
1

Introduction to the
OpenGL Shading Language

Introduction to theIntroduction to the
OpenGL Shading LanguageOpenGL Shading Language

Randi Rost
Director of Developer Relations, 3Dlabs

Randi RostRandi Rost
Director of Developer Relations, 3DlabsDirector of Developer Relations, 3Dlabs

08-Dec-20050808--DecDec--20052005

December 9, 2005 2Copyright © 2005, 3Dlabs, Inc. Ltd

Why use graphics programmability?Why use graphics programmability?Why use graphics programmability?

Graphics hardware has changed radicallyGraphics hardware has changed radically
Fixed functionality is too limitingFixed functionality is too limiting
NeverNever--beforebefore--seen effects are possibleseen effects are possible
Now, APPLICATIONS can take control over the Now, APPLICATIONS can take control over the
processing that occurs on the graphics hardwareprocessing that occurs on the graphics hardware

Think of yourself as a prisoner (to fixed Think of yourself as a prisoner (to fixed
functionality) that has been set free! Anything is functionality) that has been set free! Anything is
possible!possible!

December 9, 2005 3Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
Rendering increasingly more realistic materialsRendering increasingly more realistic materials

MetalsMetals
StoneStone
WoodWood
PaintsPaints
Etc.Etc.

December 9, 2005 4Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
Rendering natural phenomenaRendering natural phenomena

FireFire
CloudsClouds
SmokeSmoke
WaterWater
Etc.Etc.

December 9, 2005 5Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
Procedural texturingProcedural texturing

StripesStripes
Polka dotsPolka dots
BricksBricks
StarsStars
Etc.Etc.

December 9, 2005 6Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
NonNon--photorealistic (NPR) effectsphotorealistic (NPR) effects

PainterlyPainterly
Hatch/stroke/pen and inkHatch/stroke/pen and ink
Technical illustrationTechnical illustration
CartoonCartoon
Etc.Etc.

December 9, 2005 7Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
AnimationAnimation

On/off based on thresholdOn/off based on threshold
Translation/rotation/scaling of any shader parameterTranslation/rotation/scaling of any shader parameter
KeyKey--frame interpolationframe interpolation
Particle systemsParticle systems
Etc.Etc.

December 9, 2005 8Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
Doing new things with texture maps (or doing old Doing new things with texture maps (or doing old
things more easily)things more easily)

Polynomial texture mapsPolynomial texture maps
BRDFsBRDFs
Bump mapsBump maps
Gloss mapsGloss maps
Irradiance mapsIrradiance maps
Environment mapsEnvironment maps
Etc.Etc.

December 9, 2005 9Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
More realistic lighting effectsMore realistic lighting effects

Global illuminationGlobal illumination
Spherical harmonics lightingSpherical harmonics lighting
Image based lightingImage based lighting

ScoutWalker model courtesy of Christophe Desse

December 9, 2005 10Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
More realistic shadow effectsMore realistic shadow effects

Ambient occlusionAmbient occlusion
Shadow mappingShadow mapping
Volume shadowsVolume shadows

Orc model courtesy of Christophe Desse

December 9, 2005 11Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
More realistic surface effectsMore realistic surface effects

RefractionRefraction
DiffractionDiffraction
Anisotropic Anisotropic reflectionreflection
BRDFsBRDFs

MascotAngst model courtesy of Christophe Desse

December 9, 2005 12Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
Imaging operationsImaging operations

Color correction/transformationColor correction/transformation
Noise removalNoise removal
SharpeningSharpening
Complex blendingComplex blending

December 9, 2005 13Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability For…Use Programmability For…Use Programmability For…
Better Better antialiasingantialiasing

Stochastic samplingStochastic sampling
Adaptive Adaptive prefilteringprefiltering
Analytic integrationAnalytic integration
Frequency clampingFrequency clamping
Etc.Etc.

December 9, 2005 14Copyright © 2005, 3Dlabs, Inc. Ltd

Use Programmability for…Use Programmability for…Use Programmability for…
Highly parallel computationHighly parallel computation

Visualization of complex functionsVisualization of complex functions
Numerical simulationNumerical simulation
Etc.Etc.

December 9, 2005 15Copyright © 2005, 3Dlabs, Inc. Ltd

Shading LanguagesShading LanguagesShading Languages
Key to making visual programmability accessible to ISVsKey to making visual programmability accessible to ISVs

Need to get out of the assembler dark agesNeed to get out of the assembler dark ages
Graphics vendors busy building compiler expertiseGraphics vendors busy building compiler expertise

Soon will be as important to performance as drivers are todaySoon will be as important to performance as drivers are today
Same industry API dynamics as fixed function APIsSame industry API dynamics as fixed function APIs

Just the programming level has changedJust the programming level has changed

HLSLHLSLHLSL

Direct3D
GlideGlideGlide

Microsoft Open StandardProprietary

December 9, 2005 16Copyright © 2005, 3Dlabs, Inc. Ltd

Market Creation With API StandardsMarket Creation With API StandardsMarket Creation With API Standards
3Dlabs – Initiated OpenGL ES

development and is chairing Khronos
and the OpenGL ES Working Group

3Dlabs – initiated OpenGL 2.0 development
and is Permanent ARB Member

The foundation of
professional graphics

The foundation of programmable,
cross-platform, professional

graphics

The standard for embedded 3D graphics –
launched at SIGGRAPH 2003

OpenGL 2.0 was
launched at

Siggraph 2004

The standard for dynamic media
authoring – launched at

SIGGRAPH 2001

3Dlabs – chaired Khronos Graphics
Working Group

December 9, 2005 17Copyright © 2005, 3Dlabs, Inc. Ltd

Visual Processing RevolutionVisual Processing RevolutionVisual Processing Revolution
Visual processing is changing the face of Visual processing is changing the face of
hardware, APIs and toolshardware, APIs and tools
Innovation is required at all three levelsInnovation is required at all three levels

Hardware vendors are innovating
rapidly to support graphics

programmability

OpenGL Shading Language is part of the OpenGL
standard as of OpenGL 2.0 – Sept. 2004. 3Dlabs

released compiler front-end as open source

Shader
Tools

Shading
Languages

Visual
Processors

Shader
Tools

Shading
Languages

Visual
Processors

OpenGL Shading Language support
released March 2004

December 9, 2005 18Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL and 3DlabsGLSL and 3DlabsGLSL and 3Dlabs
3Dlabs shipped industry’s first OpenGL Shading Language 3Dlabs shipped industry’s first OpenGL Shading Language
driversdrivers

Running on complete family of Wildcat VP boardsRunning on complete family of Wildcat VP boards
3Dlabs has placed compiler front3Dlabs has placed compiler front--end into open sourceend into open source

To catalyze industry adoptionTo catalyze industry adoption
To encourage crossTo encourage cross--vendor consistency to errorvendor consistency to error--checkingchecking

3Dlabs has placed various development tools into open 3Dlabs has placed various development tools into open
sourcesource

GLSLdemoGLSLdemo, , GLSLparsertestGLSLparsertest, , GLSLvalidateGLSLvalidate, , ShaderGenShaderGen
Already in use by leadingAlready in use by leading--edge Toolkit Providersedge Toolkit Providers

LightworkLightwork DesignDesign
Already in use by leadingAlready in use by leading--edge ISVsedge ISVs

SolidworksSolidworks
PandromedaPandromeda
Many others that have not yet announced productsMany others that have not yet announced products

19

GLSL Background
and Current Status
GLSL Background GLSL Background
and Current Statusand Current Status

December 9, 2005 20Copyright © 2005, 3Dlabs, Inc. Ltd

StatusStatusStatus
OpenGL 2.0 is here!OpenGL 2.0 is here!

Specification approved in September 2004Specification approved in September 2004
OpenGL Shading Language is part of coreOpenGL Shading Language is part of core
API for shading language is part of coreAPI for shading language is part of core
Spec is available at OpenGL.orgSpec is available at OpenGL.org
Still backwards compatible with previous versionsStill backwards compatible with previous versions

December 9, 2005 21Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL BookGLSL BookGLSL Book
First edition released by AddisonFirst edition released by Addison--Wesley in Feb. Wesley in Feb.
20042004
Second edition due out early January 2006Second edition due out early January 2006
Contains more detailed informationContains more detailed information

Introduction and overviewIntroduction and overview
Complete referenceComplete reference
Dozens of detailed examplesDozens of detailed examples

Companion web siteCompanion web site
http://3dshaders.comhttp://3dshaders.com

December 9, 2005 22Copyright © 2005, 3Dlabs, Inc. Ltd

Shading Language DifferencesShading Language DifferencesShading Language Differences
GLSL compiles directly from high level source to GLSL compiles directly from high level source to
machine code inside of OpenGLmachine code inside of OpenGL
HLSL translates high level source to Direct3D HLSL translates high level source to Direct3D
source outside of DirectXsource outside of DirectX

HLSL ShaderHLSL Shader

HLSL TranslatorHLSL Translator

D3D ProgramD3D Program

Direct3D DriverDirect3D Driver

HardwareHardware

OpenGL 2.0 DriverOpenGL 2.0 Driver

HardwareHardware

GLSL CompilerGLSL Compiler

Provided by the IHVProvided by the IHV Provided by the IHVProvided by the IHV

High level sourceHigh level source

OpenGL ShaderOpenGL Shader

Assembly level Assembly level
codecode

December 9, 2005 23Copyright © 2005, 3Dlabs, Inc. Ltd

OpenGL 2.0 Logical DiagramOpenGL 2.0 Logical DiagramOpenGL 2.0 Logical Diagram

December 9, 2005 24Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Processor CapabilitiesVertex Processor CapabilitiesVertex Processor Capabilities
Lighting, material and geometry flexibilityLighting, material and geometry flexibility
Vertex processor can do general processing, Vertex processor can do general processing,
including things like:including things like:

Vertex transformationVertex transformation
Normal transformation, normalization and rescalingNormal transformation, normalization and rescaling
Lighting Lighting
Color material applicationColor material application
Clamping of colorsClamping of colors
Texture coordinate generationTexture coordinate generation
Texture coordinate transformationTexture coordinate transformation

December 9, 2005 25Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Processor CapabilitiesVertex Processor CapabilitiesVertex Processor Capabilities
The vertex shader does NOT replace:The vertex shader does NOT replace:

Perspective divide andPerspective divide and viewportviewport mappingmapping
Frustum and user clippingFrustum and user clipping
BackfaceBackface cullingculling
Primitive assemblyPrimitive assembly
Two sided lighting selectionTwo sided lighting selection
Polygon offsetPolygon offset
Polygon modePolygon mode

December 9, 2005 26Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Processor OverviewVertex Processor OverviewVertex Processor Overview
Standard
OpenGL

attributes
gl_color

gl_normal
etc.

Texture Maps

Generic
attributes
0, 1, 2, …

User-defined uniforms:
epsilon, myLightPos, surfColor, etc.

Built-in uniforms:
gl_FogColor, gl_ModelViewMatrix, etc.

Processor

Vertex

Standard
Varying

gl_FrontColor
gl_BackColor

etc.

Special
Variables
gl_Position

gl_ClipVertex
gl_PointSize

User-defined
Varying

normal
refraction

etc.

December 9, 2005 27Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Processor CapabilitiesFragment Processor CapabilitiesFragment Processor Capabilities
Flexibility for texturing and perFlexibility for texturing and per--pixel operationspixel operations
Fragment processor can do general processing, Fragment processor can do general processing,
including things like: including things like:

Operations on interpolated valuesOperations on interpolated values
Texture accessTexture access
Texture applicationTexture application
FogFog
Color sumColor sum
Pixel zoomPixel zoom
Scale and biasScale and bias
Color table lookupColor table lookup
ConvolutionConvolution
Color matrixColor matrix

December 9, 2005 28Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Processor CapabilitiesFragment Processor CapabilitiesFragment Processor Capabilities
The fragment shader does NOT replace:The fragment shader does NOT replace:

Shading modelShading model HistogramHistogram
CoverageCoverage MinmaxMinmax
Pixel ownership testPixel ownership test Pixel packingPixel packing
ScissorScissor Pixel unpackingPixel unpacking
StippleStipple
Alpha testAlpha test
Depth testDepth test
Stencil testStencil test
Alpha blendingAlpha blending
Logical opsLogical ops
DitheringDithering
Plane maskingPlane masking

December 9, 2005 29Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Processor OverviewFragment Processor OverviewFragment Processor Overview

Texture Maps

User-defined uniforms:
epsilon, myLightPos, surfColor, etc.

Built-in uniforms:
gl_FogColor, gl_ModelViewMatrix, etc.

Processor

Fragment

Standard
Varying
gl_Color

gl_SecondaryColor
etc.

Special
Variables
gl_FragCoord
gl_FrontFacing

User-defined
Varying

normal
refraction

etc.

Special
Variables
gl_FragColor
gl_FragDepth

gl_FragData[n]

December 9, 2005 30Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Processor InputVertex Processor InputVertex Processor Input
Vertex shader is executed once each time Vertex shader is executed once each time
a vertex position is specifieda vertex position is specified

Via glVertex or Via glVertex or glDrawArrays glDrawArrays or other vertex array callsor other vertex array calls

PerPer--vertex input values are called vertex input values are called
attributesattributes

Change every vertexChange every vertex
Passed through normal OpenGL mechanisms (perPassed through normal OpenGL mechanisms (per--vertex vertex
API or vertex arrays)API or vertex arrays)

More persistent input values are called More persistent input values are called
uniformsuniforms

Can come from OpenGL state or from the applicationCan come from OpenGL state or from the application
Constant across at least one primitive, typically constant for Constant across at least one primitive, typically constant for
many primitivesmany primitives
Passed through new OpenGL API callsPassed through new OpenGL API calls

December 9, 2005 31Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Processor OutputVertex Processor OutputVertex Processor Output
Vertex shader uses input values to compute Vertex shader uses input values to compute
output valuesoutput values
Vertex shader must computeVertex shader must compute glgl_Position_Position

Mandatory, needed by theMandatory, needed by the rasterizerrasterizer
Can use builtCan use built--in functionin function ftransformftransform() to get invariance with () to get invariance with
fixed functionalityfixed functionality

Vertex shader may compute:Vertex shader may compute:
glgl__ClipVertexClipVertex (if user clipping is to be performed)(if user clipping is to be performed)
glgl__PointSizePointSize (if point parameters are to be used)(if point parameters are to be used)

December 9, 2005 32Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Processor OutputVertex Processor OutputVertex Processor Output
Other output values are called Other output values are called varyingvarying
variablesvariables

E.g., color, texture coordinates, arbitrary dataE.g., color, texture coordinates, arbitrary data
Will be interpolated in a perspectiveWill be interpolated in a perspective--correct fashion across correct fashion across
the primitivesthe primitives
Defined by the vertex shaderDefined by the vertex shader
Can be of type float, vec2, vec3, vec4, mat2, mat3, mat4, or Can be of type float, vec2, vec3, vec4, mat2, mat3, mat4, or
arrays of thesearrays of these

Output of vertex processor feeds into Output of vertex processor feeds into
OpenGL fixed functionalityOpenGL fixed functionality

If a fragment shader is active, output of vertex shader must If a fragment shader is active, output of vertex shader must
match input of fragment shadermatch input of fragment shader
If no fragment shader is active, output of vertex shader must If no fragment shader is active, output of vertex shader must
match the needs of fixed functionality fragment processingmatch the needs of fixed functionality fragment processing

December 9, 2005 33Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Processor DefinitionVertex Processor DefinitionVertex Processor Definition
The vertex processor executes the vertex shaderThe vertex processor executes the vertex shader
The vertex processor has knowledge of only the The vertex processor has knowledge of only the
current vertexcurrent vertex
An implementation may have multiple vertex An implementation may have multiple vertex
processors operating in parallelprocessors operating in parallel

December 9, 2005 34Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Processor DefinitionVertex Processor DefinitionVertex Processor Definition
When the vertex processor is active, the When the vertex processor is active, the
following fixed functionality is disabled:following fixed functionality is disabled:

TheThe modelviewmodelview matrix is not applied to vertex coordinatesmatrix is not applied to vertex coordinates
The projection matrix is not applied to vertex coordinatesThe projection matrix is not applied to vertex coordinates
The texture matrices are not applied to texture coordinatesThe texture matrices are not applied to texture coordinates
NormalsNormals are not transformed to eye coordinatesare not transformed to eye coordinates
NormalsNormals are not rescaled or normalizedare not rescaled or normalized
Normalization of GL_AUTO_NORMAL evaluatedNormalization of GL_AUTO_NORMAL evaluated normalsnormals is not is not
performedperformed
Texture coordinates are not generated automaticallyTexture coordinates are not generated automatically
Per vertex lighting is not performedPer vertex lighting is not performed
Color material computations are not performedColor material computations are not performed
Color index lighting is not performedColor index lighting is not performed
Point size distance attenuation is not performedPoint size distance attenuation is not performed
All of the above applies when setting the current raster positioAll of the above applies when setting the current raster positionn

December 9, 2005 35Copyright © 2005, 3Dlabs, Inc. Ltd

Intervening Fixed FunctionalityIntervening Fixed FunctionalityIntervening Fixed Functionality
Results from vertex processing undergo:Results from vertex processing undergo:

Color clamping or masking (for builtColor clamping or masking (for built--in varying variables that in varying variables that
deal with color, but not userdeal with color, but not user--defined varying variables)defined varying variables)
Perspective division on clip coordinatesPerspective division on clip coordinates
ViewportViewport mappingmapping
Depth rangeDepth range
Clipping, including user clippingClipping, including user clipping
Front face determinationFront face determination
FlatFlat--shadingshading
Color, texture coordinate, fog, pointColor, texture coordinate, fog, point--size and usersize and user--defined defined
varying clippingvarying clipping
Final color processingFinal color processing

December 9, 2005 36Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Processor InputFragment Processor InputFragment Processor Input
Output of vertex shader is the input to the Output of vertex shader is the input to the
fragment shaderfragment shader

Compatibility is checked when linking occursCompatibility is checked when linking occurs
Compatibility between the two is based on varying variables Compatibility between the two is based on varying variables
that are defined in both shaders and that match in type and that are defined in both shaders and that match in type and
namename

Fragment shader is executed for each fragment Fragment shader is executed for each fragment
produced by rasterizationproduced by rasterization
For each fragment, the fragment shader has For each fragment, the fragment shader has
access to the interpolated value for each varying access to the interpolated value for each varying
variablevariable

Color, normal, texture coordinates, arbitrary valuesColor, normal, texture coordinates, arbitrary values

December 9, 2005 37Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Processor InputFragment Processor InputFragment Processor Input
Fragment shader may access:Fragment shader may access:

glgl__FrontFacingFrontFacing –– contains direction (front or back) of contains direction (front or back) of
primitive that produced the fragmentprimitive that produced the fragment
glgl__FragCoordFragCoord –– contains computed window relative contains computed window relative
coordinates x, y, z, 1/wcoordinates x, y, z, 1/w

Uniform variables are also availableUniform variables are also available
OpenGL state or supplied by the application, same as for OpenGL state or supplied by the application, same as for
vertex shadervertex shader

If no vertex shader is active, fragment shader get If no vertex shader is active, fragment shader get
the results of OpenGL fixed functionalitythe results of OpenGL fixed functionality

