the shader was compiled successfully

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 89



Shader Objects

The shader object’s compiler information string
can be obtained with:
= glGetShaderinfoLog(shaderlD, maxLen, actualLen, buffer)

An executable for a programmable processor may
be built from several shader objects

= One shader object might contain main, other shader objects
might contain functions called by main

* Resolved at link time
= Supports modular development of complex shaders

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 90



Program Objects

A program object is a container for shader
objects

= This establishes the set of shaders that need to be linked
together when used

= programOQObj = glCreateProgram()
= glAttachShader(programiD, shaderID)
= glDetachShader(programliD, shaderID)
The shaders in a program object are linked with
= glLinkProgram(programiD)

A program object is made current with:
= glUseProgram(programiD)

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 91



Object Deletion

Shader objects and program objects are deleted
with:

= glDeleteShader(shaderlD)

= glDeleteProgram(programiD)

= Data for a shader object isn't actually deleted until it is no
longer attached to any program object for any rendering
context

= Data for a program object is deleted when it is no longer in
use by any context

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 92



Shader Compatibility

Compatibility between the shaders in a program
object can be checked with:
» glGetPrograminfoLog(programID, maxLen, actualLen, buffer)
= Returns the info log for the specified program object

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

93



Linking and Using Program Objects

When glLinkProgram is called:

= Attached shader objects are linked together to create an
executable program and the program object’s info log is
updated

= |f the program object is currently in use, the re-linked

executable is immediately made part of the current
rendering state

When glUseProgram is called:

= |f the program object contains compatible, valid shader
objects (i.e., no link errors), then the executable programs it
contains are made part of the current rendering state

Shaders in the program object are checked for
compatibility

= |f both a vertex shader and a fragment shader are supplied,
they must be compatible

= |f only one of the two is supplied, it must be compatible with
= {» JOTN the fixed functionality interface defined by OpenGL

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

94



Vertex Shader Input

Vertex data is provided using the normal OpenGL
mechanisms

= glColor, giINormal, glTexCoord, glVertex
= Vertex arrays

= Example: calling gINormalf results in setting the value of the
built-in attribute gl_Normal in the current shader

Vertex shader is executed:
= Once when the glVertex command is called

= Multiple times when glDrawArrays and other vertex array
commands are called

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

95



Vertex Shader Input

Uniforms and Attributes
= Uniforms and attributes load data that is used in shaders

Attributes change per vertex

= Standard attributes are defined as GLSL built-ins (e.g.
gl _Vertex, gl_Normal, gl_Color)

= Generic attributes (tangent, temperature, pressure, velocity,
etc.)

* |mplementations must allow at least 16 attributes that can
hold up to the size of a vec4d
Uniforms are constant per primitive or group of
primitives
= Change relatively infrequently compared to attributes

= Atleast 512 floats for a vertex shader and 64 for a fragment
shader

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

96



Generic Attributes

New OpenGL 2.0 entry points can be used to
provide generic attribute data
= glVertexAttrib

Enhanced vertex arrays also allow generic

attributes

= Call glVertexAttribPointer with the index of the user-defined
array (a value from 0 to GL_. MAX_VERTEX ATTRIBS —-1)

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 97



Generic Attributes

Generic attributes are bound to a variable name
In a program object with:
= glBindAttribLocation(programlD, index, name)

= User-defined attributes may be bound explicitly before
calling glLinkProgram, or they will be bound implicitly and
the assigned location can be queried

= glGetActiveAttrib is used to determine how many of the
available attributes have been used by an executable
program
= glGetActiveAttrib should be called after calling
glLinkProgram
Number of user-defined attributes is an
Implementation-dependent value that can be
gueried
= GL_MAX VERTEX_ATTRIBS
= Must be at least 16, each can contain up to four floats

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

98



< S

glVertex(...)

Standard Vertex Attributes

gl_Vertex

glColor(...) m—

f— g/ _ColOF

gINOrmal(...) =———

f—— g/ _Normal

glSecondaryColor(...) m——

pet— g/ _SecondaryColor

glFogCoordy(...) =

g/ _FogCoord

glMultiTexCoord(0, ...) ==

b g/ _MUuiltiTexCoord0

glMultiTexCoord(1, ...) m—

pet— g/ MuiltiTex Coord 1

glMultiTexCoord(2, ...) s

b g/ MuitiTexCoord2

glMultiTexCoord(N, ...)=——>

f— g/ _MuitiTexCoordN

Application calls
to set standard
vertex attributes

Copyright © 2005, 3Dlabs, Inc. Ltd

Current
attribute value

December 9, 2005

Built-in attribute variables

99



Generic Vertex Attributes

glVertexAttribARB(O0, ... gl_Vertex or MyVertex

)
glVertexAttribARB(1, ...) s— b Opacity
glVertexAttribARB(2, ...) — b Binormal
glVertexAttribARB(3, ...) = [ MyData
gliVertexAttribARB(4, ...) == = SpectralChannel03
glVertexAttribARB(N, ...) =t bt (LINDOUNC])
Application calls Current User-defined attribute
to set generic attribute value variables (excluding gl_Vertex)

vertex attributes

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 100



User-supplied Uniforms

The location of a named uniform variable can be
obtained with:
= |ocation = glGetUniformLocation(programiID, name)

= This call should be made after the call to glLinkProgram
since the location of uniform variables is not known until
linking occurs

= A value of -1 iIs returned if the variable name is not found

Data other than vertex data can be supplied to
the current shaders with:

= glUniform{1234]|fi} (location, value)

= gluniform{1234|fi}v (location, count, value)

= glUniformMatrix{234}v(location, count, transpose, matrix)

= These calls cannot be issued between Begin/End

= No API for supplying the complete contents of a structure in

3D/ one call

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 101




Fragment Shader Input

Loading uniforms is done with the same API as for the
vertex shader

Fragment shaders can access the built-in variable
gl FragCoord

= Contains window relative coordinates (X, y, z, 1/w) as computed by
the preceding fixed functionality rasterization process

= Z value is the depth value that may eventually be written into the
depth buffer for the fragment

Fragment shaders can access the built-in variable
gl_FrontFacing

= Contains the result of the preceding fixed functionality “facingness”
computation

= True if fragment belongs to a primitive that is front-facing, false
otherwise

= Useful for implementing different shading for front/back faces

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 102



Fragment Shader Output

Output of the fragment processor goes on to the
fixed function fragment operations and frame
buffer operations using built-in variables

= gl_FragColor

= gl_FragDepth

= gl _FragData[n]

Clamping or format conversion to the target
buffer is done automatically outside of the
fragment shader

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 103



Texture Access

No restrictions on number of texture accesses or
on number of dependent texture accesses

Applications can continue to use standard
OpenGL calls for loading textures and setting
texture attributes

Applications must define a “sampler” for each
texture to be accessed by specifying the texture
unit to be accessed

When texture accesses occur within a shader,
filtering, wrapping behavior, etc., are performed
based on the attributes of the texture object
being accessed

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 104



Simple Code
Example




Application Example

The following application example is not
complete, but illustrates how an application
would create and use shaders

Complete source code examples are available on
the 3Dlabs developer web site
= http://developer.3dlabs.com

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 106



Application Example

Compiling and using shaders —1 of 4

int installBrickShaders(const GLchar *brickVertex,
const GLchar *brickFragment)