December 9, 2005 38Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Processor OutputFragment Processor OutputFragment Processor Output
Output of the fragment processor goes on to the Output of the fragment processor goes on to the
fixed function fragment operations and frame fixed function fragment operations and frame
buffer operations using builtbuffer operations using built--in variablesin variables

glgl__FragColor FragColor –– computed R, G, B, A for the fragmentcomputed R, G, B, A for the fragment
glgl__FragDepth FragDepth –– computed depth value for the fragmentcomputed depth value for the fragment
glgl__FragDataFragData[n] [n] –– arbitrary data per fragment, stored in arbitrary data per fragment, stored in
multiple render targetsmultiple render targets
Values are destined for writing into the frame buffer if back Values are destined for writing into the frame buffer if back
end tests all passend tests all pass

Clamping or format conversion to the target Clamping or format conversion to the target
buffer is done automatically outside of the buffer is done automatically outside of the
fragment shaderfragment shader

December 9, 2005 39Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Processor DefinitionFragment Processor DefinitionFragment Processor Definition
The fragment processor executes the fragment The fragment processor executes the fragment
shadershader
The fragment processor has knowledge of only The fragment processor has knowledge of only
the current fragmentthe current fragment
An implementation may have multiple fragment An implementation may have multiple fragment
processors operating in parallelprocessors operating in parallel
When the fragment processor is active, the When the fragment processor is active, the
following fixed functionality is disabled:following fixed functionality is disabled:

The texture environments and texture functions are not appliedThe texture environments and texture functions are not applied
Texture application is not appliedTexture application is not applied
Color sum is not appliedColor sum is not applied
Fog is not appliedFog is not applied

December 9, 2005 40Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Processor DefinitionFragment Processor DefinitionFragment Processor Definition
The fragment processor does not affect the The fragment processor does not affect the
behavior of the following:behavior of the following:

Texture image specificationTexture image specification
Alternate texture image specificationAlternate texture image specification
Compressed texture image specificationCompressed texture image specification
Texture parameters behave as specified even when a Texture parameters behave as specified even when a
texture is accessed from within a fragment shader texture is accessed from within a fragment shader
Texture state and proxy stateTexture state and proxy state
Texture object specificationTexture object specification
Texture comparison modesTexture comparison modes

41

GLSL Language
Details

GLSL Language GLSL Language
DetailsDetails

December 9, 2005 42Copyright © 2005, 3Dlabs, Inc. Ltd

Design FocusDesign FocusDesign Focus
Based on syntax of ANSI CBased on syntax of ANSI C
Some additions to support graphics functionalitySome additions to support graphics functionality
Some additions from C++Some additions from C++
Some differences for a cleaner language designSome differences for a cleaner language design

December 9, 2005 43Copyright © 2005, 3Dlabs, Inc. Ltd

Additions for GraphicsAdditions for GraphicsAdditions for Graphics
Vector types are supported for floats, integers, and Vector types are supported for floats, integers, and
booleansbooleans

Can be 2Can be 2--, 3, 3--, or 4, or 4-- componentscomponents
Floating point matrix types are supportedFloating point matrix types are supported

2x2, 3x3, or 4x42x2, 3x3, or 4x4
Type qualifiers Type qualifiers attributeattribute, , uniformuniform, and , and varyingvarying
BuiltBuilt--in names for accessing OpenGL state and for in names for accessing OpenGL state and for
communicating with OpenGL fixed functionalitycommunicating with OpenGL fixed functionality
A variety of builtA variety of built--in functions are included for common in functions are included for common
graphics operationsgraphics operations

Square root, trig functions, geometric functions, texture lookupSquare root, trig functions, geometric functions, texture lookups, s,
etc.etc.

Keyword Keyword discarddiscard to cease processing of a fragmentto cease processing of a fragment
Vector components are named (.Vector components are named (.rgbargba, ., .xyzwxyzw, ., .stpqstpq) and can) and can
be be swizzledswizzled
SamplerSampler data type is added for texture accessdata type is added for texture access

December 9, 2005 44Copyright © 2005, 3Dlabs, Inc. Ltd

Additions from C++Additions from C++Additions from C++
Function overloading based on argument typesFunction overloading based on argument types
Function declarations are requiredFunction declarations are required
Variables can be declared when neededVariables can be declared when needed
Struct Struct definition automatically performs a definition automatically performs a
corresponding corresponding typedeftypedef
Data type Data type boolbool

December 9, 2005 45Copyright © 2005, 3Dlabs, Inc. Ltd

ANSI C Features Not SupportedANSI C Features Not SupportedANSI C Features Not Supported
Automatic promotion of data typesAutomatic promotion of data types
Double, byte, short, long and unsigned byte/short/Double, byte, short, long and unsigned byte/short/intint/long/long
Switch statements, Switch statements, gotogoto statements, and labelsstatements, and labels
Pointers and pointerPointers and pointer--related capabilitiesrelated capabilities
Character and string literalsCharacter and string literals
UnionsUnions
EnumEnum
BitBit--fieldsfields
Modulus and bitModulus and bit--wise operatorswise operators

%, ~, >>, <<, ^, |, &, %=, <<=, >>=, &=, ^=, !=%, ~, >>, <<, ^, |, &, %=, <<=, >>=, &=, ^=, !=
FileFile--based preprocessor directivesbased preprocessor directives
Number signNumber sign--based preprocessor operators based preprocessor operators

#, #@, ##, etc.#, #@, ##, etc.
sizeofsizeof

December 9, 2005 46Copyright © 2005, 3Dlabs, Inc. Ltd

Other DifferencesOther DifferencesOther Differences
Constructors are used for conversion rather than Constructors are used for conversion rather than
type casts type casts
Function parameters are passed by valueFunction parameters are passed by value--returnreturn

December 9, 2005 47Copyright © 2005, 3Dlabs, Inc. Ltd

BasicsBasicsBasics
No inherent limit on hardNo inherent limit on hard--toto--count resources such as count resources such as
registers or instructionsregisters or instructions

But limits may exist on early implementationsBut limits may exist on early implementations
WellWell--formed shaders are portableformed shaders are portable
IllIll--formed shaders may compile but are not portableformed shaders may compile but are not portable
Compilers must report lexical, grammatical, and syntactical Compilers must report lexical, grammatical, and syntactical
errorserrors
Linkers must report compatibility errors, unresolved Linkers must report compatibility errors, unresolved
references, and outreferences, and out--ofof--resource errorsresource errors
Shaders containing errors cannot be executedShaders containing errors cannot be executed
Compilers may report warnings about code that limits Compilers may report warnings about code that limits
performanceperformance
Some slight differences between the language for vertex Some slight differences between the language for vertex
shaders and the language for fragment shadersshaders and the language for fragment shaders

BuiltBuilt--in variables, type qualifiers, and builtin variables, type qualifiers, and built--in functions differ slightlyin functions differ slightly

December 9, 2005 48Copyright © 2005, 3Dlabs, Inc. Ltd

Source CodeSource CodeSource Code
The source code for a shader consists of an The source code for a shader consists of an
array of stringsarray of strings
Each string may contain multiple lines of source Each string may contain multiple lines of source
code, separated by newcode, separated by new--lineslines
A line of source code may be made of multiple A line of source code may be made of multiple
stringsstrings
Compiler diagnostic messages identify the Compiler diagnostic messages identify the
source string and the line within the string that source string and the line within the string that
caused the errorcaused the error
Source strings are numbered starting from 0Source strings are numbered starting from 0
When parsing, current line number is number of When parsing, current line number is number of
newnew--lines processed plus 1lines processed plus 1

December 9, 2005 49Copyright © 2005, 3Dlabs, Inc. Ltd

Basic StructureBasic StructureBasic Structure
A shader is a sequence of declarations and A shader is a sequence of declarations and
function bodiesfunction bodies
Curly braces are used to group sequences of Curly braces are used to group sequences of
statementsstatements
A shader must have a A shader must have a mainmain functionfunction
Statements end with a semiStatements end with a semi--coloncolon

December 9, 2005 50Copyright © 2005, 3Dlabs, Inc. Ltd

CommentsCommentsComments
Comments are delimited by /* and */, or by // and Comments are delimited by /* and */, or by // and
a newa new--lineline
Comments cannot be nestedComments cannot be nested

December 9, 2005 51Copyright © 2005, 3Dlabs, Inc. Ltd

Basic Types – 1 of 2Basic Types Basic Types –– 1 of 21 of 2
float, vec2, vec3, vec4float, vec2, vec3, vec4

1, 2, 3, or 4 floating point values1, 2, 3, or 4 floating point values
Preferred data types for most processingPreferred data types for most processing

intint, ivec2, ivec3, ivec4, ivec2, ivec3, ivec4
1, 2, 3, or 4 integer values1, 2, 3, or 4 integer values
Integer for loops and array indexInteger for loops and array index
Underlying hardware not expected to support integers nativelyUnderlying hardware not expected to support integers natively
Limited to 16 bits of precision, plus signLimited to 16 bits of precision, plus sign
No guaranteed wrapping behaviorNo guaranteed wrapping behavior

boolbool, bvec2, bvec3, bvec4, bvec2, bvec3, bvec4
1, 2, 3, or 4 1, 2, 3, or 4 booleanboolean valuesvalues
As in C++, contains true or falseAs in C++, contains true or false
Used in expressions for conditional jumpsUsed in expressions for conditional jumps
Underlying hardware not expected to support Underlying hardware not expected to support booleans booleans nativelynatively

mat2, mat3, mat4mat2, mat3, mat4
Floating point square matrixFloating point square matrix
Used to perform transformation operationsUsed to perform transformation operations

December 9, 2005 52Copyright © 2005, 3Dlabs, Inc. Ltd

Basic Types – 2 of 2Basic Types Basic Types –– 2 of 22 of 2
voidvoid

Used for functions that do not return a valueUsed for functions that do not return a value

sampler1D, sampler2D, sampler3Dsampler1D, sampler2D, sampler3D
Handles for accessing 1D, 2D, and 3D texturesHandles for accessing 1D, 2D, and 3D textures
Used in conjunction with texture access functionsUsed in conjunction with texture access functions

samplerCubesamplerCube
Handle for accessing a cube map textureHandle for accessing a cube map texture
Used in conjunction with texture access functionsUsed in conjunction with texture access functions

sampler1DShadow, sampler2DShadowsampler1DShadow, sampler2DShadow
Handles for accessing 1D or 2D depth textures with an Handles for accessing 1D or 2D depth textures with an
implicit comparison operationimplicit comparison operation
Used in conjunction with texture access functionsUsed in conjunction with texture access functions

December 9, 2005 53Copyright © 2005, 3Dlabs, Inc. Ltd

ArraysArraysArrays
An aggregation of variables of the same typeAn aggregation of variables of the same type
All basic types and structures can be aggregated All basic types and structures can be aggregated
into arraysinto arrays
Only 1D arrays are supportedOnly 1D arrays are supported
Size of array can be expressed as an integral Size of array can be expressed as an integral
constant expression within square brackets ([])constant expression within square brackets ([])
Arrays can be declared without a size, and then Arrays can be declared without a size, and then
rere--declared later with the same type and a sizedeclared later with the same type and a size
Using an index that goes beyond an array’s Using an index that goes beyond an array’s
bounds results in undefined behaviorbounds results in undefined behavior
Examples:Examples:

float ramp[10];float ramp[10];
vec4 colors[4];vec4 colors[4];
boolbool results[3];results[3];

December 9, 2005 54Copyright © 2005, 3Dlabs, Inc. Ltd

StructuresStructuresStructures
UserUser--defined types can be created using defined types can be created using struct struct with with
previously defined typespreviously defined types
Example:Example:
structstruct surfMaterialsurfMaterial

{{
float ambient;float ambient;

float diffuse;float diffuse;

float float specularspecular;;

vec3 vec3 baseColorbaseColor;;

} surf;} surf;

surfMaterial surfMaterial surf1, surf2;surf1, surf2;

Creates a new type called Creates a new type called surfMaterialsurfMaterial
Defines variables of this type called Defines variables of this type called surfsurf, , surf1surf1, and , and surf2surf2
Structures can include arraysStructures can include arrays
Fields are selected using the period (.)Fields are selected using the period (.)

December 9, 2005 55Copyright © 2005, 3Dlabs, Inc. Ltd

Variables and ScopingVariables and ScopingVariables and Scoping
Variables, types, functions must be declared Variables, types, functions must be declared
before usebefore use
No default type, everything must be declared with No default type, everything must be declared with
a typea type
A variable’s scope is determined by where it is A variable’s scope is determined by where it is
declareddeclared
Shared Shared globals globals are permitted, types must matchare permitted, types must match

December 9, 2005 56Copyright © 2005, 3Dlabs, Inc. Ltd

Type QualifiersType QualifiersType Qualifiers
constconst

variable is a constant and can only be written during its declarvariable is a constant and can only be written during its declarationation
attributeattribute

perper--vertex data values provided to the vertex vertex data values provided to the vertex shadershader
uniformuniform

(relatively) constant data provided by the application or by Ope(relatively) constant data provided by the application or by OpenGL nGL
for use in the for use in the shadershader

varyingvarying
a perspectivea perspective--correct interpolated valuecorrect interpolated value
output for vertex output for vertex shadershader
input for fragment input for fragment shadershader

inin
for function parameters copied into a function, but not copied ofor function parameters copied into a function, but not copied outut

outout
for function parameters copied out of a function, but not copiedfor function parameters copied out of a function, but not copied inin

inoutinout
for function parameters copied into and out of a functionfor function parameters copied into and out of a function

December 9, 2005 57Copyright © 2005, 3Dlabs, Inc. Ltd

ConstantsConstantsConstants
Named constants are declared using the Named constants are declared using the constconst qualifier, qualifier,
e.g.:e.g.:
const float epsilon = 0.0001;const float epsilon = 0.0001;

const const int loopCountint loopCount = 8;= 8;

const vec3 position = vec3 (0.0, 0.0, 0.0);const vec3 position = vec3 (0.0, 0.0, 0.0);

Const qualifier can only be used by itself or with uniformConst qualifier can only be used by itself or with uniform
Can be used to qualify local or global variables or function Can be used to qualify local or global variables or function
parametersparameters
Literal constants can be expressed as in CLiteral constants can be expressed as in C

Decimal (e.g., 1023, 4076, 5, 0)Decimal (e.g., 1023, 4076, 5, 0)
Octal (e.g., 0777, 05, 02345)Octal (e.g., 0777, 05, 02345)
Hexadecimal (e.g., 0xFFFF, 0x11, 0xFEE)Hexadecimal (e.g., 0xFFFF, 0x11, 0xFEE)
Floating point (e.g., 1.0, 5839.37, 32.0)Floating point (e.g., 1.0, 5839.37, 32.0)
Scientific notation (e.g., 0.1eScientific notation (e.g., 0.1e--5, 5.333e6, 1.0E10, 2.1E+3)5, 5.333e6, 1.0E10, 2.1E+3)

Character and string constants are not supportedCharacter and string constants are not supported

December 9, 2005 58Copyright © 2005, 3Dlabs, Inc. Ltd

Attribute VariablesAttribute VariablesAttribute Variables
Input to the vertex processorInput to the vertex processor
Data provided by the application that changes every vertexData provided by the application that changes every vertex
Available as readAvailable as read--only in a vertex shaderonly in a vertex shader
Can be a standard OpenGL vertex attributeCan be a standard OpenGL vertex attribute

glgl_Color, _Color, glgl_ Normal, _ Normal, glgl_ Vertex, _ Vertex, glgl__TexcoordTexcoord, etc., etc.
Can be userCan be user--defineddefined

Temperature, weighting factor, glossiness, refraction factor, etTemperature, weighting factor, glossiness, refraction factor, etc.c.
API is provided to tie generic vertex attributes supplied by API is provided to tie generic vertex attributes supplied by
an application to attribute names in a shaderan application to attribute names in a shader
Specification of vertex position causes execution of the Specification of vertex position causes execution of the
vertex shadervertex shader
Can only be used as a qualifier for float, vec2/3/4, and Can only be used as a qualifier for float, vec2/3/4, and
mat2/3/4mat2/3/4
Global variables onlyGlobal variables only
attribute vec3 tangent;attribute vec3 tangent;
attribute float density;attribute float density;
attribute vec3 attribute vec3 binormalbinormal;;

December 9, 2005 59Copyright © 2005, 3Dlabs, Inc. Ltd

Uniform VariablesUniform VariablesUniform Variables
Input to vertex processor or fragment processorInput to vertex processor or fragment processor
Data provided by the application or by OpenGLData provided by the application or by OpenGL
Changes relatively infrequently (i.e., constant for one or Changes relatively infrequently (i.e., constant for one or
more primitives)more primitives)
Used to make OpenGL state available to shadersUsed to make OpenGL state available to shaders

glgl__ModelViewProjectionMatrixModelViewProjectionMatrix, , glgl__FogColorFogColor, , glgl__FrontMaterialFrontMaterial, etc., etc.
Used by application to provide additional data to shadersUsed by application to provide additional data to shaders

baseColorbaseColor, epsilon, , epsilon, eyeDireyeDir, , LightPosLightPos, , scaleFactorsscaleFactors
Cannot be position dependentCannot be position dependent
Global uniforms are readGlobal uniforms are read--only and there is a only and there is a queriablequeriable limit limit
on how much storage is availableon how much storage is available
Can only be used to qualify global variablesCan only be used to qualify global variables
uniform vec3 uniform vec3 BaseColorBaseColor;;

uniform floatuniform float MixRatioMixRatio;;

uniform vec3 uniform vec3 eyePositioneyePosition;;

December 9, 2005 60Copyright © 2005, 3Dlabs, Inc. Ltd

Varying VariablesVarying VariablesVarying Variables
Output from vertex processorOutput from vertex processor

Can be read or writtenCan be read or written
Input for fragment processorInput for fragment processor

ReadRead--onlyonly
Global variables onlyGlobal variables only
Names/types must match or a link error will occurNames/types must match or a link error will occur
Used to specify values that are interpolated across a Used to specify values that are interpolated across a
primitiveprimitive
Can be standard OpenGL valuesCan be standard OpenGL values

glgl__FrontColorFrontColor, , glgl__TexCoordTexCoord[0], [0], glgl__TexCoordTexCoord[1], etc.[1], etc.
Can be userCan be user--defined valuesdefined values

normal, normal, halfAnglehalfAngle, thickness, , thickness, modelCoordinatemodelCoordinate, etc., etc.
Varying values are interpolated in a perspectiveVarying values are interpolated in a perspective--correct correct
fashionfashion
varying vec3 Normal;varying vec3 Normal;
varying vec3 varying vec3 EyeDirEyeDir;;
varying floatvarying float LightIntensityLightIntensity;;

December 9, 2005 61Copyright © 2005, 3Dlabs, Inc. Ltd

OperatorsOperatorsOperators
Same as ANSI C except no:Same as ANSI C except no:

Modulus operatorModulus operator
BitBit--wise operatorswise operators
AddressAddress--ofof
DereferenceDereference
Type castType cast

Operators work as expected on floats, Operators work as expected on floats, intsints, , boolsbools
Operators work componentOperators work component--wise for vectors and wise for vectors and
matricesmatrices

Except for * which performs matrix multiplicationExcept for * which performs matrix multiplication
Only assignment (=), equality (==, !=), and field Only assignment (=), equality (==, !=), and field
selection (.) operators work with structuresselection (.) operators work with structures
Only array subscript operator ([]) works on Only array subscript operator ([]) works on
arraysarrays

December 9, 2005 62Copyright © 2005, 3Dlabs, Inc. Ltd

ConstructorsConstructorsConstructors
Function call syntax is used to make a value of a Function call syntax is used to make a value of a
desired typedesired type
“Parameters” are used to initialize the “Parameters” are used to initialize the
constructed valueconstructed value
Can be used to:Can be used to:

Do data type conversionDo data type conversion
Build a larger type out of several smaller typesBuild a larger type out of several smaller types
Reduce the size of a larger typeReduce the size of a larger type
Do Do swizzling swizzling of componentsof components

All lexically correct parameter lists are validAll lexically correct parameter lists are valid
Parameter list must be of sufficient size and Parameter list must be of sufficient size and
correct typecorrect type
Parameters are assigned to the constructed Parameters are assigned to the constructed
value from left to rightvalue from left to right

December 9, 2005 63Copyright © 2005, 3Dlabs, Inc. Ltd

Scalar ConstructorsScalar ConstructorsScalar Constructors
Some scalar constructor examples:Some scalar constructor examples:

intint((boolbool)) // converts a Boolean value to an // converts a Boolean value to an intint

intint(float) (float) // converts a float value to an // converts a float value to an intint

float(float(boolbool)) // converts a Boolean value to a float// converts a Boolean value to a float

float(float(intint)) // converts an integer value to a float// converts an integer value to a float

boolbool(float) (float) // converts a float value to a Boolean// converts a float value to a Boolean

boolbool((intint)) // converts an integer value to a Boolean// converts an integer value to a Boolean

float(vec3) float(vec3) // selects first component of the vector// selects first component of the vector

From float to From float to intint, fractional part is dropped, fractional part is dropped
From From int int or float to or float to boolbool, 0 and 0.0 are converted to false, , 0 and 0.0 are converted to false,
other values are converted to trueother values are converted to true
From From bool bool to to intint or float, false is converted to 0 or 0.0, true to or float, false is converted to 0 or 0.0, true to
1 or 1.01 or 1.0

December 9, 2005 64Copyright © 2005, 3Dlabs, Inc. Ltd

Vector ConstructorsVector ConstructorsVector Constructors
A single scalar parameter will initialize all components of a A single scalar parameter will initialize all components of a
vectorvector
Vector constructor examples:Vector constructor examples:

vec3(float)vec3(float)
vec4(ivec4)vec4(ivec4)
vec2(float, float) vec2(float, float)
ivec3(ivec3(intint,, intint,, intint))
bvec4(bvec4(intint,, intint, float, float), float, float)
vec2(vec3) vec2(vec3)
vec3(vec4)vec3(vec4)
vec3(vec2, float) vec3(vec2, float)
vec3(float, vec2)vec3(float, vec2)
vec4(vec3, float)vec4(vec3, float)
vec4(float, vec3)vec4(float, vec3)
vec4(vec2, vec2)vec4(vec2, vec2)

Usage:Usage:
vec4 color = vec4(0.0, 1.0, 0.0, 1.0);vec4 color = vec4(0.0, 1.0, 0.0, 1.0);
vec4 vec4 rgba rgba = vec4(1.0);= vec4(1.0);
vec3 vec3 rgb rgb = vec3(color);= vec3(color);

December 9, 2005 65Copyright © 2005, 3Dlabs, Inc. Ltd

Matrix ConstructorsMatrix ConstructorsMatrix Constructors
A single scalar parameter is used to initialize all A single scalar parameter is used to initialize all
components on the diagonal of the matrix, others are set to components on the diagonal of the matrix, others are set to
0.00.0
Matrices are constructed in column major orderMatrices are constructed in column major order
Examples:Examples:

mat2(float)mat2(float)
mat3(float)mat3(float)
mat4(float)mat4(float)
mat2(vec2, vec2);mat2(vec2, vec2);
mat3(vec3, vec3, vec3);mat3(vec3, vec3, vec3);
mat4(vec4, vec4, vec4, vec4);mat4(vec4, vec4, vec4, vec4);
mat2(float, float, mat2(float, float,

float, float);float, float);

mat3(float, float, float,mat3(float, float, float,
float, float, float,float, float, float,
float, float, float);float, float, float);

mat4(float, float, float, float,mat4(float, float, float, float,
float, float, float, float,float, float, float, float,
float, float, float, float,float, float, float, float,
float, float, float, float);float, float, float, float);

December 9, 2005 66Copyright © 2005, 3Dlabs, Inc. Ltd

Structure ConstructorsStructure ConstructorsStructure Constructors
Constructor for a structure is available once Constructor for a structure is available once
structure is definedstructure is defined
Example:Example:

structstruct lightlight

{{

float intensity;float intensity;

vec3 position;vec3 position;

};};

light light newLight newLight = light(3.0, vec3(1.0, 2.0, 3.0));= light(3.0, vec3(1.0, 2.0, 3.0));

December 9, 2005 67Copyright © 2005, 3Dlabs, Inc. Ltd

Vector ComponentsVector ComponentsVector Components
Vector components can be referred to using array syntax Vector components can be referred to using array syntax
or a single letter:or a single letter:

[0], [1], [2], [3][0], [1], [2], [3]
r, g, b, ar, g, b, a
x, y, z, wx, y, z, w
s, t, p, qs, t, p, q

This syntax can be used to extract, duplicate, or swizzle This syntax can be used to extract, duplicate, or swizzle
componentscomponents

vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);vec4 pos = vec4(1.0, 2.0, 3.0, 4.0);

vec4vec4 swizswiz= pos.= pos.wzyxwzyx;; // // swizswiz = (4.0, 3.0, 2.0, 1.0)= (4.0, 3.0, 2.0, 1.0)

vec4 dup = pos.vec4 dup = pos.xxyyxxyy;; // dup = (1.0, 1.0, 2.0, 2.0)// dup = (1.0, 1.0, 2.0, 2.0)

pos.pos.xwxw = vec2(5.0, 6.0); = vec2(5.0, 6.0); // pos = (5.0, 2.0, 3.0, 6.0)// pos = (5.0, 2.0, 3.0, 6.0)

pos.pos.wxwx = vec2(7.0, 8.0); = vec2(7.0, 8.0); // pos = (8.0, 2.0, 3.0, 7.0)// pos = (8.0, 2.0, 3.0, 7.0)

pos.xx = vec2(3.0, 4.0); pos.xx = vec2(3.0, 4.0); // illegal // illegal -- 'x' used twice'x' used twice

December 9, 2005 68Copyright © 2005, 3Dlabs, Inc. Ltd

Matrix ComponentsMatrix ComponentsMatrix Components
Matrix components can be accessed using array Matrix components can be accessed using array
subscripting syntaxsubscripting syntax
A single subscript selects a single columnA single subscript selects a single column
A second subscript selects a component within a A second subscript selects a component within a
columncolumn

mat4 m;mat4 m;

m[1] = vec4(2.0); m[1] = vec4(2.0); // sets the second column to all 2.0// sets the second column to all 2.0

m[0][0] = 1.0; m[0][0] = 1.0; // sets the upper left element to 1.0// sets the upper left element to 1.0

m[2][3] = 2.0; m[2][3] = 2.0; // sets the 4th element of the third// sets the 4th element of the third

// column to 2.0// column to 2.0

December 9, 2005 69Copyright © 2005, 3Dlabs, Inc. Ltd

ExpressionsExpressionsExpressions
ConstantsConstants
ConstructorsConstructors
VariablesVariables
Component field selectorsComponent field selectors
Subscripted array namesSubscripted array names
Scalar/vector/matrix operations as expectedScalar/vector/matrix operations as expected
+, +, --, * and /, * and /
Ternary selection operation (? :)Ternary selection operation (? :)
UserUser--defined functionsdefined functions
BuiltBuilt--in functionsin functions

December 9, 2005 70Copyright © 2005, 3Dlabs, Inc. Ltd

Function DefinitionsFunction DefinitionsFunction Definitions
Function names can be overloadedFunction names can be overloaded

Argument lists must differArgument lists must differ

Functions must be declared or defined before Functions must be declared or defined before
being calledbeing called
Must have a basic type as a return valueMust have a basic type as a return value

Can be voidCan be void

Arguments can be a basic type, arrays, or Arguments can be a basic type, arrays, or
structuresstructures
Return type can be a structure, but not an arrayReturn type can be a structure, but not an array
A valid shader must have a function called A valid shader must have a function called mainmain
Recursion behavior is undefinedRecursion behavior is undefined

December 9, 2005 71Copyright © 2005, 3Dlabs, Inc. Ltd

Function Calling ConventionsFunction Calling ConventionsFunction Calling Conventions
Functions are called by valueFunctions are called by value--return return
Arguments can include an optional qualifierArguments can include an optional qualifier

in in –– for function parameters copied into a function, but not for function parameters copied into a function, but not
copied outcopied out
out out –– for function parameters copied out of a function, but for function parameters copied out of a function, but
not copied innot copied in
inoutinout –– for function parameters copied into and out of a for function parameters copied into and out of a
functionfunction
const const –– for function parameters that arefor function parameters that are contantscontants
If no qualifier is specified, in is assumedIf no qualifier is specified, in is assumed

December 9, 2005 72Copyright © 2005, 3Dlabs, Inc. Ltd

Function ExamplesFunction ExamplesFunction Examples
DeclarationDeclaration

vec3vec3 computeColorcomputeColor (in vec3 c1, in vec3 c2);(in vec3 c1, in vec3 c2);

float radians (float degrees);float radians (float degrees);

DefinitionDefinition

floatfloat myFuncmyFunc (in float f1, (in float f1, // f1 is copied in// f1 is copied in

inoutinout float f2) float f2) // f2 is copied in and out// f2 is copied in and out

{{

float float myResultmyResult;;

// do computations// do computations

returnreturn myResultmyResult;;

}}

December 9, 2005 73Copyright © 2005, 3Dlabs, Inc. Ltd

Conditional StatementsConditional StatementsConditional Statements
ifif and and ifif--elseelse are supportedare supported
ifif expression must be type expression must be type boolbool
Can be nestedCan be nested
Examples:Examples:

if (diffuse > 0.1)if (diffuse > 0.1)

color1 = color1 = daytimeColordaytimeColor;;

if (r <if (r < GrainThresholdGrainThreshold))

color +=color += LightWoodLightWood ** LightGrainsLightGrains * * noisevecnoisevec[2];[2];

elseelse

color color --== LightWoodLightWood ** DarkGrainsDarkGrains * * noisevecnoisevec[2];[2];

December 9, 2005 74Copyright © 2005, 3Dlabs, Inc. Ltd

Iteration StatementsIteration StatementsIteration Statements
forfor, , whilewhile, and , and dodo--whilewhile loops are supported as in loops are supported as in
ANSI CANSI C
Loops can be nestedLoops can be nested
Examples:Examples:

for (i = 0; i < 8; i++)for (i = 0; i < 8; i++)
color += contribution[i];color += contribution[i];

while (i > 0)while (i > 0)
color += contribution[color += contribution[----i];i];

dodo
total += total += lightContriblightContrib[i[i----];];

while (i > 0);while (i > 0);

December 9, 2005 75Copyright © 2005, 3Dlabs, Inc. Ltd

Jump StatementsJump StatementsJump Statements
continuecontinue, , breakbreak, and , and returnreturn are supported as in are supported as in
ANSI CANSI C
returnreturn can return an expressioncan return an expression
discarddiscard can be used in a fragment shader to can be used in a fragment shader to
abandon the operation on the current fragmentabandon the operation on the current fragment
Examples:Examples:

return (color1 + color2 + color3);return (color1 + color2 + color3);

if (intensity < 0.0)if (intensity < 0.0)
discard;discard;

December 9, 2005 76Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Shader Built-in VariablesVertex Shader BuiltVertex Shader Built--in Variablesin Variables
The following special variables are available in a The following special variables are available in a
vertex shader:vertex shader:
vec4 vec4 glgl_Position; _Position; // must be written to// must be written to
float float glgl__PointSizePointSize; ; // may be written to// may be written to
vec4 vec4 glgl__ClipVertexClipVertex; ; // may be written to// may be written to

Every execution of a vertex shader must write the Every execution of a vertex shader must write the
homogeneous vertex position into homogeneous vertex position into glgl_Position_Position

Can use the builtCan use the built--in function in function ftransformftransform() to achieve () to achieve
invariance with fixed functionalityinvariance with fixed functionality

Vertex shaders may write the size of points to be Vertex shaders may write the size of points to be
rasterized rasterized (measured in pixels) into the built(measured in pixels) into the built--in in
variable variable glgl__PointSizePointSize
Vertex shaders may write the transformed Vertex shaders may write the transformed
coordinate to be used in conjunction with user coordinate to be used in conjunction with user
clipping planes into clipping planes into glgl__ClipVertexClipVertex

December 9, 2005 77Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Shader Built-in AttributesVertex Shader BuiltVertex Shader Built--in Attributesin Attributes
The following are available from a vertex shader The following are available from a vertex shader
for accessing standard OpenGL vertex attributes:for accessing standard OpenGL vertex attributes:

attribute vec4attribute vec4 glgl_Color;_Color;

attribute vec4attribute vec4 glgl__SecondaryColorSecondaryColor;;

attribute vec3attribute vec3 glgl_Normal;_Normal;

attribute vec4attribute vec4 glgl_Vertex;_Vertex;

attribute vec4attribute vec4 glgl_MultiTexCoord0;_MultiTexCoord0;

attribute vec4attribute vec4 glgl_MultiTexCoord1;_MultiTexCoord1;

.

attribute vec4attribute vec4 glgl__MultiTexCoordMultiTexCoordNN--11;;

attribute floatattribute float glgl__FogCoordFogCoord;;

December 9, 2005 78Copyright © 2005, 3Dlabs, Inc. Ltd

Built-in ConstantsBuiltBuilt--in Constantsin Constants
The following builtThe following built--in constants are defined:in constants are defined:

glgl__MaxLights MaxLights = 8= 8

glgl__MaxClipPlanes MaxClipPlanes = 6= 6

glgl__MaxTextureUnits MaxTextureUnits = 2= 2

glgl__MaxTextureCoords MaxTextureCoords = 2= 2

glgl__MaxVertexAttribs MaxVertexAttribs = 16= 16

glgl__MaxVertexUniformComponentsMaxVertexUniformComponents = 512= 512

glgl__MaxVaryingFloats MaxVaryingFloats = 32 = 32

glgl__MaxVertexTextureImageUnits MaxVertexTextureImageUnits = 0= 0

glgl__MaxTextureImageUnits MaxTextureImageUnits = 2= 2

glgl__MaxFragmentUniformComponents MaxFragmentUniformComponents = 64= 64

glgl__MaxCombinedTextureImageUnits MaxCombinedTextureImageUnits = 2= 2

Can be used within a shaderCan be used within a shader
Have the same value as Have the same value as queriable queriable values of the values of the
same name in OpenGLsame name in OpenGL

December 9, 2005 79Copyright © 2005, 3Dlabs, Inc. Ltd

State-TrackingStateState--TrackingTracking
Existing OpenGL state is available to shadersExisting OpenGL state is available to shaders

Uniform variables with reserved prefix “Uniform variables with reserved prefix “glgl_” are used to _” are used to
automatically track OpenGL 1.5 stateautomatically track OpenGL 1.5 state

Variables can be used by shaders to access Variables can be used by shaders to access
current OpenGL statecurrent OpenGL state

These are builtThese are built--in uniform variables so do not need to be in uniform variables so do not need to be
declared or includeddeclared or included

State tracking will occur for all such variables State tracking will occur for all such variables
that are used in a shaderthat are used in a shader
Examples:Examples:
glgl__ModelViewMatrixModelViewMatrix

glgl__ModelViewProjectionMatrixModelViewProjectionMatrix

gl_gl_LightSourceLightSource[[glgl__MaxLightsMaxLights]]

glgl_Fog_Fog

glgl__ClipPlaneClipPlane[[glgl__MaxClipPlanesMaxClipPlanes]]

December 9, 2005 80Copyright © 2005, 3Dlabs, Inc. Ltd

Built-in Varying VariablesBuiltBuilt--in Varying Variablesin Varying Variables
Available to be written in a vertex shader:Available to be written in a vertex shader:

varying vec4varying vec4 glgl__FrontColorFrontColor;;

varying vec4varying vec4 glgl__BackColorBackColor;;

varying vec4varying vec4 glgl__FrontSecondaryColorFrontSecondaryColor;;

varying vec4varying vec4 glgl__BackSecondaryColorBackSecondaryColor;;

varying vec4varying vec4 glgl__TexCoordTexCoord[[glgl__MaxTextureCoordsMaxTextureCoords];];

varying floatvarying float glgl__FogFragCoordFogFragCoord;;

Available to be read in a fragment shaderAvailable to be read in a fragment shader
varying vec4varying vec4 glgl_Color;_Color;

varying vec4varying vec4 glgl__SecondaryColorSecondaryColor;;

varying vec4varying vec4 glgl__TexCoordTexCoord[[glgl__MaxTextureCoordsMaxTextureCoords];];

varying floatvarying float glgl__FogFragCoordFogFragCoord;;

Can be used to interface to the fixed functionality Can be used to interface to the fixed functionality
of OpenGLof OpenGL

December 9, 2005 81Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Shader Built-in VariablesFragment Shader BuiltFragment Shader Built--in Variablesin Variables
The following special variables are available as readThe following special variables are available as read--only in only in
a fragment shader:a fragment shader:

vec4 vec4 glgl__FragCoordFragCoord; ; // window relative // window relative coordscoords
bool glbool gl__FrontFacingFrontFacing; ; // is primitive // is primitive frontfacingfrontfacing??