GLuint brickVS, brickFS, brickProg; // handles to objects
GLint vertCompiled, fragCompiled; // status values
GLint linked;

// Create a vertex shader object and a fragment shader object

brickVs
brickFS

= glCreateShader(GL_VERTEX SHADER);
= glCreateShader (GL_FRAGMENT_SHADER) ;

// Load source code strings into shaders

glShaderSource(brickVSs, 1, &brickVertex, NULL);
glShaderSource(brickFS, 1, &brickFragment, NULL);

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 107



Application Example

Compiling and using shaders — 2 of 4

// Compile the brick vertex shader, and print out
// the compiler log file.

glCompileShader(brickVsS);
glGetShaderiv(brickVs, GL COMPILE_STATUS, &vertCompiled);
printShaderInfolLog(brickVsS);

// Compile the brick fragment shader, and print out
// the compiler log file.

glCompileShader(brickFS);
glGetShaderiv(brickFS, GL COMPILE_STATUS, &fragCompiled);
printShaderInfoLog(brickFS);

1T (vertCompiled || 'fragCompiled)
return O;

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 108



Application Example

Compiling and using shaders —3 of 4

// Create a program object and attach the two compiled shaders

brickProg = glCreateProgram();
glAttachShader(brickProg, brickVsS);
glAttachShader(brickProg, brickFS);

// Link the program object and print out the info log
glLinkProgram(brickProg);

glGetProgramiv(brickProg, GL_LINK STATUS, &linked);
printProgramlinfoLog(brickProg);

1T (1linked)
return O;

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 109



Application Example

Compiling and using shaders —4 of 4

// Install program object as part of current state
glUseProgram(brickProg);
// Set up initial uniform values
gluniform3f(getuUniLoc(brickProg, "BrickColor'), 1.0, 0.3, 0.2);
gluniform3f(getUniLoc(brickProg, "*MortarColor™), 0.85,0.86,0.84);
gluniform2f(getUniLoc(brickProg, "BrickSize'), 0.30, 0.15);
glUniform2f(getUniLoc(brickProg, "BrickPct'"), 0.90, 0.85);
gluniform3f(getUniLoc(brickProg, "LightPosition™), 0.0,0.0,4.0);

return 1;

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 110



Application Example

Printing the shader info log
void printShaderiInfoLog(GLuint shader)

{
int infologLength = 0;
int charsWritten = 0;
GLchar *infolLog;
printOpenGLError(); // Check for OpenGL errors
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infologLength);
printOpenGLError(); // Check for OpenGL errors
1T (infologLength > 0)
{
infoLog = (GLchar*)malloc(infologLength);
it (infoLog == NULL)
{
printF(""ERROR: Could not allocate InfoLog buffer\n™);
exit(l);
}
glGetShaderiInfoLog(shader, infologLength,
&charsWritten, infolLog);
printf("'InfoLog:\n%s\n\n", infolLog);
free(infoLog);
| ¥
30162&&'. printOpenGLError(); // Check for OpenGL errors

C;byright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

111



Application Example

Getting the location of a uniform variable

GLint getUniLoc(GLuint program, const GLchar *name)

{
GLint loc;
loc = glGetUniformLocation(program, name);
if (loc == -1)
printf("'No such uniform named \"%s\'"\n", name);
printOpenGLError(); // Check for OpenGL errors
return loc;
+

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 112



Brick Shader — Lighting

ecPosition

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 113



Brick Vertex Shader

uniform vec3 LightPosition;
const float SpecularContribution = 0.3;
const float DiffuseContribution 1.0
varying float Lightintensity;

varying vec2 MCposition;

void main(void)

{

- SpecularContribution;

vec3 ecPosition = vec3(gl_ModelViewMatrix * gl _Vertex);
vec3 tnorm = normalize(gl_NormalMatrix * gl _Normal);
vec3 lightVec normalize(LightPosition - ecPosition);
vec3 reflectVec reflect(-lightVec, tnorm);

vec3 viewVec = normalize(-ecPosition);

float diffuse max(dot(lightVec, tnorm), 0.0);

float spec = 0.0;

it (diffuse > 0.0)

{

spec = max(dot(reflectVec, viewVec), 0.0);
spec pow(spec, 16.0);

}
Lightintensity = DiffuseContribution * diffuse +

SpecularContribution * spec;
MCposition = gl _Vertex.xy;
gl_Position ftransform();

SD/abs |

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 114



Brick Shader - Parameters

BrickPct.x = 0.90
BrickSize.y = 0.15 [ > Bri_kact.y =0.85
l 4BrickSize.x = 0.30>I ¢

BrickColor =(1.0,0.3,0.2)

MortarColor = (0.85, 0.86, 0.84)

3D/ b5

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

115



Brick Shader — Step Function

BrickColor MortarColor

Voo

1 2 3

BrickPct.x BrickPct.x+1 BrickPct.x+2

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 116



uniform
uniform
uniform
varying
varying

{

3DVabs |3

vec3
vec2
vec?2
vec?2
float

position

posit

position
useBrick
color =

color *=
gl _FragColor = vec4(color, 1.0);

Fragment Shader Example

BrickColor, MortarColor;
BrickSize;

BrickPct;

MCposition;
Lightintensity;

void main(void)

vec3 color;
vec2 position, useBrick;

= MCposition / BrickSize;

it (fract(position.y * 0.5) > 0.5)

ion.x += 0.5;

= fract(position);
= step(position, BrickPct);

mix(MortarColor, BrickColor, useBrick.x * useBrick.y);
Lightintensity;

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

117



Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005




Development
Strategies and
Tools




Tips for Shader Development

Understand the problem
= Look up those old papers by Blinn and others
= Draw diagrams
= Do a prototype on the CPU if warranted

Start simple and add complexity
= Do basic shader first
= Add complexity a little at a time

Test and iterate
= Parameterize your algorithm

= Systematically modify parameters
= Consider replacing tweakable parameters with constants

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 120



Tips for Shader Development

Strive for simplicity
= Use the simplest approach first, if it works, you're done
» Use the features of the language to your advantage

Develop shader functions that can be used over
and over

= Build up a library of functions for lighting, texture effects, etc.
= Consider contributing this code to the public

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 121



Tips for Shader Debugging

Use the vertex shader output

= Test a condition by modifying the value of gl_Position, for
instance

Use the fragment shader output

» Test a condition by modifying the value of gl_FragColor or
using discard, for instance

Use simple geometry to test the algorithm

* The side of the cube might be better than the side of a
teapot

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

122



Tips for Shader Optimization

Consider computational frequency

= Fragment processor — only for computations that differ at
each pixel

= Vertex processor — only for computations that differ at each
vertex

= CPU - all other computations

Analyze your algorithm
= E.g., clamp() requires two comparisons, but max() just one

Use the built-in functions
= These should be optimal on every platform

Use vectors
Use textures in unique ways
Review the information logs

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

123



Open Scene Graph

High-performance, open source 3D graphics
toolkit, written entirely in standard C++

Now contains support for GLSL
Used for:

= Vis sim, games, scientific visualization, GIS modeling

Multiplatform and widely available on the net
= Windows, Linux, OS X, Irix, Solaris, FreeBSD

Robust framework for multinead/multiprocessor
systems

http://openscenegraph.sourceforge.net

P
OpenSceneGraph @

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 124

< S



Open Scene Graph

The osgshaders demo shows:
= GLSL support within OSG

= Multiple shaders

= Time-varying uniforms

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 125



Open Scene Graph

The osgfxbrowser can be used to view a variety
of programmable shader effects

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 126



Shader Designer — TyphoonLabs

Jacobo Rodriguez Villar, TyphoonLabs
http://www.typhoonlabs.com

Windows tool for shader development featuring:
= Full GLSL syntax highlighting
= Hiding code blocks (folding)
* InfoTips with parameter information in the built-in functions.