The following special variables are available for writing in a The following special variables are available for writing in a
fragment shader:fragment shader:

vec4 vec4 glgl__FragColorFragColor; ; // final color value// final color value
float float glgl__FragDepthFragDepth; ; // final depth value// final depth value
vec4 vec4 glgl__FragDataFragData[n];[n]; // arbitrary data// arbitrary data

glgl__FragCoord FragCoord and and glgl__FrontFacing FrontFacing contain values computed by contain values computed by
fixed functionality in between the vertex processor and the fixed functionality in between the vertex processor and the
fragment processorfragment processor
glgl__FragColor FragColor and and glgl__FragDepth FragDepth should be written with the values should be written with the values
to be used by the back end of the processing pipelineto be used by the back end of the processing pipeline
If If glgl__FragDepth FragDepth is not written, the depth value computed by fixed is not written, the depth value computed by fixed
functionality will be used as the depthfunctionality will be used as the depth
glgl__FragDataFragData[n] can be used to write arbitrary date to multiple [n] can be used to write arbitrary date to multiple
render targetsrender targets

December 9, 2005 82Copyright © 2005, 3Dlabs, Inc. Ltd

Built-in FunctionsBuiltBuilt--in Functionsin Functions
Trigonometry/angleTrigonometry/angle

radians, degrees, sin, radians, degrees, sin, coscos, tan, , tan, asinasin, , acosacos, , atanatan

ExponentialExponential
powpow, exp2, log2, , exp2, log2, sqrtsqrt, , inversesqrtinversesqrt

CommonCommon
abs, sign, floor, ceil, abs, sign, floor, ceil, fractfract, mod, min, max, clamp, mix, step, , mod, min, max, clamp, mix, step,
smoothstepsmoothstep

Geometric and matrixGeometric and matrix
length, distance, dot, cross, normalize, length, distance, dot, cross, normalize, ftransformftransform, ,
faceforwardfaceforward, reflect, , reflect, matrixCompMultmatrixCompMult

December 9, 2005 83Copyright © 2005, 3Dlabs, Inc. Ltd

Built-in FunctionsBuiltBuilt--in Functionsin Functions
Vector relationalVector relational

lessThanlessThan,, lessThanEquallessThanEqual,, greaterThangreaterThan,, greaterThanEqualgreaterThanEqual, ,
equal, any, allequal, any, all

Texture lookupTexture lookup
texture1D/2D/3D, texture1D/2D/3DProj,texture1D/2D/3D, texture1D/2D/3DProj, textureCubetextureCube, ,
texture1D/2DShadow, texture1D/2DShadowProjtexture1D/2DShadow, texture1D/2DShadowProj

Fragment shader onlyFragment shader only
dFdxdFdx,, dFdydFdy,, fwidthfwidth

NoiseNoise
noise1/2/3/4noise1/2/3/4

December 9, 2005 84Copyright © 2005, 3Dlabs, Inc. Ltd

PreprocessorPreprocessorPreprocessor
Preprocessor processes strings before they are Preprocessor processes strings before they are
compiledcompiled
Support for all ANSI C preprocessor directives Support for all ANSI C preprocessor directives
except fileexcept file--based onesbased ones

e.g., #includee.g., #include

Predefined macros __LINE__ , __FILE__ , Predefined macros __LINE__ , __FILE__ ,
__VERSION____VERSION__
No number sign operators or No number sign operators or sizeofsizeof
Two Two pragmaspragmas are defined:are defined:

Turn optimization on and off Turn optimization on and off
Turn debugging on and offTurn debugging on and off

85

API DetailsAPI DetailsAPI Details

December 9, 2005 86Copyright © 2005, 3Dlabs, Inc. Ltd

ObjectsObjectsObjects
Objects are OpenGLObjects are OpenGL--managed data structures managed data structures
that consist of state and datathat consist of state and data
Where GLSL is concerned, objects are named Where GLSL is concerned, objects are named
(given handles) by OpenGL, and these names are (given handles) by OpenGL, and these names are
used by the application to subsequently refer to used by the application to subsequently refer to
the created objectthe created object
Applications can provide data for objects and Applications can provide data for objects and
modify their statemodify their state
All objects can be shared across contextsAll objects can be shared across contexts

December 9, 2005 87Copyright © 2005, 3Dlabs, Inc. Ltd

Shader Source CodeShader Source CodeShader Source Code
Source code intended for an OpenGL processor Source code intended for an OpenGL processor
is called a is called a shadershader
Shaders are defined as an array of stringsShaders are defined as an array of strings

Strings need not be nullStrings need not be null--terminated, as length of strings are terminated, as length of strings are
passed as wellpassed as well
Pass a string length less than 0 to indicate a nullPass a string length less than 0 to indicate a null--terminated terminated
stringstring

December 9, 2005 88Copyright © 2005, 3Dlabs, Inc. Ltd

Usage ModelUsage ModelUsage Model
Four steps to using a shader Four steps to using a shader

Send shader source to OpenGLSend shader source to OpenGL
Compile the shaderCompile the shader
Create an executable (i.e., link compiled shaders together)Create an executable (i.e., link compiled shaders together)
Install the executable as part of current stateInstall the executable as part of current state

Goal was to mimic C/C++ source code Goal was to mimic C/C++ source code
development modeldevelopment model
Key benefits:Key benefits:

Shader source is highly portableShader source is highly portable
No need to change app when compiler improvements occurNo need to change app when compiler improvements occur
Shaders can be compiled at any time (e.g., at app Shaders can be compiled at any time (e.g., at app
initialization time or just before use)initialization time or just before use)
Executables can be created at any time (e.g., at app Executables can be created at any time (e.g., at app
initialization time or just before use)initialization time or just before use)
Supports development of modular shadersSupports development of modular shaders

December 9, 2005 89Copyright © 2005, 3Dlabs, Inc. Ltd

Shader ObjectsShader ObjectsShader Objects
Shader objects are created with:Shader objects are created with:

shaderIDshaderID = = glCreateShaderglCreateShader((shaderTypeshaderType););

Shader source code is supplied to OpenGL using:Shader source code is supplied to OpenGL using:
glShaderSourceglShaderSource((shaderIDshaderID,, numStringsnumStrings, strings, lengths), strings, lengths)

Shader objects are compiled with:Shader objects are compiled with:
glCompileShaderglCompileShader((shaderIDshaderID););
Call Call glGetShaderivglGetShaderiv with the constant GL_COMPILE_STATUS with the constant GL_COMPILE_STATUS
to determine whether the shader was compiled successfullyto determine whether the shader was compiled successfully

December 9, 2005 90Copyright © 2005, 3Dlabs, Inc. Ltd

Shader ObjectsShader ObjectsShader Objects
The shader object’s compiler information string The shader object’s compiler information string
can be obtained with:can be obtained with:

glGetShaderInfoLogglGetShaderInfoLog((shaderIDshaderID, , maxLenmaxLen, , actualLenactualLen, buffer), buffer)

An executable for a programmable processor may An executable for a programmable processor may
be built from several shader objectsbe built from several shader objects

One shader object might contain main, other shader objects One shader object might contain main, other shader objects
might contain functions called by mainmight contain functions called by main
Resolved at link timeResolved at link time
Supports modular development of complex shadersSupports modular development of complex shaders

December 9, 2005 91Copyright © 2005, 3Dlabs, Inc. Ltd

Program ObjectsProgram ObjectsProgram Objects
A program object is a container for shader A program object is a container for shader
objectsobjects

This establishes the set of shaders that need to be linked This establishes the set of shaders that need to be linked
together when usedtogether when used
programObjprogramObj = = glCreateProgramglCreateProgram()()
glAttachShaderglAttachShader((programIDprogramID,, shaderIDshaderID))
glDetachShaderglDetachShader((programIDprogramID,, shaderIDshaderID))

The shaders in a program object are linked withThe shaders in a program object are linked with
glLinkProgramglLinkProgram((programIDprogramID))

A program object is made current with:A program object is made current with:
glUseProgramglUseProgram((programIDprogramID))

December 9, 2005 92Copyright © 2005, 3Dlabs, Inc. Ltd

Object DeletionObject DeletionObject Deletion
Shader objects and program objects are deleted Shader objects and program objects are deleted
with:with:

glDeleteShaderglDeleteShader((shaderIDshaderID))
glDeleteProgramglDeleteProgram((programIDprogramID))
Data for a shader object isn’t actually deleted until it is no Data for a shader object isn’t actually deleted until it is no
longer attached to any program object for any rendering longer attached to any program object for any rendering
contextcontext
Data for a program object is deleted when it is no longer in Data for a program object is deleted when it is no longer in
use by any contextuse by any context

December 9, 2005 93Copyright © 2005, 3Dlabs, Inc. Ltd

Shader CompatibilityShader CompatibilityShader Compatibility
Compatibility between the shaders in a program Compatibility between the shaders in a program
object can be checked with:object can be checked with:

glGetProgramInfoLogglGetProgramInfoLog((programIDprogramID, , maxLenmaxLen,, actualLenactualLen, buffer), buffer)
Returns the info log for the specified program objectReturns the info log for the specified program object

December 9, 2005 94Copyright © 2005, 3Dlabs, Inc. Ltd

Linking and Using Program ObjectsLinking and Using Program ObjectsLinking and Using Program Objects
When When glLinkProgramglLinkProgram is called:is called:

Attached shader objects are linked together to create an Attached shader objects are linked together to create an
executable program and the program object’s info log is executable program and the program object’s info log is
updatedupdated
If the program object is currently in use, the reIf the program object is currently in use, the re--linked linked
executable is immediately made part of the current executable is immediately made part of the current
rendering staterendering state

When When glUseProgramglUseProgram is called:is called:
If the program object contains compatible, valid shader If the program object contains compatible, valid shader
objects (i.e., no link errors), then the executable programs it objects (i.e., no link errors), then the executable programs it
contains are made part of the current rendering statecontains are made part of the current rendering state

Shaders in the program object are checked for Shaders in the program object are checked for
compatibilitycompatibility

If both a vertex shader and a fragment shader are supplied, If both a vertex shader and a fragment shader are supplied,
they must be compatiblethey must be compatible
If only one of the two is supplied, it must be compatible with If only one of the two is supplied, it must be compatible with
the fixed functionality interface defined by OpenGLthe fixed functionality interface defined by OpenGL

December 9, 2005 95Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Shader InputVertex Shader InputVertex Shader Input
Vertex data is provided using the normal OpenGL Vertex data is provided using the normal OpenGL
mechanismsmechanisms

glColor, glNormal, glTexCoord, glVertexglColor, glNormal, glTexCoord, glVertex
Vertex arraysVertex arrays
Example: calling Example: calling glNormalfglNormalf results in setting the value of the results in setting the value of the
builtbuilt--in attribute in attribute glgl_Normal in the current shader_Normal in the current shader

Vertex shader is executed:Vertex shader is executed:
Once when the glVertex command is calledOnce when the glVertex command is called
Multiple times when Multiple times when glDrawArraysglDrawArrays and other vertex array and other vertex array
commands are calledcommands are called

December 9, 2005 96Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Shader InputVertex Shader InputVertex Shader Input
Uniforms and AttributesUniforms and Attributes

Uniforms and attributes load data that is used in shadersUniforms and attributes load data that is used in shaders

Attributes change per vertexAttributes change per vertex
Standard attributes are defined as GLSL builtStandard attributes are defined as GLSL built--ins (e.g.ins (e.g.
glgl_Vertex,_Vertex, glgl_Normal,_Normal, glgl_Color) _Color)
Generic attributes (tangent, temperature, pressure, velocity, Generic attributes (tangent, temperature, pressure, velocity,
etc.)etc.)
Implementations must allow at least 16 attributes that can Implementations must allow at least 16 attributes that can
hold up to the size of a vec4hold up to the size of a vec4

Uniforms are constant per primitive or group of Uniforms are constant per primitive or group of
primitivesprimitives

Change relatively infrequently compared to attributesChange relatively infrequently compared to attributes
At least 512 floats for a vertex shader and 64 for a fragment At least 512 floats for a vertex shader and 64 for a fragment
shadershader

December 9, 2005 97Copyright © 2005, 3Dlabs, Inc. Ltd

Generic AttributesGeneric AttributesGeneric Attributes
New OpenGL 2.0 entry points can be used to New OpenGL 2.0 entry points can be used to
provide generic attribute dataprovide generic attribute data

glVertexAttribglVertexAttrib

Enhanced vertex arrays also allow generic Enhanced vertex arrays also allow generic
attributesattributes

Call Call glVertexAttribPointerglVertexAttribPointer with the index of the userwith the index of the user--defined defined
array (a value from 0 to GL_MAX_VERTEX_ATTRIBS array (a value from 0 to GL_MAX_VERTEX_ATTRIBS –– 1)1)

December 9, 2005 98Copyright © 2005, 3Dlabs, Inc. Ltd

Generic AttributesGeneric AttributesGeneric Attributes
Generic attributes are bound to a variable name Generic attributes are bound to a variable name
in a program object with:in a program object with:

glBindAttribLocationglBindAttribLocation((programIDprogramID, index, name), index, name)
UserUser--defined attributes may be bound explicitly before defined attributes may be bound explicitly before
calling calling glLinkProgramglLinkProgram, or they will be bound implicitly and , or they will be bound implicitly and
the assigned location can be queriedthe assigned location can be queried
glGetActiveAttribglGetActiveAttrib is used to determine how many of the is used to determine how many of the
available attributes have been used by an executable available attributes have been used by an executable
programprogram
glGetActiveAttribglGetActiveAttrib should be called after calling should be called after calling
glLinkProgramglLinkProgram

Number of userNumber of user--defined attributes is an defined attributes is an
implementationimplementation--dependent value that can be dependent value that can be
queriedqueried

GL_MAX_VERTEX_ATTRIBSGL_MAX_VERTEX_ATTRIBS
Must be at least 16, each can contain up to four floatsMust be at least 16, each can contain up to four floats

December 9, 2005 99Copyright © 2005, 3Dlabs, Inc. Ltd

Standard Vertex AttributesStandard Vertex AttributesStandard Vertex Attributes

December 9, 2005 100Copyright © 2005, 3Dlabs, Inc. Ltd

Generic Vertex AttributesGeneric Vertex AttributesGeneric Vertex Attributes

December 9, 2005 101Copyright © 2005, 3Dlabs, Inc. Ltd

User-supplied UniformsUserUser--supplied Uniformssupplied Uniforms
The location of a named uniform variable can be The location of a named uniform variable can be
obtained with:obtained with:

location = location = glGetUniformLocationglGetUniformLocation((programIDprogramID, name), name)
This call should be made after the call to This call should be made after the call to glLinkProgramglLinkProgram
since the location of uniform variables is not known until since the location of uniform variables is not known until
linking occurslinking occurs
A value of A value of --1 is returned if the variable name is not found1 is returned if the variable name is not found

Data other than vertex data can be supplied to Data other than vertex data can be supplied to
the current shaders with:the current shaders with:

glUniformglUniform{1234|{1234|fifi} (location, value)} (location, value)
glUniformglUniform{1234|{1234|fifi}v (location, count, value)}v (location, count, value)
glUniformMatrixglUniformMatrix{234}fv(location, count, transpose, matrix){234}fv(location, count, transpose, matrix)
These calls cannot be issued between Begin/EndThese calls cannot be issued between Begin/End
No API for supplying the complete contents of a structure in No API for supplying the complete contents of a structure in
one call one call

December 9, 2005 102Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Shader InputFragment Shader InputFragment Shader Input
Loading uniforms is done with the same API as for the Loading uniforms is done with the same API as for the
vertex shadervertex shader
Fragment shaders can access the builtFragment shaders can access the built--in variable in variable
glgl__FragCoordFragCoord

Contains window relative coordinates (x, y, z, 1/w) as computed Contains window relative coordinates (x, y, z, 1/w) as computed by by
the preceding fixed functionality rasterization processthe preceding fixed functionality rasterization process
Z value is the depth value that may eventually be written into tZ value is the depth value that may eventually be written into the he
depth buffer for the fragmentdepth buffer for the fragment

Fragment shaders can access the builtFragment shaders can access the built--in variablein variable
glgl__FrontFacingFrontFacing

Contains the result of the preceding fixed functionality “Contains the result of the preceding fixed functionality “facingnessfacingness” ”
computationcomputation
True if fragment belongs to a primitive that is frontTrue if fragment belongs to a primitive that is front--facing, false facing, false
otherwiseotherwise
Useful for implementing different shading for front/back facesUseful for implementing different shading for front/back faces

December 9, 2005 103Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Shader OutputFragment Shader OutputFragment Shader Output
Output of the fragment processor goes on to the Output of the fragment processor goes on to the
fixed function fragment operations and frame fixed function fragment operations and frame
buffer operations using builtbuffer operations using built--in variablesin variables

glgl__FragColorFragColor
glgl__FragDepthFragDepth
glgl__FragDataFragData[n][n]

Clamping or format conversion to the target Clamping or format conversion to the target
buffer is done automatically outside of the buffer is done automatically outside of the
fragment shaderfragment shader

December 9, 2005 104Copyright © 2005, 3Dlabs, Inc. Ltd

Texture AccessTexture AccessTexture Access
No restrictions on number of texture accesses or No restrictions on number of texture accesses or
on number of dependent texture accesseson number of dependent texture accesses
Applications can continue to use standard Applications can continue to use standard
OpenGL calls for loading textures and setting OpenGL calls for loading textures and setting
texture attributestexture attributes
Applications must define a “sampler” for each Applications must define a “sampler” for each
texture to be accessed by specifying the texture texture to be accessed by specifying the texture
unit to be accessedunit to be accessed
When texture accesses occur within a shader, When texture accesses occur within a shader,
filtering, wrapping behavior, etc., are performed filtering, wrapping behavior, etc., are performed
based on the attributes of the texture object based on the attributes of the texture object
being accessedbeing accessed

105

Simple Code
Example

Simple Code Simple Code
ExampleExample

December 9, 2005 106Copyright © 2005, 3Dlabs, Inc. Ltd

Application ExampleApplication ExampleApplication Example
The following application example is not The following application example is not
complete, but illustrates how an application complete, but illustrates how an application
would create and use shaderswould create and use shaders
Complete source code examples are available on Complete source code examples are available on
the 3Dlabs developer web sitethe 3Dlabs developer web site

http://developer.3dlabs.comhttp://developer.3dlabs.com

December 9, 2005 107Copyright © 2005, 3Dlabs, Inc. Ltd

Application ExampleApplication ExampleApplication Example
Compiling and using shaders Compiling and using shaders –– 1 of 41 of 4

int installBrickShadersint installBrickShaders(const(const GLcharGLchar **brickVertexbrickVertex,,
constconst GLcharGLchar **brickFragmentbrickFragment))

{{
GLuint brickVSGLuint brickVS,, brickFSbrickFS,, brickProgbrickProg;; // handles to objects// handles to objects
GLint vertCompiledGLint vertCompiled,, fragCompiledfragCompiled;; // status values// status values
GLint GLint linked;linked;

// Create a vertex shader object and a fragment shader objec// Create a vertex shader object and a fragment shader objectt

brickVSbrickVS = = glCreateShaderglCreateShader(GL_VERTEX_SHADER);(GL_VERTEX_SHADER);
brickFSbrickFS = = glCreateShaderglCreateShader(GL_FRAGMENT_SHADER);(GL_FRAGMENT_SHADER);

// Load source code strings into shaders// Load source code strings into shaders

glShaderSourceglShaderSource((brickVSbrickVS, 1, &, 1, &brickVertexbrickVertex, NULL);, NULL);
glShaderSourceglShaderSource((brickFSbrickFS, 1, &, 1, &brickFragmentbrickFragment, NULL);, NULL);

December 9, 2005 108Copyright © 2005, 3Dlabs, Inc. Ltd

Application ExampleApplication ExampleApplication Example
Compiling and using shaders Compiling and using shaders –– 2 of 42 of 4
// Compile the brick vertex shader, and print out
// the compiler log file.

glCompileShader(brickVS);
glGetShaderiv(brickVS, GL_COMPILE_STATUS, &vertCompiled);
printShaderInfoLog(brickVS);

// Compile the brick fragment shader, and print out
// the compiler log file.

glCompileShader(brickFS);
glGetShaderiv(brickFS, GL_COMPILE_STATUS, &fragCompiled);
printShaderInfoLog(brickFS);

if (!vertCompiled || !fragCompiled)
return 0;

December 9, 2005 109Copyright © 2005, 3Dlabs, Inc. Ltd

Application ExampleApplication ExampleApplication Example
Compiling and using shaders Compiling and using shaders –– 3 of 43 of 4
// Create a program object and attach the two compiled shaders

brickProg = glCreateProgram();
glAttachShader(brickProg, brickVS);
glAttachShader(brickProg, brickFS);

// Link the program object and print out the info log

glLinkProgram(brickProg);
glGetProgramiv(brickProg, GL_LINK_STATUS, &linked);
printProgramInfoLog(brickProg);

if (!linked)
return 0;

December 9, 2005 110Copyright © 2005, 3Dlabs, Inc. Ltd

Application ExampleApplication ExampleApplication Example
Compiling and using shaders Compiling and using shaders –– 4 of 44 of 4
// Install program object as part of current state

glUseProgram(brickProg);

// Set up initial uniform values

glUniform3f(getUniLoc(brickProg, "BrickColor"), 1.0, 0.3, 0.2);
glUniform3f(getUniLoc(brickProg, "MortarColor"), 0.85,0.86,0.84);
glUniform2f(getUniLoc(brickProg, "BrickSize"), 0.30, 0.15);
glUniform2f(getUniLoc(brickProg, "BrickPct"), 0.90, 0.85);
glUniform3f(getUniLoc(brickProg, "LightPosition"), 0.0,0.0,4.0);

return 1;
}

December 9, 2005 111Copyright © 2005, 3Dlabs, Inc. Ltd

Application ExampleApplication ExampleApplication Example
Printing the Printing the shader shader info loginfo log
void void printShaderInfoLogprintShaderInfoLog((GLuint shaderGLuint shader))
{{

int infologLengthint infologLength = 0;= 0;
int charsWritten int charsWritten = 0;= 0;
GLcharGLchar **infoLoginfoLog;;

printOpenGLErrorprintOpenGLError(); (); // Check for OpenGL errors// Check for OpenGL errors
glGetShaderivglGetShaderiv((shadershader, GL_INFO_LOG_LENGTH, &, GL_INFO_LOG_LENGTH, &infologLengthinfologLength););
printOpenGLErrorprintOpenGLError(); (); // Check for OpenGL errors// Check for OpenGL errors
if (if (infologLengthinfologLength > 0)> 0)
{{

infoLoginfoLog = (= (GLcharGLchar*)*)mallocmalloc((infologLengthinfologLength););
if (if (infoLoginfoLog == NULL)== NULL)
{{

printfprintf("ERROR: Could not allocate("ERROR: Could not allocate InfoLogInfoLog bufferbuffer\\n");n");
exit(1);exit(1);

}}
glGetShaderInfoLogglGetShaderInfoLog((shadershader, , infologLengthinfologLength, ,

&&charsWrittencharsWritten,, infoLoginfoLog););
printfprintf("("InfoLogInfoLog::\\n%sn%s\\nn\\n",n", infoLoginfoLog););
free(free(infoLoginfoLog););

}}
printOpenGLErrorprintOpenGLError();(); // Check for OpenGL errors// Check for OpenGL errors

}}

December 9, 2005 112Copyright © 2005, 3Dlabs, Inc. Ltd

Application ExampleApplication ExampleApplication Example
Getting the location of a uniform variableGetting the location of a uniform variable
GLint getUniLocGLint getUniLoc((GLuintGLuint program, const program, const GLcharGLchar *name)*name)
{{

GLintGLint loc;loc;

loc = loc = glGetUniformLocationglGetUniformLocation(program, name);(program, name);

if (loc == if (loc == --1)1)

printfprintf("No such uniform named ("No such uniform named \\"%s"%s\\""\\n", name);n", name);

printOpenGLErrorprintOpenGLError();(); // Check for OpenGL errors// Check for OpenGL errors
return loc;return loc;

}}

December 9, 2005 113Copyright © 2005, 3Dlabs, Inc. Ltd

Brick Shader – LightingBrick Shader Brick Shader –– LightingLighting

December 9, 2005 114Copyright © 2005, 3Dlabs, Inc. Ltd

Brick Vertex Brick Vertex ShaderShader
uniform vec3uniform vec3 LightPositionLightPosition;;
const floatconst float SpecularContributionSpecularContribution = 0.3;= 0.3;
const floatconst float DiffuseContribution DiffuseContribution = 1.0 = 1.0 -- SpecularContributionSpecularContribution;;
varying floatvarying float LightIntensityLightIntensity;;
varying vec2varying vec2 MCpositionMCposition;;
void main(void)void main(void)
{{

vec3vec3 ecPositionecPosition = vec3(= vec3(glgl__ModelViewMatrixModelViewMatrix ** glgl_Vertex);_Vertex);
vec3vec3 tnorm tnorm = normalize(= normalize(glgl__NormalMatrixNormalMatrix ** glgl_Normal);_Normal);
vec3vec3 lightVec lightVec = normalize(= normalize(LightPositionLightPosition -- ecPositionecPosition););
vec3vec3 reflectVecreflectVec = reflect(= reflect(--lightVeclightVec,, tnormtnorm););
vec3vec3 viewVec viewVec = normalize(= normalize(--ecPositionecPosition););
float diffuse = max(dot(float diffuse = max(dot(lightVeclightVec,, tnormtnorm), 0.0);), 0.0);
float spec = 0.0;float spec = 0.0;
if (diffuse > 0.0)if (diffuse > 0.0)
{{

spec = max(dot(spec = max(dot(reflectVecreflectVec,, viewVecviewVec), 0.0);), 0.0);
spec =spec = powpow(spec, 16.0);(spec, 16.0);

}}
LightIntensity LightIntensity == DiffuseContributionDiffuseContribution * diffuse +* diffuse +

SpecularContributionSpecularContribution * spec;* spec;
MCposition MCposition == glgl_Vertex._Vertex.xyxy;;
glgl_Position =_Position = ftransformftransform();();

}}

December 9, 2005 115Copyright © 2005, 3Dlabs, Inc. Ltd

Brick Shader - ParametersBrick Shader Brick Shader -- ParametersParameters

December 9, 2005 116Copyright © 2005, 3Dlabs, Inc. Ltd

Brick Shader – Step FunctionBrick Shader Brick Shader –– Step FunctionStep Function

December 9, 2005 117Copyright © 2005, 3Dlabs, Inc. Ltd

Fragment Shader ExampleFragment Fragment ShaderShader ExampleExample
uniform vec3uniform vec3 BrickColorBrickColor,, MortarColorMortarColor;;
uniform vec2uniform vec2 BrickSizeBrickSize;;
uniform vec2uniform vec2 BrickPctBrickPct;;
varying vec2varying vec2 MCpositionMCposition;;
varying floatvarying float LightIntensityLightIntensity;;

void main(void)void main(void)
{{

vec3 color;vec3 color;
vec2 position,vec2 position, useBrickuseBrick;;

position =position = MCpositionMCposition // BrickSizeBrickSize;;

if (if (fractfract(position.y * 0.5) > 0.5)(position.y * 0.5) > 0.5)
position.x += 0.5;position.x += 0.5;

position =position = fractfract(position);(position);

useBrickuseBrick = step(position,= step(position, BrickPctBrickPct););

color = mix(color = mix(MortarColorMortarColor,, BrickColorBrickColor,, useBrickuseBrick.x *.x * useBrickuseBrick.y);.y);
color *=color *= LightIntensityLightIntensity;;
glgl__FragColorFragColor = vec4(color, 1.0);= vec4(color, 1.0);

}}

December 9, 2005 118Copyright © 2005, 3Dlabs, Inc. Ltd

DemoDemoDemo

119

Development
Strategies and

Tools

Development Development
Strategies and Strategies and

ToolsTools

December 9, 2005 120Copyright © 2005, 3Dlabs, Inc. Ltd

Tips for Shader DevelopmentTips for Shader DevelopmentTips for Shader Development
Understand the problemUnderstand the problem

Look up those old papers by Look up those old papers by Blinn Blinn and othersand others
Draw diagramsDraw diagrams
Do a prototype on the CPU if warrantedDo a prototype on the CPU if warranted

Start simple and add complexityStart simple and add complexity
Do basic shader firstDo basic shader first
Add complexity a little at a timeAdd complexity a little at a time

Test and iterateTest and iterate
Parameterize your algorithmParameterize your algorithm
Systematically modify parametersSystematically modify parameters
Consider replacing Consider replacing tweakable tweakable parameters with constantsparameters with constants

December 9, 2005 121Copyright © 2005, 3Dlabs, Inc. Ltd

Tips for Shader DevelopmentTips for Shader DevelopmentTips for Shader Development
Strive for simplicityStrive for simplicity

Use the simplest approach first, if it works, you’re doneUse the simplest approach first, if it works, you’re done
Use the features of the language to your advantageUse the features of the language to your advantage

Develop shader functions that can be used over Develop shader functions that can be used over
and overand over

Build up a library of functions for lighting, texture effects, eBuild up a library of functions for lighting, texture effects, etc.tc.
Consider contributing this code to the publicConsider contributing this code to the public

December 9, 2005 122Copyright © 2005, 3Dlabs, Inc. Ltd

Tips for Shader DebuggingTips for Shader DebuggingTips for Shader Debugging
Use the vertex shader outputUse the vertex shader output

Test a condition by modifying the value of Test a condition by modifying the value of glgl_Position, for _Position, for
instanceinstance

Use the fragment shader outputUse the fragment shader output
Test a condition by modifying the value ofTest a condition by modifying the value of glgl__FragColorFragColor or or
using using discarddiscard, for instance, for instance

Use simple geometry to test the algorithmUse simple geometry to test the algorithm
The side of the cube might be better than the side of a The side of the cube might be better than the side of a
teapotteapot

December 9, 2005 123Copyright © 2005, 3Dlabs, Inc. Ltd

Tips for Shader OptimizationTips for Shader OptimizationTips for Shader Optimization
Consider computational frequencyConsider computational frequency

Fragment processor Fragment processor –– only for computations that differ at only for computations that differ at
each pixeleach pixel
Vertex processor Vertex processor –– only for computations that differ at each only for computations that differ at each
vertexvertex
CPU CPU –– all other computationsall other computations

Analyze your algorithmAnalyze your algorithm
E.g., clamp() requires two comparisons, but max() just oneE.g., clamp() requires two comparisons, but max() just one

Use the builtUse the built--in functionsin functions
These should be optimal on every platformThese should be optimal on every platform

Use vectorsUse vectors
Use textures in unique waysUse textures in unique ways
Review the information logsReview the information logs

December 9, 2005 124Copyright © 2005, 3Dlabs, Inc. Ltd

Open Scene GraphOpen Scene GraphOpen Scene Graph
HighHigh--performance, open source 3D graphics performance, open source 3D graphics
toolkit, written entirely in standard C++toolkit, written entirely in standard C++
Now contains support for GLSLNow contains support for GLSL
Used for:Used for:

Vis simVis sim, games, scientific visualization, GIS modeling, games, scientific visualization, GIS modeling

Multiplatform and widely available on the netMultiplatform and widely available on the net
Windows, Linux, OS X, Windows, Linux, OS X, IrixIrix, Solaris, FreeBSD, Solaris, FreeBSD

Robust framework for Robust framework for multiheadmultihead/multiprocessor /multiprocessor
systemssystems
http://http://openscenegraphopenscenegraph..sourceforgesourceforge.net.net

December 9, 2005 125Copyright © 2005, 3Dlabs, Inc. Ltd

Open Scene GraphOpen Scene GraphOpen Scene Graph
The The osgshaders osgshaders demo shows:demo shows:

GLSL support within OSGGLSL support within OSG
Multiple shadersMultiple shaders
TimeTime--varying uniformsvarying uniforms

December 9, 2005 126Copyright © 2005, 3Dlabs, Inc. Ltd

Open Scene GraphOpen Scene GraphOpen Scene Graph
The The osgfxbrowser osgfxbrowser can be used to view a variety can be used to view a variety
of programmable shader effectsof programmable shader effects

December 9, 2005 127Copyright © 2005, 3Dlabs, Inc. Ltd

Shader Designer – TyphoonLabsShader Designer Shader Designer –– TyphoonLabsTyphoonLabs
Jacobo Jacobo Rodriguez Rodriguez VillarVillar, , TyphoonLabsTyphoonLabs
http://www.http://www.typhoonlabstyphoonlabs.com.com
Windows tool for shader development featuring:Windows tool for shader development featuring:

Full GLSL syntax highlightingFull GLSL syntax highlighting
Hiding code blocks (folding)Hiding code blocks (folding)
InfoTipsInfoTips with parameter information in the builtwith parameter information in the built--in functions.in functions.
AutocompletionAutocompletion list with all builtlist with all built--in variables,in variables, structsstructs and and
functions (ctrl+space).functions (ctrl+space).
Uniform variable managementUniform variable management
Preview window manipulationPreview window manipulation
Support for arbitrary meshesSupport for arbitrary meshes

December 9, 2005 128Copyright © 2005, 3Dlabs, Inc. Ltd

Shader Designer – TyphoonLabsShader Designer Shader Designer –– TyphoonLabsTyphoonLabs

December 9, 2005 129Copyright © 2005, 3Dlabs, Inc. Ltd

3Dlabs Source Code and Tools3Dlabs Source Code and Tools3Dlabs Source Code and Tools
Available at Available at http://developer.3dlabs.comhttp://developer.3dlabs.com

ogl2brick and ogl2particle, including source codeogl2brick and ogl2particle, including source code
glsldemoglsldemo, including source code, including source code
RenderMonkey RenderMonkey 1.5 with documentation1.5 with documentation
GLSL compiler frontGLSL compiler front--end source codeend source code
GLSL shader validation toolGLSL shader validation tool
GLSL parser test toolGLSL parser test tool
More to comeMore to come

December 9, 2005 130Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL Compiler Front-EndGLSL Compiler FrontGLSL Compiler Front--EndEnd
Open source, including commercial useOpen source, including commercial use
Part of 3Dlabs’ production compilerPart of 3Dlabs’ production compiler
Works on Windows and LinuxWorks on Windows and Linux
Performs the following:Performs the following:

PreprocessingPreprocessing
Lexical analysisLexical analysis
Syntactic analysisSyntactic analysis
Semantic analysisSemantic analysis
Builds a highBuilds a high--level binary representation of the input textlevel binary representation of the input text

Can also be used as part of a shader Can also be used as part of a shader
development environmentdevelopment environment
http://developer.3dlabs.com/downloadshttp://developer.3dlabs.com/downloads

December 9, 2005 131Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL Parser TestGLSL Parser TestGLSL Parser Test
Open source, including commercial useOpen source, including commercial use
Suite of 140 GLSL shadersSuite of 140 GLSL shaders
Some should parse, some should notSome should parse, some should not
Application parses each shader, compares to Application parses each shader, compares to
known good resultsknown good results
Results are summarizedResults are summarized
Info logs can be examinedInfo logs can be examined
A GLSLA GLSL--capable driver is requiredcapable driver is required
http://developer.3dlabs.com/downloadshttp://developer.3dlabs.com/downloads
3Dlabs compiler is perfect!3Dlabs compiler is perfect!

December 9, 2005 132Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL ValidateGLSL ValidateGLSL Validate
Open source, including commercial useOpen source, including commercial use
Uses the GLSL reference parser to check the Uses the GLSL reference parser to check the
validity of a shadervalidity of a shader
Contains both command line and GUI interfaceContains both command line and GUI interface
Does NOT require a GLSL implementationDoes NOT require a GLSL implementation
http://developer.3dlabs.com/downloadshttp://developer.3dlabs.com/downloads

December 9, 2005 133Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL DemoGLSL DemoGLSL Demo
FeaturesFeatures

Open source, including commercial useOpen source, including commercial use
Built with other open source componentsBuilt with other open source components
Initial release is for Windows, Linux version will also be Initial release is for Windows, Linux version will also be
availableavailable
Intended as a developer education tool and a shader Intended as a developer education tool and a shader
showcaseshowcase
Written in C++Written in C++
Accesses shaders through a flexible XML file formatAccesses shaders through a flexible XML file format
Shaders from ogl2demo are includedShaders from ogl2demo are included
Shaders from Orange Book are includedShaders from Orange Book are included

December 9, 2005 134Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL DemoGLSL DemoGLSL Demo
WithWith GLSLdemoGLSLdemo you can:you can:

Access a standard list of shaders and their user interface Access a standard list of shaders and their user interface
controls controls
Access other lists of shaders or create your own Access other lists of shaders or create your own
View the effects of shaders on a variety of standard models View the effects of shaders on a variety of standard models
or on your own models or on your own models
Utilize a variety of standard textures or use your own Utilize a variety of standard textures or use your own
Interactively manipulate aInteractively manipulate a shader'sshader's parameters (uniform parameters (uniform
variables) variables)
Manipulate the position of the models and animate them Manipulate the position of the models and animate them
View the output from the GLSL compiler and linker View the output from the GLSL compiler and linker
Increase or decrease the tessellation of mathematically Increase or decrease the tessellation of mathematically
defined models defined models
Use keyboard shortcuts to switch between models, textures, Use keyboard shortcuts to switch between models, textures,
backgrounds, turn animation on/off, etc.backgrounds, turn animation on/off, etc.

http://developer.3dlabs.com/downloadshttp://developer.3dlabs.com/downloads

December 9, 2005 135Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkey – ATI and 3DlabsRenderMonkey RenderMonkey –– ATI and 3DlabsATI and 3Dlabs
3Dlabs and ATI share a vision of cooperative 3Dlabs and ATI share a vision of cooperative
market developmentmarket development

Open standards and cooperation are a better foundation Open standards and cooperation are a better foundation
than proprietary solutionsthan proprietary solutions

3Dlabs and ATI have brought GLSL support to 3Dlabs and ATI have brought GLSL support to
RenderMonkeyRenderMonkey

CoCo--development through fulldevelopment through full--source sharingsource sharing

More ISVs,
developing

more shader
programs-

soonerCore Framework
HLSL Focus

ISV Integration
OpenGL 2.0 Focus

December 9, 2005 136Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkey – ATI and 3DlabsRenderMonkey RenderMonkey –– ATI and 3DlabsATI and 3Dlabs
RenderMonkeyRenderMonkey with GLSL support is available with GLSL support is available
nownow

Public release occurred in AugustPublic release occurred in August
Available from the web sites of both 3Dlabs and ATIAvailable from the web sites of both 3Dlabs and ATI
http://developer.3dlabs.com/downloadshttp://developer.3dlabs.com/downloads

RenderMonkeyRenderMonkey is distributed free of chargeis distributed free of charge
Integration into standard authoring packages through plugIntegration into standard authoring packages through plug--
ins in short termins in short term
Potential free distribution of source to ISVs in the long termPotential free distribution of source to ISVs in the long term

December 9, 2005 137Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkeyRenderMonkeyRenderMonkey
Simplifies shader developmentSimplifies shader development

Fast prototyping and debugging of new graphics algorithmsFast prototyping and debugging of new graphics algorithms
Immediate visual feedback of effect under developmentImmediate visual feedback of effect under development
GUI provides a familiar, intuitive interfaceGUI provides a familiar, intuitive interface

A suite of open, extensible shader development A suite of open, extensible shader development
toolstools

Open platform for newOpen platform for new componenentscomponenents and toolsand tools
Clean framework for integration of shader tool components Clean framework for integration of shader tool components

Enables programmers and artists to collaborate Enables programmers and artists to collaborate
on realon real--time shaderstime shaders
Supports DirectX8/9, HLSL, OpenGL Shading Supports DirectX8/9, HLSL, OpenGL Shading
LanguageLanguage

December 9, 2005 138Copyright © 2005, 3Dlabs, Inc. Ltd

Why Use RenderMonkey?Why Use Why Use RenderMonkeyRenderMonkey??
Rapid shader development toolRapid shader development tool

Handles miscellaneous setup, you get to focus on the Handles miscellaneous setup, you get to focus on the
shader codeshader code

No need to recompile application for each test No need to recompile application for each test
iterationiteration

Only the shader is recompiled, virtually instantaneous!Only the shader is recompiled, virtually instantaneous!