= Autocompletion list with all built-in variables, structs and
functions (ctrl+space).

[} Unlform Varlable management vec3d reflectlir = reflect (Eyelir, MNormsal):

gl mode

i) gl_MaxTextureCoordsARE ;I MEhang e S

= Preview window manipulation e s
9] gl_MaxvaryingFloatsaLZ cE, SRRt
. e gl_MaxVertexdttributesGlz . .
- S U p po rt for arb Itrary m eS h eS @ gl_MaxvertexTextureUnitsGL2
@ gl_MaxvertexUniformFloatsalz
£ ol _Modelviewstatrix

_|flectDirj , Zunitwvec);

B
4 vec3 reflectDir = reflect (Eyelir, Normal): [wie] gl_ModelviewProjectionMatriz
5 reflect | ] gl_MulkiTexCoardn o i
— E ; exCoor :
a et [-1] genType reflect [genT ype |, genType M) ) gl_MultiTexCoordl : Lol
7 Foor the incident vector | and surface ariertation M 5 gl MulkTexCoordz =l c2(0.5);
a rec? returnz the reflection direction: result =1 - 2 dat [N, 1] "M . : .
= inde M should be normalized in order to achieve the desired result. oy - float d = offset.x * offset.x + offset.y * offset.y:
| u] reflecthir.y = 0.0; if (d >= Zize)
3Dldb$ i index[0] = dotinormalizeireflectlir), Hunitwvec):;

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 127



shaderDesigner BETA YER

File Shader Files Edit [Meshes OpenGl States Plugins

Help

Shader Designer — TyphoonLabs

shader_designer_heta’shaders®, ;lgl il

=N

BEEDO & &

DERERLRBHEOTD

dimple.wert |

e Ll [

dimple_frag |

WO -] e D

I N el el s =
L e Y L e L I e AL ol
{1

i Unifarm Y arisbles

[
=

¥ Id: 31, Tipe: float [3], Mame: Ligh
dl =

tPasition

L Values: 0,05

[SSI ]
oW

Add
Uniform
Fodify
Unifarrm

LIRS S VR I N
O -]m
'n
Lk

[
I3

Compilation output;

[
[

Compiling Fragment Shaders...
dimple.frag
Ok

I
Linking all shaders....
Link suceszful

w
r

Delete
Unifarm

[ R S SV o5
oo -1 o

A

=
5
[}

-
I —
4/ dimple.frag: Fragment shader for bump mapping dimpl
£

/¢ author: John Eessenich

i

/¢ Copyright (o) 2Z002: 3Dlabhs, Inc.

L

varying vec3 LightDir;
varying vec3 EyeDir:;
varying vec3 Normal:

const vec3 color = vec3 (0.7, 0.6, 0.18);

const float Density = 16.0:;
const fleoat 3ize = 0.15:
const float SpecularFactor = 0.5;

void main (void)
{
recd litColor;

ree? o = Density * vec? (gl TewxCoord[O]]:
vec? p = fractic) - vec2i(0.5):

/% for elongated
wecZ grid = floorfc 4+ 0.5);
if [(abs(fract(grid.x / 2.0) - fract(grid.y / 2.00
f¢ parities match, transpose coords
float t = grid.x;
grid.x = grid.y;
grid.v = t;

t = p.x:
p.® = p.¥:
p.y = t;

"

float d; _ILI
3

Copyright © 2005, 3Dlabs, Inc. Ltd

December 9, 2005

128



3Dlabs Source Code and Tools

Available at http://developer.3dlabs.com
= 0gl2brick and ogl2particle, including source code
= glsldemo, including source code
= RenderMonkey 1.5 with documentation
= GLSL compiler front-end source code
= GLSL shader validation tool
= GLSL parser test tool
= More to come

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 129



GLSL Compiler Front-End

Open source, including commercial use
Part of 3Dlabs’ production compiler
Works on Windows and Linux

Performs the following:

= Preprocessing

= Lexical analysis

= Syntactic analysis

= Semantic analysis

= Builds a high-level binary representation of the input text

Can also be used as part of a shader
development environment

http://developer.3dlabs.com/downloads

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

130



GLSL Parser Test

Open source, including commercial use
Suite of 140 GLSL shaders
Some should parse, some should not

Application parses each shader, compares to
known good results

Results are summarized

Info logs can be examined

A GLSL-capable driver is required
http://developer.3dlabs.com/downloads
3Dlabs compiler is perfect!

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 131



GLSL Validate

Open source, including commercial use

Uses the GLSL reference parser to check the
validity of a shader

Contains both command line and GUI interface
Does NOT require a GLSL implementation
http://developer.3dlabs.com/downloads

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 132



GLSL Demo

Features
= Open source, including commercial use
= Built with other open source components

= |nitial release is for Windows, Linux version will also be
available

* Intended as a developer education tool and a shader
showcase

= Written in C++

= Accesses shaders through a flexible XML file format
= Shaders from ogl2demo are included

= Shaders from Orange Book are included

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 133



GLSL Demo

With GLSLdemo you can:

= Access a standard list of shaders and their user interface
controls

= Access other lists of shaders or create your own

= View the effects of shaders on a variety of standard models
or on your own models

= Utilize a variety of standard textures or use your own

* [nteractively manipulate a shader's parameters (uniform
variables)

= Manipulate the position of the models and animate them
= View the output from the GLSL compiler and linker

= |ncrease or decrease the tessellation of mathematically
defined models

= Use keyboard shortcuts to switch between models, textures,
backgrounds, turn animation on/off, etc.

http://developer.3dlabs.com/downloads

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 134



RenderMonkey — ATl and 3Dlabs

3Dlabs and ATI share a vision of cooperative
market development

* Open standards and cooperation are a better foundation
than proprietary solutions
3Dlabs and ATl have brought GLSL support to
RenderMonkey

= Co-development through full-source sharing

3Dl¢2551 ISV Integration

Grophics | OpenGL20Focus S

J

More ISVs,
developing
more shader
programs-
sooner

Core Framework

HLSL Focus
T

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 135

< S



RenderMonkey — ATl and 3Dlabs

RenderMonkey with GLSL support is available
NOow

= Public release occurred in August

= Available from the web sites of both 3Dlabs and ATI

= http://developer.3dlabs.com/downloads

RenderMonkey is distributed free of charge

* |ntegration into standard authoring packages through plug-
INS in short term

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 136



RenderMonkey

Simplifies shader development

= [Fast prototyping and debugging of new graphics algorithms
* |Immediate visual feedback of effect under development
= GUI provides a familiar, intuitive interface

A suite of open, extensible shader development
tools

* Open platform for new componenents and tools

= Clean framework for integration of shader tool components

Enables programmers and artists to collaborate
on real-time shaders

Supports DirectX8/9, HLSL, OpenGL Shading
Language

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 137



Why Use RenderMonkey?

Rapid shader development tool

= Handles miscellaneous setup, you get to focus on the
shader code

No need to recompile application for each test
iteration
= Only the shader is recompiled, virtually instantaneous!

Hooking up uniform variables is automatic

= Just use the same name in the RM workspace and in the
shader text

Uniform variables can be adjusted with sliders,

color-pickers, etc.

= EXposes the power of programmability and parameterizable
shaders

= Can be used to find the perfect value for constants

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 138



Why Use RenderMonkey?

Per-vertex attributes are automatically available
with the GLSL built-in attribute variables

= Color, normal, texture coordinates, etc.

= Change which attributes are sent with a single mouse click

= Non-standard attributes (e.g., tangent, binormal) are also
available

GL state can be modified through a single editor
widget

= Texture state can be modified similarly
Animation can be performed with pre-defined
time-varying values

= Hooked up as user-defined uniform variables in the normal

way

Develop, compare, or port GLSL and DirectX
shaders

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 139



Why Use RenderMonkey?

Standard IDE development and debugging aids
= Syntax coloring

= Click on a compile error to highlight shader code that is in
error

= Display of information log
Entire effect encapsulated into a portable XML
file
= Includes shader code, texture references, uniform variables
and their current settings

= EXxporters can be written to translate RenderMonkey XML
into the code needed for your application

Experiment with a wide range of models and
textures or use your own

It has a cool-sounding name
Beats the heck out of using notepad

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 140



3D/ats.

RenderMonkey Screen Shot

enderMonkey: GLSL_julia.xml & =]
File Edit Wew Window Help
» s | 5
o Py
|| R [l
x| Bl OpenGL 2.0 Preview Window M [=] 1] | &iShader Editor : ma ~=lal x|
Effect Workspace Pass 1
©1 zoom
1 maxTterations verex frﬂgmenll
t1 specularContribution
o Center [V Constant Edtor
| LightPosition Mame: Register
wigw_proj_matriz Wariahle: ¥ | |None - Add Remove | Remave Al
I ColorExdteriorz
W ColorExteriort Sampler _M|[Hore =] __#dd | Remove| Femovesl
0 colorinterior
uniform vecd ColorExteriorl; =

889 standard mapping
b model
A modell
£ GL mandel
B Pass 1
-8 model
B8 vertex
2% Fragment
standard mapping
P Pass 1
modell
8 Vertex Shader
% Pivel Shader
@ standard mapping

Effect

ATI RENDERMONKEY

Ok Cancel

I 1 43137d [ Clamp from 0.00100 =| ta -4.00000 >

uniform wecd ColorExterior2:
uniform float zoom;
uniform float naxlterations;
uniform wecd Center:
uniform vecd Colorlnterior:

I L

= fract(Fosition),
float  real - ((pos.x - 0.5) * zoom) - Center.x;
float  imag - ({pos.z - 0.5} * zoom) - Centex.y.
float  Creal - Center.z; ~/real:
float  Cimag = Center.w: -/ imag

wec3 pos

float »2 = 0.0;
float iter;

for (iter = 0.0; iter < maxlterations && r2 < 4.0. ++iter) {

float tempreal = real:
real = (tempreal * tempreal) - (imag * imag) + Creal;
inag 0 % tempreal * inag + Cinag;
12 - (real * real) + (inag * imag).

i

~#+ Baze the color on the numbsr of iterations
vecd color:

if (r2 < 4.0) {
color = ColorInterior:

coler = mim(ColorExteriorl. ColorEsterior?, fract (fleoat(ite

gl_FragColor = clanp(color # lightIntensity. 0.0, 1.0):

x|

B

%[ 000000 2] I Clamp for| 2000007 to [ 200000 7]

080000 7] [ Keep [, y. 2) companents nomalized

£2.40000 ~

¥ Clamp from 2.00000 | to 52.00000 ~
[ale Cancel

v
0.32780 =

x z

il

-0.52000 =
0K Cancel

=

SN 0 |
Greer 42 .-

150
e ” o [2 I
Green 1 . o |
Blue: 43 ]

Color Type: [RGB | I Floating Paint
Alphat 255 1

4] |

ok Cancel

Color Type: [RGB x| ™ Floating Point

aK Cancel

Compile All Shaders in the Workspace (F&)

Copyright © 2005, 3Dlabs, Inc. Ltd

December 9, 2005

141



3D/ats.

RenderMonkey Interface

Adding a uniform variable

File Edit Wiew ‘indow  Help

-4 | | B & Bl [ % A T R R Q0

E Workspace R X OpenGL Preview:...thClouds effect |

= rfg‘ﬁ Effect \Workspace
-1-4G&EL

B LIcen ¥ Set as Ackive Effect
B mac %-Add Camera

?* Came (9P Add Pass

/1 cloudy EEEFRERRENEGT 4 0/1Boolean +

?] s8ast  Add Texture ¥l nteger »

j% :ii;;ti' (89 Add Stream Mapping M [] Float
T eoe 8 o £dd Model P Matrix b [ Floatz

B earth £ Add Benderable Testure

E :Z:E: B Add Mote

BB Stres Rename
oy’ Mode ¥ Cut
+ Pass| o
7 B2 Copy
EEaste
W Delste

M Color ] Float3

[{] Floata

g Predefined

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

142



RenderMonkey Interface

Select per- -vertex attributes

vvvvvvvvvvvvvv

@E@l SRR 2RO

space 1 ¥ OpenGL Preview:...thClouds effect |

Ffect Workspace
il EarthWithClouds
E= LICENSE
E= MAGE_CREDITS
Camera
11/ coudCover
?] SEd500n
gr] sin_time_0_2PI
ar| ime_0_1 .
d"| cos_time_0_zp1 (
E earthiight @
B earth | [ Channels
% :tarret:Enlcl'::I:;ping Ilzage [ndex Drata Type Add
i Model |POSITION =l jo = |Foatz ]| X
= Pass 0
ﬂgﬁmera INDRMAL | o = |[Foatzs ]| X

Model TEXCOORD ~| | ~| [FLOaTz - _—
|]C-\~? Render State | J | J | J }( Cancel

ﬁ Yertex Pragran
2% Fragment Progn
+- % EarthDay
+/- T Earthhlight

+ !“- EarthCloudEloss
3D[db$ Skream Mapping

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 143

Reset

>
+

>
+

Ok,

>
+




RenderMonkey Interface

Modify texture state

thZlouds effect Texture State E...EarthWithClouds

‘orkspace B

Effect Workspace
—- &L EarthWithClouds
E= LICENSE
E= MAGE_CREDITS
? Camera
1 cloudCover
4] season
e sin_time_0_zPI
g time_0_1
ge] cos_time_0_2PI
BH earthiight
B earth
B earthClouds
@ Stream Mapping
oy Model
- (P Pass 0
S~ Camera
e Model
[PP Render State
" vertex Program
2% Fragment Program
=% EarthDay

ﬂ earth

+- % Earthhight

+ EarthCloudGloss
Stream Mapping

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd

Openial Preview: ...