Hooking up uniform variables is automaticHooking up uniform variables is automatic
Just use the same name in the RM workspace and in the Just use the same name in the RM workspace and in the
shader textshader text

Uniform variables can be adjusted with sliders, Uniform variables can be adjusted with sliders,
colorcolor--pickers, etc.pickers, etc.

Exposes the power of programmability and Exposes the power of programmability and parameterizableparameterizable
shadersshaders
Can be used to find the perfect value for constantsCan be used to find the perfect value for constants

December 9, 2005 139Copyright © 2005, 3Dlabs, Inc. Ltd

Why Use RenderMonkey?Why Use Why Use RenderMonkeyRenderMonkey??
PerPer--vertex attributes are automatically available vertex attributes are automatically available
with the GLSL builtwith the GLSL built--in attribute variablesin attribute variables

Color, normal, texture coordinates, etc.Color, normal, texture coordinates, etc.
Change which attributes are sent with a single mouse clickChange which attributes are sent with a single mouse click
NonNon--standard attributes (e.g., tangent,standard attributes (e.g., tangent, binormalbinormal) are also) are also
availableavailable

GL state can be modified through a single editor GL state can be modified through a single editor
widgetwidget

Texture state can be modified similarlyTexture state can be modified similarly
Animation can be performed with preAnimation can be performed with pre--defined defined
timetime--varying valuesvarying values

Hooked up as userHooked up as user--defined uniform variables in the normal defined uniform variables in the normal
wayway

Develop, compare, or port GLSL and DirectX Develop, compare, or port GLSL and DirectX
shadersshaders

December 9, 2005 140Copyright © 2005, 3Dlabs, Inc. Ltd

Why Use RenderMonkey?Why Use Why Use RenderMonkeyRenderMonkey??
Standard IDE development and debugging aidsStandard IDE development and debugging aids

Syntax coloringSyntax coloring
Click on a compile error to highlight shader code that is in Click on a compile error to highlight shader code that is in
errorerror
Display of information logDisplay of information log

Entire effect encapsulated into a portable XML Entire effect encapsulated into a portable XML
filefile

Includes shader code, texture references, uniform variables Includes shader code, texture references, uniform variables
and their current settingsand their current settings
Exporters can be written to translateExporters can be written to translate RenderMonkeyRenderMonkey XML XML
into the code needed for your applicationinto the code needed for your application

Experiment with a wide range of models and Experiment with a wide range of models and
textures or use your owntextures or use your own
It has a coolIt has a cool--sounding namesounding name
Beats the heck out of using notepadBeats the heck out of using notepad

December 9, 2005 141Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkey Screen ShotRenderMonkey RenderMonkey Screen ShotScreen Shot

December 9, 2005 142Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkey InterfaceRenderMonkey RenderMonkey InterfaceInterface
Adding a uniform variableAdding a uniform variable

December 9, 2005 143Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkey InterfaceRenderMonkey RenderMonkey InterfaceInterface
Select perSelect per--vertex attributesvertex attributes

December 9, 2005 144Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkey InterfaceRenderMonkey RenderMonkey InterfaceInterface
Modify texture stateModify texture state

December 9, 2005 145Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkey InterfaceRenderMonkey RenderMonkey InterfaceInterface
Adjust uniform variablesAdjust uniform variables

December 9, 2005 146Copyright © 2005, 3Dlabs, Inc. Ltd

RenderMonkey DemoRenderMonkeyRenderMonkey DemoDemo

147

Comparison with
Cg/HLSL

Comparison with Comparison with
Cg/HLSLCg/HLSL

December 9, 2005 148Copyright © 2005, 3Dlabs, Inc. Ltd

Chronology of Shading LanguagesChronology of Shading LanguagesChronology of Shading Languages
1984 1984 –– Rob Cook’s Shade TreesRob Cook’s Shade Trees
1985 1985 –– Ken Ken Perlin’sPerlin’s Image SynthesizerImage Synthesizer
1988 1988 –– Pixar Pixar releases releases RenderManRenderMan
MidMid--90’s 90’s –– UNC’s PixelFlow UNC’s PixelFlow used to demonstrate first used to demonstrate first
interactive shading language, described in 1998interactive shading language, described in 1998
19981998--2000 2000 –– OpenGL Shader developed by SGIOpenGL Shader developed by SGI
19991999--2001 2001 –– Stanford RealStanford Real--Time Shading Language Time Shading Language
developeddeveloped
2000 2000 –– NonNon--standard vertex program (assembly) API’sstandard vertex program (assembly) API’s
July 2001 July 2001 –– 3Dlabs starts GLSL effort at SIGGRAPH3Dlabs starts GLSL effort at SIGGRAPH
Oct. 2001 Oct. 2001 –– First version of GLSL described in publicly First version of GLSL described in publicly
released white papers by 3Dlabsreleased white papers by 3Dlabs
June 2002 June 2002 –– Cg announced, specification made publicCg announced, specification made public
Nov. 2002 Nov. 2002 –– Microsoft makes HLSL specification availableMicrosoft makes HLSL specification available
Feb. 2003 Feb. 2003 –– ARBARB--GL2 working group finalizes GLSL specGL2 working group finalizes GLSL spec
Jun. 2003 Jun. 2003 –– ARB extensions to support GLSL are finalizedARB extensions to support GLSL are finalized
Sep. 2004 Sep. 2004 –– OpenGL 2.0 specification releasedOpenGL 2.0 specification released

December 9, 2005 149Copyright © 2005, 3Dlabs, Inc. Ltd

Cg/GLSL DifferencesCg/GLSL DifferencesCg/GLSL Differences

GLSLGLSL CgCg
Compiler location:Compiler location: Within OpenGL On top of OpenGLWithin OpenGL On top of OpenGL
Interface to OpenGL:Interface to OpenGL: GLSL source codeGLSL source code Assembly source codeAssembly source code
Device dependencies:Device dependencies: Graphics h/w vendorGraphics h/w vendor Shader writerShader writer
Extra libraries required:Extra libraries required: NoneNone CgGLCgGL
Specification owned by:Specification owned by: ARBARB NVIDIANVIDIA
Syntax:Syntax: Based on C/C++Based on C/C++ Based on C/C++Based on C/C++
API’s supported:API’s supported: OpenGLOpenGL OpenGL, DirectXOpenGL, DirectX

December 9, 2005 150Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL Execution ModelGLSL Execution ModelGLSL Execution Model

December 9, 2005 151Copyright © 2005, 3Dlabs, Inc. Ltd

Cg Execution ModelCg Execution ModelCg Execution Model

December 9, 2005 152Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL / Cg SimilaritiesGLSL / Cg SimilaritiesGLSL / Cg Similarities
CC--based syntaxbased syntax
Same syntax for identifiers, operators, Same syntax for identifiers, operators,
expressionsexpressions
Mostly the same keywordsMostly the same keywords
Same basic typesSame basic types
Uniform variables are the sameUniform variables are the same
Support for arrays and structuresSupport for arrays and structures
Support for flow controlSupport for flow control
Support for userSupport for user--defined functionsdefined functions
Very similar list of builtVery similar list of built--in functionsin functions

December 9, 2005 153Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL / Cg DifferencesGLSL / Cg DifferencesGLSL / Cg Differences
Shader input / outputShader input / output

GLSL uses userGLSL uses user--defined attribute variables and varying defined attribute variables and varying
variablesvariables
Cg uses input / output structures where values are mapped Cg uses input / output structures where values are mapped
into vec4 slots named POSITION, COLOR, TEXCOORD0, into vec4 slots named POSITION, COLOR, TEXCOORD0,
etc.etc.

GLSL has direct runGLSL has direct run--time access to OpenGL statetime access to OpenGL state
Values have to be queried in CgValues have to be queried in Cg

Cg supports the halfCg supports the half--precision floatingprecision floating--point typepoint type
And HLSL supports the doubleAnd HLSL supports the double--precision floatingprecision floating--point typepoint type

December 9, 2005 154Copyright © 2005, 3Dlabs, Inc. Ltd

GLSL / Cg DifferencesGLSL / Cg DifferencesGLSL / Cg Differences
GLSL is translated from source to machine code GLSL is translated from source to machine code
by the driverby the driver
Cg is translated from source to whatever the Cg is translated from source to whatever the
underlying API supportsunderlying API supports

Current assembly API’s make inappropriate intermediate Current assembly API’s make inappropriate intermediate
languageslanguages
Many opportunities for optimization are lost by the time this Many opportunities for optimization are lost by the time this
level of assembly language is producedlevel of assembly language is produced
Major functionality limitations in current assembly API’s (lack Major functionality limitations in current assembly API’s (lack
of flow control, etc.)of flow control, etc.)

Hardware vendors have much more room to Hardware vendors have much more room to
optimize and innovate under GLSLoptimize and innovate under GLSL

Lots more compiler optimizations are possibleLots more compiler optimizations are possible
More variety in hardware architecture is possibleMore variety in hardware architecture is possible

155

Shader Examples
and Demos

Shader Examples Shader Examples
and Demosand Demos

December 9, 2005 156Copyright © 2005, 3Dlabs, Inc. Ltd

About the Shader ExamplesAbout the Shader ExamplesAbout the Shader Examples
Examples are simple, in order to illustrate one Examples are simple, in order to illustrate one
concept clearlyconcept clearly
Priority is on code clarityPriority is on code clarity

But reasonable tradeoffs made between code clarity, But reasonable tradeoffs made between code clarity,
portability, and performanceportability, and performance

May be better ways of doing things on a May be better ways of doing things on a
particular vendor’s hardwareparticular vendor’s hardware
These examples may not all work on early These examples may not all work on early
implementations of GLSLimplementations of GLSL
Some slight differences exist with the shaders Some slight differences exist with the shaders
running on the running on the WildcatVPWildcatVP

Mainly clamping of Mainly clamping of glgl__FragColorFragColor

157

Stored Texture
Shaders

Stored Texture Stored Texture
ShadersShaders

December 9, 2005 158Copyright © 2005, 3Dlabs, Inc. Ltd

Preparing for Texture AccessPreparing for Texture AccessPreparing for Texture Access
These steps are the same when using a shader These steps are the same when using a shader
as when using fixed functionalityas when using fixed functionality

Make a specific texture unit active by calling Make a specific texture unit active by calling glActiveTextureglActiveTexture
Create a texture object and bind it to the active texture unit Create a texture object and bind it to the active texture unit
by calling by calling glBindTextureglBindTexture
Set texture parameters by calling Set texture parameters by calling glTexParameterglTexParameter
Define the texture by calling Define the texture by calling glTexImageglTexImage

Not required when using a shader:Not required when using a shader:
Enabling the desired texture on the texture unit by calling Enabling the desired texture on the texture unit by calling
glEnableglEnable
Setting the texture function by calling Setting the texture function by calling glTexEnvglTexEnv

December 9, 2005 159Copyright © 2005, 3Dlabs, Inc. Ltd

Accessing Texture MapsAccessing Texture MapsAccessing Texture Maps
In your shader, declare a uniform variable of type In your shader, declare a uniform variable of type
samplersampler
In your application, call glUniform1i to specify the In your application, call glUniform1i to specify the
texture unit to be accessedtexture unit to be accessed
From within your shader, call one of the builtFrom within your shader, call one of the built--in in
texture functionstexture functions

1D/2D/3D textures1D/2D/3D textures
Depth texturesDepth textures
Cube mapsCube maps
Projective versions also providedProjective versions also provided

December 9, 2005 160Copyright © 2005, 3Dlabs, Inc. Ltd

Vertex Shader Texture AccessVertex Shader Texture AccessVertex Shader Texture Access
Textures can be accessed from either a fragment Textures can be accessed from either a fragment
shader or a vertex shadershader or a vertex shader
However, an implementation is allowed to report However, an implementation is allowed to report
0 as the number of supported vertex texture 0 as the number of supported vertex texture
image unitsimage units

Current generation of hardware may report 0Current generation of hardware may report 0
Could be a portability issue for some applicationsCould be a portability issue for some applications

LevelLevel--ofof--detail is handled differently:detail is handled differently:
Some texture calls are allowed only within a vertex shader Some texture calls are allowed only within a vertex shader
and express the leveland express the level--ofof--detail as an absolute valuedetail as an absolute value
Other texture calls are allowed only within a fragment Other texture calls are allowed only within a fragment
shader and the levelshader and the level--ofof--detail parameter is used to bias the detail parameter is used to bias the
value computed by the graphics hardwarevalue computed by the graphics hardware

December 9, 2005 161Copyright © 2005, 3Dlabs, Inc. Ltd

Application CodeApplication CodeApplication Code
static void init2DTexture(static void init2DTexture(GLint texUnitGLint texUnit,, GLint texNameGLint texName,,

GLint texWidthGLint texWidth,, GLint texHeightGLint texHeight,,
GLubyteGLubyte **texPtrtexPtr))

{{
glActiveTextureglActiveTexture(GL_TEXTURE0 +(GL_TEXTURE0 + texUnittexUnit););
glBindTextureglBindTexture(GL_TEXTURE_2D,(GL_TEXTURE_2D, texNametexName););
glTexParameterfglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameterfglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameterfglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
glTexParameterfglTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB,glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, texWidthtexWidth,, texHeighttexHeight, 0,, 0,
GL_RGB, GL_UNSIGNED_BYTE,GL_RGB, GL_UNSIGNED_BYTE, texPtrtexPtr););

glActiveTextureglActiveTexture(GL_(GL_TEXTURE0);TEXTURE0);
}}

December 9, 2005 162Copyright © 2005, 3Dlabs, Inc. Ltd

Earth Fragment Shader (1 Texture)Earth Fragment Shader (1 Texture)Earth Fragment Shader (1 Texture)
varying floatvarying float LightIntensityLightIntensity;;
uniform sampler2Duniform sampler2D EarthTextureEarthTexture;;

void main (void)void main (void)
{{

vec3vec3 lightColorlightColor = vec3 (texture2D(= vec3 (texture2D(EarthTextureEarthTexture,, glgl__TexCoordTexCoord[0].[0].stst));));
glgl__FragColor FragColor = vec4 (= vec4 (lightColorlightColor ** LightIntensityLightIntensity, 1.0);, 1.0);

}}

December 9, 2005 163Copyright © 2005, 3Dlabs, Inc. Ltd

Multitexture ExampleMultitexture Multitexture ExampleExample
Blue Marble images Blue Marble images by by Reto StReto Stööcklickli of the of the
NASA/Goddard Space Flight CenterNASA/Goddard Space Flight Center
Put clouds in red component and gloss map in Put clouds in red component and gloss map in
green component of one texturegreen component of one texture

December 9, 2005 164Copyright © 2005, 3Dlabs, Inc. Ltd

Multitexture Fragment ShaderMultitexture Multitexture Fragment ShaderFragment Shader
uniform sampler2Duniform sampler2D EarthDayEarthDay;;
uniform sampler2Duniform sampler2D EarthNightEarthNight;;
uniform sampler2Duniform sampler2D EarthCloudGlossEarthCloudGloss;;
varying float Diffuse;varying float Diffuse;
varying vec3varying vec3 SpecularSpecular;;
varying vec2varying vec2 TexCoordTexCoord;;
void main (void)void main (void)
{{

vec2 clouds = texture2D(vec2 clouds = texture2D(EarthCloudGlossEarthCloudGloss,, TexCoordTexCoord).).rgrg;;
vec3 daytime = (texture2D(vec3 daytime = (texture2D(EarthDayEarthDay,, TexCoordTexCoord).).rgbrgb * Diffuse +* Diffuse +

SpecularSpecular * clouds.g) * (1.0 * clouds.g) * (1.0 -- clouds.r) +clouds.r) +
clouds.r * Diffuse;clouds.r * Diffuse;

vec3 nighttime = texture2D(vec3 nighttime = texture2D(EarthNightEarthNight,, TexCoordTexCoord).).rgbrgb * *
(1.0 (1.0 -- clouds.r) * 2.0;clouds.r) * 2.0;

vec3 color = daytime;vec3 color = daytime;
if (Diffuse <= 0.1)if (Diffuse <= 0.1)

color = mix(nighttime, daytime, (Diffuse + 0.1) * 5.0);color = mix(nighttime, daytime, (Diffuse + 0.1) * 5.0);
glgl__FragColorFragColor = vec4 (color, 1.0);= vec4 (color, 1.0);

}}

December 9, 2005 165Copyright © 2005, 3Dlabs, Inc. Ltd

Stored Texture Shader DemoStored Texture Shader DemoStored Texture Shader Demo

December 9, 2005 166Copyright © 2005, 3Dlabs, Inc. Ltd

Uses For Texture MemoryUses For Texture MemoryUses For Texture Memory
NormalsNormals
Gloss valuesGloss values
Control valuesControl values
Polynomial coefficient valuesPolynomial coefficient values
Intermediate values from a Intermediate values from a multipass multipass algorithmalgorithm
Lookup tablesLookup tables
Complex function valuesComplex function values

NoiseNoise
Trig functionsTrig functions

Random numbersRandom numbers
??????

167

Procedural Texture
Shaders

Procedural Texture Procedural Texture
ShadersShaders

December 9, 2005 168Copyright © 2005, 3Dlabs, Inc. Ltd

Procedural TexturesProcedural TexturesProcedural Textures
A procedural texture is a texture that is computed in a A procedural texture is a texture that is computed in a
shader rather than stored in a texture mapshader rather than stored in a texture map
Advantages:Advantages:

Can be a continuous mathematical function rather than a discreteCan be a continuous mathematical function rather than a discrete
array of pixel values array of pixel values –– therefore infinite precision is possibletherefore infinite precision is possible
Shader code is likely to be a few kilobytes rather than a few Shader code is likely to be a few kilobytes rather than a few
megabytes for a texture mapmegabytes for a texture map
Can be Can be paramaterizedparamaterized, allowing a lot of flexibility at run time, allowing a lot of flexibility at run time

Disadvantages:Disadvantages:
Programming skill required (not so for texture maps)Programming skill required (not so for texture maps)
Texture lookup might be faster than procedural texture computatiTexture lookup might be faster than procedural texture computationon
May have aliasing characteristics that are difficult to overcomeMay have aliasing characteristics that are difficult to overcome
(texture mapping hardware is built to deal with aliasing issues,(texture mapping hardware is built to deal with aliasing issues, e.g., e.g.,
mipmapsmipmaps))
Hardware differences may lead to somewhat different appearance Hardware differences may lead to somewhat different appearance
on different platformson different platforms

Often a hybrid approach will be the right answer Often a hybrid approach will be the right answer

December 9, 2005 169Copyright © 2005, 3Dlabs, Inc. Ltd

Stripe Vertex ShaderStripe Vertex ShaderStripe Vertex Shader

// Stripe Shader // Stripe Shader –– CourtesyCourtesy LightworkLightwork DesignDesign

uniform vec3uniform vec3 LightPositionLightPosition;;
uniform vec3uniform vec3 LightColorLightColor;;
uniform vec3uniform vec3 EyePositionEyePosition;;
uniform vec3uniform vec3 SpecularSpecular;;
uniform vec3 Ambient;uniform vec3 Ambient;
uniform floatuniform float KdKd;;

varying vec3varying vec3 DiffuseColorDiffuseColor;;
varying vec3varying vec3 SpecularColorSpecularColor;;

December 9, 2005 170Copyright © 2005, 3Dlabs, Inc. Ltd

Stripe Vertex ShaderStripe Vertex ShaderStripe Vertex Shader
void main(void)void main(void)
{{

vec3vec3 ecPositionecPosition = vec3 (= vec3 (glgl__ModelViewMatrixModelViewMatrix ** glgl_Vertex);_Vertex);
vec3vec3 tnorm tnorm = normalize(= normalize(glgl__NormalMatrixNormalMatrix ** glgl_Normal);_Normal);
vec3vec3 lightVec lightVec = normalize(= normalize(LightPositionLightPosition -- ecPositionecPosition););
vec3vec3 viewVec viewVec = normalize(= normalize(EyePositionEyePosition -- ecPositionecPosition););
vec3vec3 Hvec Hvec = normalize(= normalize(viewVecviewVec ++ lightVeclightVec););

float spec = clamp(dot(float spec = clamp(dot(HvecHvec,, tnormtnorm), 0.0, 1.0);), 0.0, 1.0);
spec =spec = powpow(spec, 16.0);(spec, 16.0);

DiffuseColor DiffuseColor == LightColorLightColor * *
vec3 (vec3 (KdKd * dot(* dot(lightVeclightVec,, tnormtnorm));));

DiffuseColor DiffuseColor = clamp(Ambient += clamp(Ambient + DiffuseColorDiffuseColor, 0.0, 1.0);, 0.0, 1.0);
SpecularColor SpecularColor = clamp((= clamp((LightColorLightColor ** Specular Specular * spec), 0.0, 1.0);* spec), 0.0, 1.0);

glgl__TexCoordTexCoord[0] =[0] = glgl_MultiTexCoord0;_MultiTexCoord0;
glgl_Position =_Position = ftransformftransform();();

}}

December 9, 2005 171Copyright © 2005, 3Dlabs, Inc. Ltd

Stripe Fragment ShaderStripe Fragment ShaderStripe Fragment Shader
uniform vec3uniform vec3 StripeColorStripeColor;;
uniform vec3uniform vec3 BackColorBackColor;;
uniform float Width;uniform float Width;
uniform float Fuzz;uniform float Fuzz;
uniform float Scale;uniform float Scale;
varying vec3varying vec3 DiffuseColorDiffuseColor;;
varying vec3varying vec3 SpecularColorSpecularColor;;

void main(void)void main(void)
{{

float scaled_t =float scaled_t = fractfract((glgl__TexCoordTexCoord[0].t * Scale);[0].t * Scale);

float frac1 = clamp(scaled_t / Fuzz, 0.0, 1.0);float frac1 = clamp(scaled_t / Fuzz, 0.0, 1.0);
float frac2 = clamp((scaled_t float frac2 = clamp((scaled_t -- Width) / Fuzz, 0.0, 1.0);Width) / Fuzz, 0.0, 1.0);

frac1 = frac1 * (1.0 frac1 = frac1 * (1.0 -- frac2);frac2);
frac1 = frac1 * frac1 * (3.0 frac1 = frac1 * frac1 * (3.0 -- (2.0 * frac1));(2.0 * frac1));

vec3vec3 finalColorfinalColor = mix(= mix(BackColorBackColor,, StripeColorStripeColor, frac1);, frac1);
finalColorfinalColor == finalColorfinalColor ** DiffuseColorDiffuseColor ++ SpecularColorSpecularColor;;

glgl__FragColorFragColor = vec4 (= vec4 (finalColorfinalColor, 1.0);, 1.0);
}}

December 9, 2005 172Copyright © 2005, 3Dlabs, Inc. Ltd

Lattice Fragment ShaderLattice Fragment ShaderLattice Fragment Shader
varying vec3varying vec3 DiffuseColorDiffuseColor;;
varying vec3varying vec3 SpecularColorSpecularColor;;

uniform vec2 Scale;uniform vec2 Scale;
uniform vec2 Threshold;uniform vec2 Threshold;
uniform vec3uniform vec3 SurfaceColorSurfaceColor;;

void main (void)void main (void)
{{

floatfloat ssss == fractfract((glgl__TexCoordTexCoord[0].s * Scale.s);[0].s * Scale.s);
floatfloat tttt == fractfract((glgl__TexCoordTexCoord[0].t * Scale.t);[0].t * Scale.t);

if ((if ((ssss > Threshold.s) && (> Threshold.s) && (tttt > Threshold.t)) discard;> Threshold.t)) discard;

vec3vec3 finalColorfinalColor == SurfaceColorSurfaceColor ** DiffuseColorDiffuseColor ++ SpecularColorSpecularColor;;
glgl__FragColorFragColor = vec4 (= vec4 (finalColorfinalColor, 1.0);, 1.0);

}}

December 9, 2005 173Copyright © 2005, 3Dlabs, Inc. Ltd

Dimple Vertex ShaderDimple Vertex ShaderDimple Vertex Shader
varying vec3varying vec3 LightDirLightDir;;
varying vec3varying vec3 EyeDirEyeDir;;

uniform vec3uniform vec3 LightPositionLightPosition;;

attribute vec3 Tangent;attribute vec3 Tangent;

December 9, 2005 174Copyright © 2005, 3Dlabs, Inc. Ltd

Dimple Vertex ShaderDimple Vertex ShaderDimple Vertex Shader
void main(void) void main(void)
{{

EyeDir EyeDir = vec3 (= vec3 (glgl__ModelViewMatrixModelViewMatrix ** glgl_Vertex);_Vertex);
glgl_Position =_Position = ftransformftransform();();
glgl__TexCoordTexCoord[0] =[0] = glgl_MultiTexCoord0;_MultiTexCoord0;

vec3 n = normalize(vec3 n = normalize(glgl__NormalMatrixNormalMatrix ** glgl_Normal);_Normal);
vec3 t = normalize(vec3 t = normalize(glgl__NormalMatrixNormalMatrix * Tangent);* Tangent);
vec3 b = cross(n, t);vec3 b = cross(n, t);

vec3 v;vec3 v;
v.x = dot(v.x = dot(LightPositionLightPosition, t);, t);
v.y = dot(v.y = dot(LightPositionLightPosition, b);, b);
v.z = dot(v.z = dot(LightPositionLightPosition, n);, n);
LightDirLightDir = normalize(v);= normalize(v);

v.x = dot(v.x = dot(EyeDirEyeDir, t);, t);
v.y = dot(v.y = dot(EyeDirEyeDir, b);, b);
v.z = dot(v.z = dot(EyeDirEyeDir, n);, n);
EyeDirEyeDir = normalize(v);= normalize(v);

}}

December 9, 2005 175Copyright © 2005, 3Dlabs, Inc. Ltd

Dimple Fragment ShaderDimple Fragment ShaderDimple Fragment Shader
varying vec3varying vec3 LightDirLightDir;;

varying vec3varying vec3 EyeDirEyeDir;;

uniform vec3uniform vec3 SurfaceColorSurfaceColor;; // = (0.7, 0.6, 0.18)// = (0.7, 0.6, 0.18)

uniform floatuniform float BumpDensityBumpDensity;; // = 16.0// = 16.0

uniform floatuniform float BumpSizeBumpSize;; // = 0.15// = 0.15

uniform floatuniform float SpecularFactorSpecularFactor;; // = 0.5// = 0.5

December 9, 2005 176Copyright © 2005, 3Dlabs, Inc. Ltd

Dimple Fragment ShaderDimple Fragment ShaderDimple Fragment Shader
void main (void)void main (void)
{{

vec3vec3 litColorlitColor;;
vec2 c =vec2 c = BumpDensityBumpDensity ** glgl__TexCoordTexCoord[0].[0].stst;;
vec2 p =vec2 p = fractfract(c) (c) -- vec2(0.5);vec2(0.5);

float d, f;float d, f;
d = p.x * p.x + p.y * p.y;d = p.x * p.x + p.y * p.y;
f = 1.0 /f = 1.0 / sqrtsqrt(d + 1.0);(d + 1.0);

if (d >=if (d >= BumpSizeBumpSize))
{ p = vec2(0.0); f = 1.0; }{ p = vec2(0.0); f = 1.0; }

vec3vec3 normDeltanormDelta = vec3(p.x, p.y, 1.0) * f;= vec3(p.x, p.y, 1.0) * f;
litColorlitColor == SurfaceColorSurfaceColor * max(dot(* max(dot(normDeltanormDelta,, LightDirLightDir), 0.0);), 0.0);
vec3vec3 reflectDirreflectDir = reflect(= reflect(LightDirLightDir,, normDeltanormDelta););

float spec = max(dot(float spec = max(dot(EyeDirEyeDir,, reflectDirreflectDir), 0.0);), 0.0);
spec *=spec *= SpecularFactorSpecularFactor;;
litColorlitColor = min(= min(litColorlitColor + spec, vec3(1.0));+ spec, vec3(1.0));

glgl__FragColorFragColor = vec4(= vec4(litColorlitColor, 1.0);, 1.0);
}}

December 9, 2005 177Copyright © 2005, 3Dlabs, Inc. Ltd

Procedural Shader DemoProcedural Shader DemoProcedural Shader Demo

178

NoiseNoiseNoise

December 9, 2005 179Copyright © 2005, 3Dlabs, Inc. Ltd

Defining NoiseDefining NoiseDefining Noise
Think of it as “seasoning” for graphicsThink of it as “seasoning” for graphics
It’s a continuous function that gives the It’s a continuous function that gives the
appearance of randomnessappearance of randomness
It’s a function that is repeatableIt’s a function that is repeatable
It has a wellIt has a well--defined range of output valuesdefined range of output values
It’s a function with no obvious or repeating It’s a function with no obvious or repeating
patternspatterns
It’s a function whose smallIt’s a function whose small--scale form is roughly scale form is roughly
independent of largeindependent of large--scale positionscale position
It is rotationally invariantIt is rotationally invariant
It can be defined for 1, 2, 3, 4 dimensions or moreIt can be defined for 1, 2, 3, 4 dimensions or more
There are many ways to define such functions There are many ways to define such functions ––
Ken Ken Perlin Perlin created some good and oftencreated some good and often--used used
noise functionsnoise functions

December 9, 2005 180Copyright © 2005, 3Dlabs, Inc. Ltd

1D Discrete Noise1D Discrete Noise1D Discrete Noise

December 9, 2005 181Copyright © 2005, 3Dlabs, Inc. Ltd

1D Continuous Noise1D Continuous Noise1D Continuous Noise

December 9, 2005 182Copyright © 2005, 3Dlabs, Inc. Ltd

Noise OctavesNoise OctavesNoise Octaves

December 9, 2005 183Copyright © 2005, 3Dlabs, Inc. Ltd

Sum of Noise OctavesSum of Noise OctavesSum of Noise Octaves

December 9, 2005 184Copyright © 2005, 3Dlabs, Inc. Ltd

2D Noise2D Noise2D Noise

December 9, 2005 185Copyright © 2005, 3Dlabs, Inc. Ltd

2D Summed Noise (1/f noise)2D Summed Noise (1/f noise)2D Summed Noise (1/f noise)

December 9, 2005 186Copyright © 2005, 3Dlabs, Inc. Ltd

TurbulenceTurbulenceTurbulence
Taking the absolute value of noise at different Taking the absolute value of noise at different
frequencies introduces a discontinuity of the frequencies introduces a discontinuity of the
derivativederivative

Result is cusps or creases that are reminiscent of turbulent Result is cusps or creases that are reminiscent of turbulent
flowflow

December 9, 2005 187Copyright © 2005, 3Dlabs, Inc. Ltd

Noise in GLSLNoise in GLSLNoise in GLSL
GLSL has builtGLSL has built--in functions for noisein functions for noise
These functions are accessible from either fragment shader These functions are accessible from either fragment shader
or vertex shaderor vertex shader
Still quite difficult(?)/expensive(?)/unjustified(?) to put intoStill quite difficult(?)/expensive(?)/unjustified(?) to put into
hardwarehardware
Two other possibilities: textures or userTwo other possibilities: textures or user--defined functionsdefined functions
For the current generation of hardware, a userFor the current generation of hardware, a user--defined defined
noise function is likely to be either slow or lownoise function is likely to be either slow or low--qualityquality
For now, use a texture:For now, use a texture:

Compute 4 octaves of noise and store in RGBA 3D textureCompute 4 octaves of noise and store in RGBA 3D texture
Make sure function wraps smoothly at edges to avoid seamsMake sure function wraps smoothly at edges to avoid seams
Use the shader to access the texture and perform subsequent Use the shader to access the texture and perform subsequent
computationscomputations
This method will give repeatable results on a variety of platforThis method will give repeatable results on a variety of platformsms

December 9, 2005 188Copyright © 2005, 3Dlabs, Inc. Ltd

Hardware-Accelerated NoiseHardwareHardware--Accelerated NoiseAccelerated Noise
When the builtWhen the built--in noise function is accelerated in in noise function is accelerated in
hardware and fast enough for your purposes, use hardware and fast enough for your purposes, use
itit
No texture memory is consumedNo texture memory is consumed
No texture unit is consumedNo texture unit is consumed
It is a continuous function rather than a discrete It is a continuous function rather than a discrete
one (like a texture) so it will not look “one (like a texture) so it will not look “pixelatedpixelated” ”
no matter what the scaling factorno matter what the scaling factor
Repeatability should be undetectable (for a good Repeatability should be undetectable (for a good
hardware implementation)hardware implementation)
No need for application to compute/manage No need for application to compute/manage
noise texturesnoise textures

December 9, 2005 189Copyright © 2005, 3Dlabs, Inc. Ltd

CloudsCloudsClouds
varying floatvarying float LightIntensityLightIntensity; ;
varying vec3varying vec3 MCpositionMCposition;;

uniform sampler3D Noise;uniform sampler3D Noise;
uniform vec3uniform vec3 SkyColorSkyColor;; // (0.0, 0.0, 0.8)// (0.0, 0.0, 0.8)
uniform vec3uniform vec3 CloudColorCloudColor;; // (0.8, 0.8, 0.8)// (0.8, 0.8, 0.8)

void main (void)void main (void)
{{

vec4vec4 noisevec noisevec = texture3D(Noise,= texture3D(Noise, MCpositionMCposition););

float intensity = (float intensity = (noisevecnoisevec[0] +[0] + noisevecnoisevec[1] +[1] +
noisevecnoisevec[2] +[2] + noisevecnoisevec[3] + 0.03125) * 1.5;[3] + 0.03125) * 1.5;

vec3 color = mix(vec3 color = mix(SkyColorSkyColor,, CloudColorCloudColor, intensity) *, intensity) *
LightIntensityLightIntensity;;

glgl__FragColorFragColor = vec4 (color, 1.0);= vec4 (color, 1.0);
}}

December 9, 2005 190Copyright © 2005, 3Dlabs, Inc. Ltd

FireFireFire
varying floatvarying float LightIntensityLightIntensity; ;
varying vec3varying vec3 MCpositionMCposition;;

uniform sampler3D Noise;uniform sampler3D Noise;
uniform vec3 Color1;uniform vec3 Color1; // (0.8, 0.7, 0.0)// (0.8, 0.7, 0.0)
uniform vec3 Color2;uniform vec3 Color2; // (0.6, 0.1, 0.0)// (0.6, 0.1, 0.0)
uniform floatuniform float NoiseScaleNoiseScale;; // 1.2// 1.2

void main (void)void main (void)
{{

vec4vec4 noisevecnoisevec = texture3D(Noise,= texture3D(Noise, MCpositionMCposition ** NoiseScaleNoiseScale););

float intensity = abs(float intensity = abs(noisevecnoisevec[0] [0] -- 0.25) +0.25) +
abs(abs(noisevecnoisevec[1] [1] -- 0.125) +0.125) +
abs(abs(noisevecnoisevec[2] [2] -- 0.0625) +0.0625) +
abs(abs(noisevecnoisevec[3] [3] -- 0.03125);0.03125);

intensity = clamp(intensity * 6.0, 0.0, 1.0);intensity = clamp(intensity * 6.0, 0.0, 1.0);
vec3 color = mix(Color1, Color2, intensity) *vec3 color = mix(Color1, Color2, intensity) * LightIntensityLightIntensity;;
glgl__FragColorFragColor = vec4 (color, 1.0);= vec4 (color, 1.0);

}}

December 9, 2005 191Copyright © 2005, 3Dlabs, Inc. Ltd

Other Noise-based EffectsOther NoiseOther Noise--based Effectsbased Effects

Wood
Marble

Granite

December 9, 2005 192Copyright © 2005, 3Dlabs, Inc. Ltd

Noise Shader DemoNoise Shader DemoNoise Shader Demo

193

AnimationAnimationAnimation

December 9, 2005 194Copyright © 2005, 3Dlabs, Inc. Ltd

Shader AnimationShader AnimationShader Animation
Animation effects can be added easily to shadersAnimation effects can be added easily to shaders
Can simplify application codeCan simplify application code
Some notion of “current time” must be passed in Some notion of “current time” must be passed in
as a uniform variableas a uniform variable
Shader then bases some computation on the Shader then bases some computation on the
current time valuecurrent time value
Any property of a shader can be modified in a Any property of a shader can be modified in a
timetime--varying wayvarying way
Examples:Examples:

On/off, On/off, TristateTristate, Translation, Scaling, Rotation, Oscillation, , Translation, Scaling, Rotation, Oscillation,
Morphing, Particle systemsMorphing, Particle systems

December 9, 2005 195Copyright © 2005, 3Dlabs, Inc. Ltd

Animated Cloud ShaderAnimated Cloud ShaderAnimated Cloud Shader
varying floatvarying float LightIntensityLightIntensity; ;
varying vec3varying vec3 MCpositionMCposition;;

uniform sampler3D Noise;uniform sampler3D Noise;
uniform vec3uniform vec3 SkyColorSkyColor;; // (0.0, 0.0, 0.8)// (0.0, 0.0, 0.8)
uniform vec3uniform vec3 CloudColorCloudColor;; // (0.8, 0.8, 0.8)// (0.8, 0.8, 0.8)
uniform vec3 Offset;uniform vec3 Offset; // updated each frame by the app// updated each frame by the app

void main (void)void main (void)
{{

vec4vec4 noisevec noisevec = texture3D(Noise,= texture3D(Noise, MCpositionMCposition + Offset);+ Offset);

float intensity = (float intensity = (noisevecnoisevec[0] +[0] + noisevecnoisevec[1] +[1] +
noisevecnoisevec[2] +[2] + noisevecnoisevec[3]) * 1.5;[3]) * 1.5;

vec3 color vec3 color = mix(= mix(SkyColorSkyColor,, CloudColorCloudColor, intensity) * , intensity) *
LightIntensityLightIntensity;;

glgl__FragColor FragColor = vec4 (color, 1.0);= vec4 (color, 1.0);
}}

December 9, 2005 196Copyright © 2005, 3Dlabs, Inc. Ltd

Particle SystemsParticle SystemsParticle Systems
Used to model “fuzzy” objects Used to model “fuzzy” objects –– smoke, fire, smoke, fire,
water spray, etc.water spray, etc.
Differences between particle system and Differences between particle system and
polygonal renderingpolygonal rendering

An object is represented by a cloud of primitive particles that An object is represented by a cloud of primitive particles that
define its volumedefine its volume
The object is considered dynamic rather than static The object is considered dynamic rather than static ––
particles are “born”, “evolve”, and “die”particles are “born”, “evolve”, and “die”
Objects are not completely specified, but governed by a set Objects are not completely specified, but governed by a set
of rules, possibly including stochastic processesof rules, possibly including stochastic processes