Fazz 0 ]
EarthDayw: Earthilight: EarthCloudialoss;
earth earthMight earthClouds

Current Testure Object: EarthDay [Staged]: earth [RmZ0 T esture! ariable]

December 9, 2005

GL_CLAMP_To_BORDER

Skate | Yalue Incor
GL_TextureBorder Color s
GL_TextureMagnify GL_LIMEAR
GL_TextureMaxAnisatropwERT i
GL_TextureMinify GL_MEAREST_MIPMAP_LIMEAR.
GL_Texkure\W'rapR. GL_CLAMP_TO _EDGE
GL_TexbureMraps GL_CLAMP_TO _EDGE e
et it b o et R R
Clear
GL_CLAMP
GL_CLAMP_TO_EDiSE
GL_REPEAT

144



RenderMonkey Interface

Adjust uniform variables

R = [] SEaS0n

029560 ] W Clampfom |  -043500 -] to | 0.43500 -]

k. Cancel | @_ :
I'-

Ii o e |'-1 22 46828 j |-:35_59432 j |E
I Lok At Position: ID-DDDDU j |U.UUUDD j IE

UpYectar: |-D.1|3335 j |-EI.4'I 427 j ﬁ

FOv: |45.|:||:||:||:||:| -
Near Clip Plane: |'| 0000a - -
Far Clip Plane |1 000, 0000 j

k. | Cancel

OpenGL Preview:...thClouds effect

!'I OpenGL Preview:: EarthWithClouds effect

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 145



RenderMonkey Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 146



Comparison with
Cg/HLSL




Chronology of Shading Languages

1984 — Rob Cook's Shade Trees
1985 — Ken Perlin’s Image Synthesizer
1988 — Pixar releases RenderMan

Mid-90's — UNC'’s PixelFlow used to demonstrate first
Interactive shading language, described in 1998

1998-2000 — OpenGL Shader developed by SGI

1999-2001 — Stanford Real-Time Shading Language
developed

2000 — Non-standard vertex program (assembly) API's
July 2001 — 3Dlabs starts GLSL effort at SIGGRAPH

Oct. 2001 — First version of GLSL described in publicly
released white papers by 3Dlabs

June 2002 — Cg announced, specification made public
Nov. 2002 — Microsoft makes HLSL specification available
Feb. 2003 — ARB-GL2 working group finalizes GLSL spec
Jun. 2003 — ARB extensions to support GLSL are finalized
3D/bs Sep. 2004 — OpenGL 2.0 specification released

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 148




Compiler location:
Interface to OpenGL.:
Device dependencies:

Syntax:
API's supported:

< S

Copyright © 2005, 3Dlabs, Inc. Ltd

Extra libraries required:
Specification owned by:

Cg/GLSL Differences

GLSL
Within OpenGL
GLSL source code
Graphics h/w vendor
None
ARB
Based on C/C++
OpenGL

December 9, 2005

Cq

On top of OpenGL
Assembly source code
Shader writer

CgGL

NVIDIA

Based on C/C++
OpenGL, DirectX

149



GLSL Execution Model

Application

M Provided by application developer
M Provided by graphics hardware vendor

Shader source code

OpenGL API

Shader source code

OpenGL Driver Y

Shader
Object

compiled codev

; Program
@ Object

executable code V

Graphics hardware
Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 150



Cg Execution Model

Application

Il Provided by application developer

Cg source code M Provided by NVIDIA
[l Provided by graphics hardware vendor

Y

Cg Translator

OpenGL or DirectX API

Assembly source code

OpenGL or
DirectX Driver '

assembly

executable code Y

< S

Graphics hardware
Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 151



GLSL / Cg Similarities

C-based syntax

Same syntax for identifiers, operators,
expressions

Mostly the same keywords

Same basic types

Uniform variables are the same
Support for arrays and structures
Support for flow control

Support for user-defined functions
Very similar list of built-in functions

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 152



GLSL / Cg Differences

Shader input / output

= GLSL uses user-defined attribute variables and varying
variables

= Cg uses input / output structures where values are mapped

Into vec4 slots named POSITION, COLOR, TEXCOORDO,
etc.

GLSL has direct run-time access to OpenGL state
= Values have to be queried in Cg

Cg supports the half-precision floating-point type
= And HLSL supports the double-precision floating-point type

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

153



GLSL / Cg Differences

GLSL is translated from source to machine code
by the driver

Cg Is translated from source to whatever the
underlying APl supports

= Current assembly API's make inappropriate intermediate
languages

= Many opportunities for optimization are lost by the time this
level of assembly language is produced

= Major functionality limitations in current assembly API's (lack
of flow control, etc.)
Hardware vendors have much more room to
optimize and innovate under GLSL
= Lots more compiler optimizations are possible
= More variety in hardware architecture is possible

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

154



Shader Examples
and Demos




About the Shader Examples

Examples are simple, in order to illustrate one
concept clearly

Priority IS on code clarity

= But reasonable tradeoffs made between code clarity,
portability, and performance

May be better ways of doing things on a
particular vendor’s hardware

These examples may not all work on early
Implementations of GLSL

Some slight differences exist with the shaders
running on the WildcatVP
= Mainly clamping of gl_FragColor

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 156



Stored Texture
Shaders




Preparing for Texture Access

These steps are the same when using a shader
as when using fixed functionality
= Make a specific texture unit active by calling glActiveTexture

= Create a texture object and bind it to the active texture unit
by calling giBindTexture

= Set texture parameters by calling glTexParameter
= Define the texture by calling glTexImage

Not required when using a shader:

= Enabling the desired texture on the texture unit by calling
glEnable

= Setting the texture function by calling glTexEnv

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

158



Accessing Texture Maps

In your shader, declare a uniform variable of type
sampler

In your application, call glUniform1li to specify the
texture unit to be accessed

From within your shader, call one of the built-in
texture functions

= 1D/2D/3D textures

= Depth textures

= Cube maps

= Projective versions also provided

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 159



Vertex Shader Texture Access

Textures can be accessed from either a fragment
shader or a vertex shader

However, an implementation is allowed to report
0 as the number of supported vertex texture
Image units

= Current generation of hardware may report O

= Could be a portability issue for some applications

Level-of-detail is handled differently:

= Some texture calls are allowed only within a vertex shader
and express the level-of-detail as an absolute value

= Other texture calls are allowed only within a fragment
shader and the level-of-detail parameter is used to bias the
value computed by the graphics hardware

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 160



Application Code

static void Init2DTexture(GLint texUnit, GLint texName,
GLint texWidth, GLint texHeight,
GLubyte *texPtr)

{
glActiveTexture(GL_TEXTUREO + texUnit);
glBindTexture(GL_TEXTURE_2D, texName);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, texWidth, texHeight, O,

GL_RGB, GL_UNSIGNED_BYTE, texPtr);

glActiveTexture(GL_TEXTUREO);

+

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 161



Earth Fragment Shader (1 Texture)

varying float Lightintensity;
uniform sampler2D EarthTexture;

void main (void)

{

vec3 lightColor
gl _FragColor

vec3 (texture2D(EarthTexture, gl_TexCoord[0].st));
vec4d (lightColor * Lightintensity, 1.0);

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 162



Multitexture Example

Blue Marble images by Reto Stockli of the
B NASA/Goddard Space Flight Center

: > Put clouds in red component and gloss map in

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 163



Multitexture Fragment Shader

uniform sampler2D EarthDay;
uniform sampler2D EarthNight;
uniform sampler2D EarthCloudGloss;
varying float Diffuse;

varying vec3 Specular;

varying vec2 TexCoord;

void main (void)

{
vec2 clouds = texture2D(EarthCloudGloss, TexCoord).rg;
vec3 daytime = (texture2D(EarthDay, TexCoord).rgb * Diffuse +
Specular * clouds.g) * (1.0 - clouds.r) +
clouds.r * Diffuse;
vec3 nighttime = texture2D(EarthNight, TexCoord).rgb *
(1.0 - clouds.r) * 2.0;
vec3 color = daytime;
iT (Diffuse <= 0.1)
color = mix(nighttime, daytime, (Diffuse + 0.1) * 5.0);
gl _FragColor = vec4 (color, 1.0);
}

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 164



Stored Texture Shader Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 165



Uses For Texture Memory

Normals

Gloss values

Control values

Polynomial coefficient values

Intermediate values from a multipass algorithm
Lookup tables

Complex function values
= Noise

= Trig functions

Random numbers

?2?7?

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 166



Procedural Texture
Shaders




3D/abs:

Procedural Textures

A procedural texture is a texture that is computed in a
shader rather than stored in a texture map
Advantages:

= Can be a continuous mathematical function rather than a discrete
array of pixel values — therefore infinite precision is possible

= Shader code is likely to be a few kilobytes rather than a few
megabytes for a texture map

= Can be paramaterized, allowing a lot of flexibility at run time
Disadvantages:

= Programming skill required (not so for texture maps)

= Texture lookup might be faster than procedural texture computation

= May have aliasing characteristics that are difficult to overcome

(texture mapping hardware is built to deal with aliasing issues, e.qg.,
mipmaps)

= Hardware differences may lead to somewhat different appearance
on different platforms

Often a hybrid approach will be the right answer

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

168



Stripe Vertex Shader

// Stripe Shader — Courtesy Lightwork Design

uniform vec3 LightPosition;
uniform vec3 LightColor;
uniform vec3 EyePosition;
uniform vec3 Specular;
uniform vec3 Ambient;
uniform float Kd;

varying vec3 DiffuseColor;
varying vec3 SpecularColor;

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 169



Stripe Vertex Shader

void main(void)

{
vec3 ecPosition = vec3 (gl _ModelViewMatrix * gl _Vertex);
vec3 tnorm = normalize(gl_NormalMatrix * gl _Normal);
vec3 lightVec = normalize(LightPosition - ecPosition);
vec3 viewVec = normalize(EyePosition - ecPosition);
vec3 Hvec = normalize(viewec + lightVec);
float spec = clamp(dot(Hvec, tnorm), 0.0, 1.0);
spec = pow(spec, 16.0);
DiffuseColor = LightColor *

vec3 (Kd * dot(lightVec, tnorm));

DiffuseColor = clamp(Ambient + DiffuseColor, 0.0, 1.0);
SpecularColor = clamp((LightColor * Specular * spec), 0.0, 1.0);
gl _TexCoord[0] = gl MultiTexCoordO;
gl _Position = ftransftorm();

+

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 170



{

SDV/abs | +

Stripe Fragment Shader

uniform vec3 StripeColor;
uniform vec3 BackColor;
uniform float Width;

uniform Float Fuzz;

uniform float Scale;

varying vec3 DiffuseColor;
varying vec3 SpecularColor;

void main(void)

float scaled_t = fract(gl _TexCoord[0].t * Scale);

float fracl = clamp(scaled t / Fuzz, 0.0, 1.0);
float frac2 = clamp((scaled_t - Width) / Fuzz, 0.0, 1.0);

fracl = fracl * (1.0 - frac2);
fracl = fracl * fracl * (3.0 - (2.0 * fracl));

vec3 finalColor = mix(BackColor, StripeColor, fracl);
finalColor = finalColor * DiffuseColor + SpecularColor;

gl _FragColor = vec4 (finalColor, 1.0);

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

171



Lattice Fragment Shader

varying vec3 DiffuseColor;
varying vec3 SpecularColor;

uniform vec2 Scale;
uniform vec2 Threshold;

uniform vec3 SurfaceColor;

void main (void)

{
float ss = fract(gl _TexCoord[0].s * Scale.s);
float tt = fract(gl _TexCoord[0].t * Scale.t);
iIT ((ss > Threshold.s) && (tt > Threshold.t)) discard;
vec3 finalColor = SurfaceColor * DiffuseColor + SpecularColor;
gl _FragColor = vec4 (finalColor, 1.0);
+

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 172



Dimple Vertex Shader

varying vec3 LightDir;
varying vec3 EyeDir;

uniform vec3 LightPosition;

attribute vec3 Tangent;

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 173



Dimple Vertex Shader

void main(void)

EyeDir vec3 (gl _ModelViewMatrix * gl _Vertex);
gl _Position = ftransform();
gl _TexCoord[0] gl MultiTexCoordO;

vec3 n = normalize(gl _NormalMatrix * gl _Normal);
vec3 t = normalize(gl_NormalMatrix * Tangent);
vec3 b = cross(n, t);

vec3 V;

v.X = dot(LightPosition, t);
v.y = dot(LightPosition, b);
v.z = dot(LightPosition, n);
LightDir = normalize(v);

V.X dot(EyeDir, t);
v.y = dot(EyeDir, b);
v.z = dot(EyeDir, n);
EyeDir = normalize(v);

3D/abs |}

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 174



Dimple Fragment Shader

varying vec3 LightDir;
varying vec3 EyeDir;

uniform vec3 SurfaceColor; // = (0.7, 0.6, 0.18)
uniform float BumpDensity; // = 16.0

uniform float BumpSize; // = 0.15

uniform float SpecularFactor; // = 0.5

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 175



Dimple Fragment Shader

void main (void)

vec3 litColor;
vec2 ¢ = BumpDensity * gl TexCoord[O0O].st;
vec2 p = fract(c) - vec2(0.5);

float d, T;

d=p.Xx*p.Xx+p.y > p.y;
f=1.0/7 sqrt{d + 1.0);

1T (d >= BumpSize)
{p =vec2(0.0); £f=1.0; }

vec3 normDelta = vec3(p.x, p.y, 1.0) * F;
litColor = SurfaceColor * max(dot(normDelta, LightDir), 0.0);
vec3 reflectDir = reflect(LightDir, normDelta);

float spec = max(dot(EyeDir, reflectDir), 0.0);
spec *= SpecularFactor;
litColor = min(litColor + spec, vec3(1.0));

gl_FragColor = vec4(litColor, 1.0);
SD/abs |

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 176



Procedural Shader Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 177






Defining Noise

Think of it as “seasoning” for graphics

It's a continuous function that gives the
appearance of randomness

It’s a function that is repeatable
It has a well-defined range of output values

It's a function with no obvious or repeating
patterns

It's a function whose small-scale form is roughly
Independent of large-scale position

It IS rotationally invariant
It can be defined for 1, 2, 3, 4 dimensions or more

There are many ways to define such functions —
Ken Perlin created some good and often-used
noise functions

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 179



1D Discrete Noise

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 180



1D Continuous Noise

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 181



Noise Octaves

frequency = 4
amplitude = 1.0

frequency = 8
amplitude = 0.5

frequency = 16
amplitude = 0.25

frequency =32 MWV\/\/x\/\w
amplitude = 0.125
frequency = 64

3D [d bs amplitude = 0.0625

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 182




Sum of Noise Octaves

sum of 4 octaves

sum of 2 octaves

sum of 3 octaves sum of 5 octaves

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 183



2D Noise

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 184



2D Summed Noise (1/f noise)

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 185



Turbulence

* Taking the absolute value of noise at different
frequencies introduces a discontinuity of the
derivative