December 9, 2005 197Copyright © 2005, 3Dlabs, Inc. Ltd

Particle SystemsParticle SystemsParticle Systems
Some assumptions are made to simplify Some assumptions are made to simplify
renderingrendering

Particles do not collide with other particlesParticles do not collide with other particles
Particles do not reflect light, they emit lightParticles do not reflect light, they emit light
Particles do not cast shadows on other particlesParticles do not cast shadows on other particles

Particle system attributes may include:Particle system attributes may include:
PositionPosition
ColorColor
TransparencyTransparency
LifetimeLifetime
VelocityVelocity
SizeSize
ShapeShape

December 9, 2005 198Copyright © 2005, 3Dlabs, Inc. Ltd

Confetti Cannon ShaderConfetti Cannon ShaderConfetti Cannon Shader
Draw an array of pointsDraw an array of points
Each point is assigned a (constrained) random Each point is assigned a (constrained) random
velocity and a (constrained) random start timevelocity and a (constrained) random start time
Also pass vertex position and vertex color Also pass vertex position and vertex color
(randomly assigned)(randomly assigned)
In vertex shader:In vertex shader:

Update the uniform variable Time every frameUpdate the uniform variable Time every frame
Color the point with background color if Color the point with background color if StartTime StartTime has not has not
yet been reachedyet been reached
If If StartTime StartTime has been reached, use velocity to compute the has been reached, use velocity to compute the
point’s positionpoint’s position

December 9, 2005 199Copyright © 2005, 3Dlabs, Inc. Ltd

Particle System Application CodeParticle System Application CodeParticle System Application Code
Before linking, bind generic vertex attributes Before linking, bind generic vertex attributes

glBindAttribLocationglBindAttribLocation((ProgramObjectProgramObject, VELOCITY_ARRAY,, VELOCITY_ARRAY,

"Velocity");"Velocity");

glBindAttribLocationglBindAttribLocation((ProgramObjectProgramObject, START_TIME_ARRAY,, START_TIME_ARRAY,

""StartTimeStartTime");");

Create vertex arraysCreate vertex arrays
Initial vertex positionsInitial vertex positions
Vertex colorsVertex colors
Start timesStart times
VelocitiesVelocities

Note that it really wouldn’t be necessary to send Note that it really wouldn’t be necessary to send
vertex positionsvertex positions

Send velocity or start time using vertex attrib 0 to indicate Send velocity or start time using vertex attrib 0 to indicate
completion of each vertexcompletion of each vertex

December 9, 2005 200Copyright © 2005, 3Dlabs, Inc. Ltd

Particle System Application CodeParticle System Application CodeParticle System Application Code
Draw vertex arraysDraw vertex arrays
void void drawPointsdrawPoints()()
{{

glPointSizeglPointSize(2.0);(2.0);

glVertexPointerglVertexPointer(3, GL_FLOAT, 0,(3, GL_FLOAT, 0, vertsverts););
glColorPointerglColorPointer(3, GL_FLOAT, 0, colors);(3, GL_FLOAT, 0, colors);
glVertexAttribPointerglVertexAttribPointer(VELOCITY_ARRAY, 3, GL_FLOAT,(VELOCITY_ARRAY, 3, GL_FLOAT,

GL_FALSE, 0, velocities);GL_FALSE, 0, velocities);
glVertexAttribPointerglVertexAttribPointer(START_TIME_ARRAY, 1, GL_FLOAT,(START_TIME_ARRAY, 1, GL_FLOAT,

GL_FALSE, 0,GL_FALSE, 0, startTimesstartTimes););

glEnableClientStateglEnableClientState(GL_VERTEX_ARRAY);(GL_VERTEX_ARRAY);
glEnableClientStateglEnableClientState(GL_COLOR_ARRAY);(GL_COLOR_ARRAY);
glEnableVertexAttribArrayglEnableVertexAttribArray(VELOCITY_ARRAY);(VELOCITY_ARRAY);
glEnableVertexAttribArrayglEnableVertexAttribArray(START_TIME_ARRAY);(START_TIME_ARRAY);

glDrawArraysglDrawArrays(GL_POINTS, 0,(GL_POINTS, 0, arrayWidtharrayWidth ** arrayHeightarrayHeight););
}}

December 9, 2005 201Copyright © 2005, 3Dlabs, Inc. Ltd

Particle System Vertex ShaderParticle System Vertex ShaderParticle System Vertex Shader
uniform float Time; // updated each frame by the application
uniform vec4 Background; // constant color equal to background

attribute vec3 Velocity; // initial velocity
attribute float StartTime; // time at which particle is activated

varying vec4 Color;

void main(void)
{

vec4 vert;
float t = Time - StartTime;

if (t >= 0.0)
{

vert = gl_Vertex + vec4 (Velocity * t, 0.0);
vert.y -= 4.9 * t * t;
Color = gl_Color;

}
else
{

vert = gl_Vertex; // Initial position
Color = Background; // "pre-birth" color

}

gl_Position = gl_ModelViewProjectionMatrix * vert;
}

December 9, 2005 202Copyright © 2005, 3Dlabs, Inc. Ltd

Particle System Fragment ShaderParticle System Fragment ShaderParticle System Fragment Shader
varying vec4 Color;

void main (void)
{

gl_FragColor = Color;
}

December 9, 2005 203Copyright © 2005, 3Dlabs, Inc. Ltd

Particle System Shader DemoParticle System Shader DemoParticle System Shader Demo

204

Non-Photorealistic
Rendering

NonNon--Photorealistic Photorealistic
RenderingRendering

December 9, 2005 205Copyright © 2005, 3Dlabs, Inc. Ltd

Gooch ShadingGooch ShadingGooch Shading
Gooch, Gooch, Shirley, and Cohen Gooch, Gooch, Shirley, and Cohen –– SIGGRAPH SIGGRAPH
19981998
A “low dynamic range artistic tone algorithm”A “low dynamic range artistic tone algorithm”
Characteristics:Characteristics:

Surface boundaries, silhouette edges, and surface Surface boundaries, silhouette edges, and surface
discontinuities drawn in blackdiscontinuities drawn in black
A single light source that produces white highlightsA single light source that produces white highlights
Light source positioned above object so that diffuse Light source positioned above object so that diffuse
reflection term varies from [0,1] across the visible portion of reflection term varies from [0,1] across the visible portion of
the objectthe object
Effects that add complexity (realism) are not shownEffects that add complexity (realism) are not shown
Matte objects are shaded with intensities chosen to be far Matte objects are shaded with intensities chosen to be far
from white and blackfrom white and black
Warmth or coolness of the color indicates the surface Warmth or coolness of the color indicates the surface
normal, and hence the curvature of the surfacenormal, and hence the curvature of the surface

December 9, 2005 206Copyright © 2005, 3Dlabs, Inc. Ltd

Shading CalculationsShading CalculationsShading Calculations
Kcool Kcool = = KblueKblue + + AkdiffuseAkdiffuse
KwarmKwarm = = Kyellow Kyellow + + BkdiffuseBkdiffuse
Kfinal Kfinal = ((1+N.L)/2) * = ((1+N.L)/2) * Kcool Kcool + (1+ (1--((1+N.L))/2) * ((1+N.L))/2) *
KwarmKwarm
Need to draw objects twiceNeed to draw objects twice

Once for silhouette edgesOnce for silhouette edges
Once for filled polygonsOnce for filled polygons

December 9, 2005 207Copyright © 2005, 3Dlabs, Inc. Ltd

Silhouette EdgesSilhouette EdgesSilhouette Edges
Drawing all surface boundaries and discontinuities is a Drawing all surface boundaries and discontinuities is a
difficult problemdifficult problem
Use Jeff Lander’s method for drawing silhouette edges:Use Jeff Lander’s method for drawing silhouette edges:

// Enable culling// Enable culling
glEnableglEnable(GL_CULL_FACE);(GL_CULL_FACE);
// Draw front// Draw front--facing polygons as filledfacing polygons as filled
// using the Gooch shader// using the Gooch shader
glPolygonModeglPolygonMode(GL_FRONT, GL_FILL);(GL_FRONT, GL_FILL);
glDepthFuncglDepthFunc(GL_LESS);(GL_LESS);
glCullFaceglCullFace(GL_BACK);(GL_BACK);
glUseProgramObjectglUseProgramObject((ProgramObjectProgramObject););
drawSpheredrawSphere(0.6f, 64);(0.6f, 64);
// Draw back// Draw back--facing polygons as black linesfacing polygons as black lines
// using standard OpenGL// using standard OpenGL
glLineWidthglLineWidth(3.0);(3.0);
glPolygonModeglPolygonMode(GL_BACK, GL_LINE);(GL_BACK, GL_LINE);
glDepthFuncglDepthFunc(GL_LEQUAL);(GL_LEQUAL);
glCullFaceglCullFace(GL_FRONT);(GL_FRONT);
glColor3f(0.0, 0.0, 0.0);glColor3f(0.0, 0.0, 0.0);
glUseProgramObjectglUseProgramObject(0);(0);
drawSpheredrawSphere(0.6f, 64);(0.6f, 64);

December 9, 2005 208Copyright © 2005, 3Dlabs, Inc. Ltd

Gooch Fragment ShaderGooch Fragment ShaderGooch Fragment Shader
uniform vec3uniform vec3 SurfaceColorSurfaceColor; ; // (0.75, 0.75, 0.75)// (0.75, 0.75, 0.75)
uniform vec3uniform vec3 WarmColorWarmColor; ; // (0.6, 0.6, 0.0)// (0.6, 0.6, 0.0)
uniform vec3uniform vec3 CoolColorCoolColor; ; // (0.0, 0.0, 0.6)// (0.0, 0.0, 0.6)
uniform floatuniform float DiffuseWarmDiffuseWarm; ; // 0.45// 0.45
uniform floatuniform float DiffuseCoolDiffuseCool; ; // 0.45// 0.45

varying floatvarying float NdotLNdotL;;
varying vec3varying vec3 ReflectVecReflectVec;;
varying vec3varying vec3 ViewVecViewVec;;

void main (void)void main (void)
{{

vec3vec3 kcool kcool = min(= min(CoolColorCoolColor++DiffuseCoolDiffuseCool**SurfaceColorSurfaceColor, 1.0);, 1.0);
vec3vec3 kwarm kwarm = min(= min(WarmColorWarmColor++DiffuseWarmDiffuseWarm**SurfaceColorSurfaceColor, 1.0); , 1.0);
vec3vec3 kfinal kfinal = mix(= mix(kcoolkcool,, kwarmkwarm,, NdotLNdotL););

vec3vec3 nreflectnreflect = normalize(= normalize(ReflectVecReflectVec););
vec3vec3 nview nview = normalize(= normalize(ViewVecViewVec););

float spec = max(dot(float spec = max(dot(nreflectnreflect,, nviewnview), 0.0);), 0.0);
spec =spec = powpow(spec, 32.0);(spec, 32.0);

glgl__FragColorFragColor = vec4 (min(= vec4 (min(kfinalkfinal + spec, 1.0), 1.0);+ spec, 1.0), 1.0);
}}

December 9, 2005 209Copyright © 2005, 3Dlabs, Inc. Ltd

NPR Shader DemoNPR Shader DemoNPR Shader Demo

December 9, 2005 210Copyright © 2005, 3Dlabs, Inc. Ltd

Mandelbrot/Julia SetsMandelbrot/Julia SetsMandelbrot/Julia Sets
Iterative formula that uses complex numbers:Iterative formula that uses complex numbers:

ZZ00 = 0= 0
ZZn+1n+1 = Z= Znn

22 + c+ c
If ZIf Z22 > 4, point is not in set> 4, point is not in set
Color code the number of iterationsColor code the number of iterations
Have a max iteration numberHave a max iteration number

December 9, 2005 211Copyright © 2005, 3Dlabs, Inc. Ltd

Mandelbrot/Julia SetsMandelbrot/Julia SetsMandelbrot/Julia Sets
Iterative formula:Iterative formula:

ZZ00 = 0= 0
ZZn+1n+1 = Z= Znn

22 + c+ c
For Mandelbrot set, c is point being testedFor Mandelbrot set, c is point being tested
For Julia set, c is another point in the Mandelbrot For Julia set, c is another point in the Mandelbrot
setset

December 9, 2005 212Copyright © 2005, 3Dlabs, Inc. Ltd

Mandelbrot Fragment ShaderMandelbrot Fragment ShaderMandelbrot Fragment Shader
varying vec3 Position;
varying float LightIntensity;

uniform float MaxIterations;
uniform float Zoom;
uniform float Xcenter;
uniform float Ycenter;
uniform vec3 InnerColor;
uniform vec3 OuterColor1;
uniform vec3 OuterColor2;

void main(void)
{

float real = Position.x * Zoom + Xcenter;
float imag = Position.y * Zoom + Ycenter;
float Creal = real; // Change this line...
float Cimag = imag; // ...and this one to get a Julia set

float r2 = 0.0;
float iter;

December 9, 2005 213Copyright © 2005, 3Dlabs, Inc. Ltd

Mandelbrot Fragment ShaderMandelbrot Fragment ShaderMandelbrot Fragment Shader
for (iter = 0.0; iter < MaxIterations && r2 < 4.0; ++iter)

{
float tempreal = real;

real = (tempreal * tempreal) - (imag * imag) + Creal;
imag = 2.0 * tempreal * imag + Cimag;
r2 = (real * real) + (imag * imag);

}

// Base the color on the number of iterations

vec3 color;

if (r2 < 4.0)
color = InnerColor;

else
color = mix(OuterColor1, OuterColor2, fract(iter * 0.05));

color *= LightIntensity;

gl_FragColor = vec4 (color, 1.0);
}

December 9, 2005 214Copyright © 2005, 3Dlabs, Inc. Ltd

Mandelbrot Shader DemoMandelbrot Shader DemoMandelbrot Shader Demo

215

Shaders for
Imaging

Shaders for Shaders for
ImagingImaging

December 9, 2005 216Copyright © 2005, 3Dlabs, Inc. Ltd

Image Interpolation/ExtrapolationImage Interpolation/ExtrapolationImage Interpolation/Extrapolation
Need a source image and an image to Need a source image and an image to
interpolate/extrapolate away frominterpolate/extrapolate away from
Works for contrast, brightness, saturation, Works for contrast, brightness, saturation,
sharpness or a combination of all of thesesharpness or a combination of all of these

Alpha = 0.0 Alpha = 0.4 Alpha = 0.6

Alpha = 0.8 Alpha = 1.0 Alpha = 1.2

December 9, 2005 217Copyright © 2005, 3Dlabs, Inc. Ltd

Contrast Fragment ShaderContrast Fragment ShaderContrast Fragment Shader

varying vec2 TexCoord;

uniform vec3 AvgLuminance;
uniform float Alpha;
uniform sampler2D Image;

void main (void)
{

vec3 color = texture2D(Image, TexCoord).rgb;
color = mix(AvgLuminance, color, Alpha);
gl_FragColor = vec4 (color, 1.0);

}

December 9, 2005 218Copyright © 2005, 3Dlabs, Inc. Ltd

Imaging Shader DemoImaging Shader DemoImaging Shader Demo

December 9, 2005 219Copyright © 2005, 3Dlabs, Inc. Ltd

Convolution ShaderConvolution ShaderConvolution Shader
Image to be convolved is stored as a textureImage to be convolved is stored as a texture
Texture border modes can be set to Texture border modes can be set to
accommodate different convolution border mode accommodate different convolution border mode
behaviorbehavior
Convolution can be arbitrary sizeConvolution can be arbitrary size
Kernel is specified using an array of offsets and Kernel is specified using an array of offsets and
an array of kernel weightsan array of kernel weights
No need to specify kernel elements that are equal No need to specify kernel elements that are equal
to 0to 0
Kernel can be an arbitrary rectangleKernel can be an arbitrary rectangle
Easy, Easy, schmeezyschmeezy, lemon , lemon squeezysqueezy!!

December 9, 2005 220Copyright © 2005, 3Dlabs, Inc. Ltd

Convolution ShaderConvolution ShaderConvolution Shader
// maximum size supported by this shader
const int MaxKernelSize = 25;
// array of offsets for accessing the base image
uniform vec2 Offset[MaxKernelSize];
// size of kernel (width * height) for this execution
uniform int KernelSize;
// value for each location in the convolution kernel
uniform vec4 KernelValue[MaxKernelSize];
// image to be convolved
uniform sampler2D BaseImage;

void main(void)
{

int i;
vec4 sum = vec4 (0.0);

for (i = 0; i < KernelSize; i++)
{

vec4 tmp = texture2D(BaseImage,
gl_TexCoord[0].st + Offset[i]);

sum += tmp * KernelValue[i];
}
gl_FragColor = sum;

}

221

Advanced DemosAdvanced DemosAdvanced Demos

December 9, 2005 222Copyright © 2005, 3Dlabs, Inc. Ltd

RealWorldzRealWorldzRealWorldz
Advanced demonstration of the programmability Advanced demonstration of the programmability
of Wildcat of Wildcat RealizmRealizm
Fractals are used to render planets procedurallyFractals are used to render planets procedurally
Most advanced use of GLSL shaders to dateMost advanced use of GLSL shaders to date

Everything is rendered with shadersEverything is rendered with shaders
Planets are modeled as spheres, not height mapsPlanets are modeled as spheres, not height maps
Some planetary Some planetary charecteristics charecteristics can be modified in real timecan be modified in real time
Some fragment shaders are over 600 lines long (GLSL Some fragment shaders are over 600 lines long (GLSL
source code)source code)
Would require ~4 terabytes to render a similar planet using Would require ~4 terabytes to render a similar planet using
stored textures.stored textures.

December 9, 2005 223Copyright © 2005, 3Dlabs, Inc. Ltd

RealWorldz DemoRealWorldzRealWorldz DemoDemo

224

Wrap-up and
Questions

WrapWrap--up and up and
QuestionsQuestions

December 9, 2005 225Copyright © 2005, 3Dlabs, Inc. Ltd

FeedbackFeedbackFeedback

““We're at the point where we can apply an OGL2 shader through
our (Houdini) interface and (given an equivalent VEX shader)
watch the software renderer (Mantra) draw the same thing but
much, much slower :-). It's one of those jaw dropping "wow"
moments actually, so we thank you for making that happen! . . . It
rocks. Having read the original white paper still did not prepare us
to see it actually working. The ease with which we can now define
& adjust OGL2 shaders is astonishing.”

Unsolicited email from Paul Salvini, CTO, Side Effects Software

December 9, 2005 226Copyright © 2005, 3Dlabs, Inc. Ltd

For More InformationFor More InformationFor More Information
Web sitesWeb sites
http://developer.3dlabs.comhttp://developer.3dlabs.com
http://www.3dlabs.comhttp://www.3dlabs.com
http://oss.sgi.com/projects/oglhttp://oss.sgi.com/projects/ogl--sample/registrysample/registry
http://www.http://www.openglopengl.org.org
http://3dshaders.comhttp://3dshaders.com

Get the book!Get the book!

December 9, 2005 227Copyright © 2005, 3Dlabs, Inc. Ltd

Contact 3DlabsContact 3DlabsContact 3Dlabs

http://www.3dlabs.comhttp://www.3dlabs.com/contact/contact