= Result is cusps or creases that are reminiscent of turbulent
flow

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 186



Noise in GLSL

GLSL has built-in functions for noise

These functions are accessible from either fragment shader
or vertex shader

Still quite difficult(?)/expensive(?)/unjustified(?) to put into
hardware

Two other possibilities: textures or user-defined functions

For the current generation of hardware, a user-defined
noise function is likely to be either slow or low-quality
For now, use a texture:

= Compute 4 octaves of noise and store in RGBA 3D texture

= Make sure function wraps smoothly at edges to avoid seams

= Use the shader to access the texture and perform subsequent
computations

= This method will give repeatable results on a variety of platforms

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 187



Hardware-Accelerated Noise

When the built-in noise function is accelerated in
hardware and fast enough for your purposes, use
it

No texture memory IS consumed

No texture unit is consumed

It IS a continuous function rather than a discrete
one (like a texture) so it will not look “pixelated”
no matter what the scaling factor

Repeatability should be undetectable (for a good
hardware implementation)

No need for application to compute/manage
noise textures

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 188



Clouds

varying float Lightintensity;
varying vec3 MCposition;

uniform sampler3D Noise;
uniform vec3 SkyColor; // (0.0, 0.0, 0.8)
uniform vec3 CloudColor; // (0.8, 0.8, 0.8)

void main (void)

{
vec4 noisevec = texture3D(Noise, MCposition);
float intensity = (nhoisevec[0] + noisevec|[l] +
noisevec[2] + noisevec[3] + 0.03125) * 1.5;
vec3 color = mix(SkyColor, CloudColor, intensity) *
Lightintensity;
gl _FragColor = vec4 (color, 1.0);
by

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 189



Fire

varying float Lightintensity;
varying vec3 MCposition;

uniform sampler3D Noise;

uniform vec3 Colorl; // (0.8, 0.7, 0.0)
uniform vec3 Color2; // (0.6, 0.1, 0.0)
uniform float NoiseScale; // 1.2

void main (void)

{
vecd4 noisevec = texture3D(Noise, MCposition * NoiseScale);
float intensity = abs(noisevec[0] - 0.25) +
abs(noisevec[l] - 0.125) +
abs(noisevec[2] - 0.0625) +
abs(noisevec|[3] - 0.03125);
intensity = clamp(intensity * 6.0, 0.0, 1.0);
vec3 color = mix(Colorl, Color2, intensity) * Lightintensity;
gl _FragColor = vec4 (color, 1.0);
}

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 190



Other Noise-based Effects

Granite

3D[£Z£7£ Wood Marble

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 191



Noise Shader Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 192



Animation




Shader Animation

Animation effects can be added easily to shaders
Can simplify application code

Some notion of “current time” must be passed In
as a uniform variable

Shader then bases some computation on the
current time value

Any property of a shader can be modified in a
time-varying way
Examples:

= On/off, Tristate, Translation, Scaling, Rotation, Oscillation,
Morphing, Particle systems

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 194



Animated Cloud Shader

varying float Lightintensity;
varying vec3 MCposition;

uniform sampler3D Noise;

uniform vec3 SkyColor; // (0.0, 0.0, 0.8)
uniform vec3 CloudColor; // (0.8, 0.8, 0.8)
uniform vec3 Offset; // updated each frame by the app

void main (void)

{
vec4d noisevec = texture3D(Noise, MCposition + Offset);
float intensity = (noisevec[0] + noisevec[l] +
noisevec[2] + noisevec[3]) * 1.5;
vec3 color = mix(SkyColor, CloudColor, intensity) *
Lightintensity;
gl _FragColor = vecd (color, 1.0);
}

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 195



Particle Systems

Used to model “fuzzy” objects — smoke, fire,
water spray, etc.

Differences between particle system and
polygonal rendering

= An object is represented by a cloud of primitive particles that
define its volume

= The object is considered dynamic rather than static —
particles are “born”, “evolve”, and “die”

= QObjects are not completely specified, but governed by a set
of rules, possibly including stochastic processes

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 196



Particle Systems

Some assumptions are made to simplify
rendering

= Particles do not collide with other particles

= Particles do not reflect light, they emit light

= Particles do not cast shadows on other particles

Particle system attributes may include:
= Position

= Color

= Transparency

= Lifetime

= Velocity

= Size

= Shape

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

197



Confetti Cannon Shader

Draw an array of points

Each point is assigned a (constrained) random
velocity and a (constrained) random start time

Also pass vertex position and vertex color
(randomly assigned)

In vertex shader:
= Update the uniform variable Time every frame

= Color the point with background color if StartTime has not
yet been reached

» |f StartTime has been reached, use velocity to compute the
point’s position

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 198



Particle System Application Code

Before linking, bind generic vertex attributes

glBindAttribLocation(ProgramObject, VELOCITY_ ARRAY,
"Velocity");
glBindAttribLocation(ProgramObject, START_TIME_ARRAY,
“"StartTime");
Create vertex arrays
= [nitial vertex positions
= Vertex colors
= Start times

= Velocities
Note that it really wouldn’t be necessary to send
vertex positions

= Send velocity or start time using vertex attrib O to indicate
completion of each vertex
3D/uts P

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005

199



Particle System Application Code

Draw vertex arrays
void drawPoints()

glPointSi1ze(2.0);

glVertexPointer(3, GL _FLOAT, 0, verts);
glColorPointer(3, GL FLOAT, 0, colors);
glVertexAttribPointer(VELOCITY_ARRAY, 3, GL_FLOAT,
GL_FALSE, 0, velocities);
glVertexAttribPointer(START _TIME_ARRAY, 1, GL_FLOAT,
GL_FALSE, 0, startTimes);

glEnableClientState(GL_VERTEX_ ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glEnableVertexAttribArray(VELOCITY_ARRAY);
glEnableVertexAttribArray(START_TIME_ARRAY);

glDrawArrays(GL_POINTS, 0, arrayWidth * arrayHeight);

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 200



Particle System Vertex Shader

uniform float Time; // updated each frame by the application
uniform vec4 Background; // constant color equal to background

attribute vec3 Velocity; // initial velocity
attribute float StartTime; // time at which particle i1Is activated

varying vec4 Color;

void main(void)

{
vecd4 vert;
float t = Time - StartTime;
if (t >= 0.0)
vert = gl _Vertex + vecd4 (Velocity * t, 0.0);
vert.y -= 4.9 * t * t;
Color = gl _Color;
+
else
{ . .
vert = gl _Vertex; // Initial position
Color = Background; // pre-birth" color
+
gl _Position = gl _ModelViewProjectionMatrix * vert;
+

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 201



Particle System Fragment Shader

varying vec4 Color;
void main (void)

gl _FragColor = Color;

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 202



Particle System Shader Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 203



Non-Photorealistic
Rendering




Gooch Shading

Gooch, Gooch, Shirley, and Cohen — SIGGRAPH
1998

A “low dynamic range artistic tone algorithm”

Characteristics:

= Surface boundaries, silhouette edges, and surface
discontinuities drawn in black

= A single light source that produces white highlights

= Light source positioned above object so that diffuse
reflection term varies from [0, 1] across the visible portion of
the object

» Effects that add complexity (realism) are not shown

= Matte objects are shaded with intensities chosen to be far
from white and black

= Warmth or coolness of the color indicates the surface
3D/czbs.' normal, and hence the curvature of the surface

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 205



Shading Calculations

Kcool = Kblue + Akdiffuse
Kwarm = Kyellow + Bkdiffuse

Kfinal = ((1+N.L)/2) * Kcool + (1-((1+N.L))/2) *
Kwarm

Need to draw objects twice
= Once for silhouette edges
= Once for filled polygons

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 206



Silhouette Edges

Drawing all surface boundaries and discontinuities is a
difficult problem

Use Jeff Lander’s method for drawing silhouette edges:

// Enable culling
glEnable(GL_CULL_FACE);

// Draw front-facing polygons as filled
// using the Gooch shader
glPolygonMode(GL_FRONT, GL_FILL);
glDepthFunc(GL_LESS);
glCullFace(GL_BACK);
glUseProgramObject(ProgramObject) ;
drawSphere(0.6Ff, 64);

// Draw back-facing polygons as black lines
// using standard OpenGL
glLineWidth(3.0);
glPolygonMode(GL_BACK, GL_LINE);
glDepthFunc(GL_LEQUAL) ;
glCullFace(GL_FRONT);

glColor3f(0.0, 0.0, 0.0);
glUseProgramObject(0);

3D[£Z£75. drawSphere(0.6Ff, 64);

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 207




Gooch Fragment Shader

uniform vec3 SurfaceColor; // (0.75, 0.75, 0.75)
uniform vec3 WarmColor; // (0.6, 0.6, 0.0)
uniform vec3 CoolColor; // (0.0, 0.0, 0.6)
uniform float DiffuseWarm; // 0.45

uniform float DiffuseCool; // 0.45

varying float NdotL;
varying vec3 ReflectVec;

varying vec3 ViewVec;

void main (void)

{
vec3 kcool = min(CoolColor+DiffuseCool*SurfaceColor, 1.0);
vec3 kwarm = min(WarmColor+DiffuseWarm*SurfaceColor, 1.0);
vec3 kfinal = mix(kcool, kwarm, NdotL);

vec3 nreflect = normalize(ReflectVec);

vec3 nview = normalize(ViewVec);
float spec = max(dot(nreflect, nview), 0.0);
spec = pow(spec, 32.0);

3D/d£75. gl _FragColor = vec4 (min(kfinal + spec, 1.0), 1.0);
Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 208



NPR Shader Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 209



Z,=0
Zn+1 = an +C

Mandelbrot/Julia Sets

Iterative formula that uses complex numbers:

If Z2 > 4, point is not in set
Color code the number of iterations
Have a max iteration number

e 2i—

< S

Copyright © 2005, 3Dlabs, Inc. Ltd

2i 1

December 9, 2005

210



Mandelbrot/Julia Sets

Iterative formula:
Z,=0
Zn+1 = an +C
For Mandelbrot set, c Is point being tested

For Julia set, c is another point in the Mandelbrot
set

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 211



Mandelbrot Fragment Shader

varying vec3 Position;
varying float Lightintensity;

uniform float Maxlterations;
uniform float Zoom;

uniform Float Xcenter;
uniform float Ycenter;
uniform vec3 InnerColor;
uniform vec3 OuterColorl;
uniform vec3 OuterColor?2;

void main(void)

{
float real
float imag
float Creal
float Cimag

Position.x * Zoom + Xcenter;

Position.y * Zoom + Ycenter;

real ; // Change this line...

imag; // ...and this one to get a Julia set

float r2 = 0.0;
float iter;

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 212



Mandelbrot Fragment Shader

for (iter = 0.0; i1ter < Maxlterations && r2 < 4.0; ++i1ter)

{
float tempreal = real;
real = (tempreal * tempreal) - (imag * imag) + Creal;
imag = 2.0 * tempreal * 1mag + Cimag;
r2 = (real * real) + (imag * 1Imag);
+

// Base the color on the number of iterations
vec3 color;
it (r2 < 4.0)
color = InnerColor;
else
color = mix(OuterColorl, OuterColor2, fract(iter * 0.05));
color *= Lightintensity;

gl _FragColor = vec4 (color, 1.0);

3D/ats.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 213



Mandelbrot Shader Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 214



Shaders for
Imaging




Image Interpolation/Extrapolation

* Need a source image and an image to
Interpolate/extrapolate away from

* Works for contrast, brightness, saturation,
sharpness or a combination of all of these

R %

Alpha = 08 o Alpha :10 “ Alpha = 1.2

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 216



Contrast Fragment Shader

varying vec2 TexCoord;
uniform vec3 AvgLuminance;
uniform float Alpha;

uniform sampler2D Image;

void main (void)

{
vec3 color = texture2D(Image, TexCoord).rgb;
color = mixX(AvgLuminance, color, Alpha);
gl_FragColor = vec4 (color, 1.0);

+

3D/abs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 217



Imaging Shader Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 218



Convolution Shader

Image to be convolved is stored as a texture

Texture border modes can be set to
accommodate different convolution border mode
behavior

Convolution can be arbitrary size

Kernel is specified using an array of offsets and
an array of kernel weights

No need to specify kernel elements that are equal
to 0

Kernel can be an arbitrary rectangle
Easy, schmeezy, lemon squeezy!

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 219



Convolution Shader

// maximum size supported by this shader

const int MaxKernelSize = 25;

// array of offsets for accessing the base image
uniform vec2 Offset[MaxKernelSize];

// size of kernel (width * height) for this execution
uniform Int KernelSize;

// value for each location in the convolution kernel
uniform vecd KernelValue[MaxKernelSize];

// image to be convolved

uniform sampler2D Baselmage;

void main(void)

{
int 1;
vec4 sum = vecd (0.0);
for (i = 0; i1 < KernelSize; i++)
{
vecd tmp = texture2D(Baselmage,
gl_TexCoord[0]-st + Offset[i]);
sum += tmp * KernelValue[i];
by
gl _FragColor = sum;
}

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 220



Advanced Demos




RealWorldz

Advanced demonstration of the programmability
of Wildcat Realizm

Fractals are used to render planets procedurally

Most advanced use of GLSL shaders to date
= Everything is rendered with shaders
= Planets are modeled as spheres, not height maps
= Some planetary charecteristics can be modified in real time

= Some fragment shaders are over 600 lines long (GLSL
source code)

= Would require ~4 terabytes to render a similar planet using
stored textures.

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 222



RealWorldz Demo

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 223



Wrap-up and
Questions




Feedback

“We're at the point where we can apply an OGL2 shader through
our (Houdini) interface and (given an equivalent VEX shader)
watch the software renderer (Mantra) draw the same thing but
much, much slower :-). It's one of those jaw dropping "wow"
moments actually, so we thank you for making that happen! .. . It
rocks. Having read the original white paper still did not prepare us
to see it actually working. The ease with which we can now define
& adjust OGL2 shaders is astonishing.”

Unsolicited email from Paul Salvini, CTO, Side Effects Software

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 225



For More Information

Web sites
http://developer.3dlabs.com
http://www.3dlabs.com
http://oss.sdi.com/projects/ogl-sample/reqistry
http://www.opengl.org
http://3dshaders.com E

Get the book!

< S

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 226



Contact 3Dlabs

3Dl¢zb.ﬁ‘

Graphics

Evolved
J

http://www.3dlabs.com/contact

3D/.ubs.

Copyright © 2005, 3Dlabs, Inc. Ltd December 9, 2005 227



