
Spatial Data Structures

Spatial Data Structures



References

Notes based on
Tomas Moller and Eric Haines, Real-Time Rendering, A K Peters,
2nd edition, 2002. Chapter 9.
Franco Preparata and Michael Shamos, Computational Geometry:
An Introduction, Springer Verlag, 1991. Chapter 2.
Alan Watt and Mark Watt, Advanced Animation and Rendering
Techniques, Addison WWesley, 1992. Chapter 9.

Spatial Data Structures



The Collision Detection Problem

The collision detection problem is to find collisions amongst a set
of objects where one or more is moving.
One approach to the collision detection problem is to test for
intersection detection amongst the objects — using intersection
tests of the type considered previously — at discrete points in time
at which the objects are regarded as fixed.
The interval of time between intersection tests must be small
enough so that collisions between fast moving objects are not
missed.

Spatial Data Structures



Brute Force Collision Detection: Pairwise Testing

The brute-force collision detection approach is to perform pairwise
intersection tests of all object pairs at each

1: for i = 1 to n − 1
2: for j = i to n
3: intersect(object(i), object(j))

Figure: Brute-force collision detection

There are n(n−1)
2 pairs amonst n objects, and this is the number of

object-object intersection tests the brute-force algorithm performs
— regardless of the number of intersections.
Using the big-oh notation, the brute-force algorithm is O(n2) time
complexity.

Spatial Data Structures



Intersections Amongst a Set of Line Segments

One approach to improve intersection detection performance is to
use better algorithms.
Consider the problem of finding intersections amongst
line-segments in 1D. In 1D there can be between 0 and O(n)
intersections amongst n line segments (intervals). The problem
finding these intersections can be solved in O(nlgn) time.
In 2D however, there can be between 0 and O(n2) intersections
amongst n line segments. Consider the worst case below:

Spatial Data Structures



Intersections Amongst a Set of Line Segments (cont.)

Any algorithm which solves the problem must take O(n2) time in
the worst case.

Spatial Data Structures



Intersections Amongst a Set of Line Segments (cont.)

Problems in which the size of the answer has a large range —
between 0 and O(n2) for the line intersection problem in 2D — the
computational complexity is often expressed as a sum of two parts:

O(f (n) + g(n))

where f (n) is the answer-independent amount of work which must
be done and g(n) is the answer-dependent amount of work.
For the line intersection problem above a trivial lower bound is
O(n + k) where n is the number of line segments and k is the
number of intersections (answers) and is O(n2).
A plane sweep based approach to the line intersection problem
yields an algorithm with complexity

O(nlgn + k)

Spatial Data Structures



Intersections Amongst a Set of Line Segments (cont.)

Many intersection problems are much harder in higher dimensions.
Some scale exponentially with dimension, although in computer
graphics we tend to stop at 3D.

Spatial Data Structures



Spatial Data Structures

Another general approach to improve intersection detection, and
thereby collision detection, performance is to use spatial data
structures.
In spatial or geometric data structures objects are organised based
on space or geometry. In intersection testing they guide the
application of intersection tests to pairs of objects which are
“close” — spatial divide-and-conquer.
Spatial data structures have many more uses than intersection
detection and colllision detection. They allow problems (queries)
about spatial relationships of objects to be solved.
Spatial data structures may or may not be space filling. If they are
not then they contain voids. A space-filling spatial data structure
can be regarded as a result of spatial subdivision.

Spatial Data Structures



Spatial Data Structures (cont.)

Unlike 1D, in 2D and 3D worst-case optimal data structures and
algorithms are often not available, and average case performance
— often measured using benchmark test suites — are used.
A combination of spatial data-structures and approaches may be
used to solve spatial problems.
For example, a real-time rendering situation typicaly has a mixture
of moving and stationary (static) objects. A data structure for the
static objects can be built once in a preprocessing phase.

Spatial Data Structures



Uniform Grid

The simplest spatial data structure is the uniform grid.

Spatial Data Structures



Uniform Grid (cont.)

Grids are space-filling.
Each cell — or voxel (volume pixel) — has a list of objects which
intersects it.
The uniform grid is used to determine which objects are near to an
object by examining object-lists of the cells the object overlaps.
Intersections for a given object are found by going through the
object lists for all voxels containing the object, performing
intersection tests against objects on those lists.

Spatial Data Structures



A grid based collision detection algorithm then works as follows.

1: for i = 1 to n
2: ~vmin = voxel(min(bbox(object(i))))

3: ~vmax = voxel(max(bbox(object(i))))

4: for x = vminx to x = vmaxx

5: for y = vminy to x = vmaxy

6: for z = vminz to x = vmaxz

7: for j = 1 to n objects(voxel(x,y,z))
8: if (not tested(object(i), object(j)))
9: intersect(object(i), object(j))

Figure: Grid-based collision detection

Spatial Data Structures



Uniform Grid Performance

The uniform grid has excellent (in fact, optimal) average case
performance if objects are reasonably uniformly distributed.
As soon as the objects become (highly) non-uniformly distributed,
or clustered, the uniform grid approach degenerates into pairwise
testing, with O(n2) performance.

Spatial Data Structures



Uniform Grid Performance (cont.)

Spatial Data Structures



Bounding Volume Hierarchies

In a bounding volume hierarchy (BVH), bounding volumes (totally)
contain other bounding volumes and these are organised into a
tree.

root
internal nodes

Spatial Data Structures



Bounding Volume Hierarchies (cont.)

Any of the bounding volumes previously discussed can be used to
create a BVH.
A BVH is not space filling.
Bounding volume hierarchies may reduce collision detection from
an O(n2) algorithm to O(nlg(n)) or even O(n).

Spatial Data Structures



Collision detection between two polygonal objects each with their
own bounding volume hierarchy is peformed recursively as follows:

FindFirstHitCD(A,B)
returns (TRUE,FALSE);

1: if (not overlap(ABV, BBV ) return FALSE;

2: else if (isLeaf(A))
3: if (isLeaf(B))
4: for each triangle pair TA ∈ Ac and TB ∈ Bc

5: if (overlap(TA, TB) return TRUE;

6: else

7: for each child CB ∈ Bc

8: FindFirstHitCD(A,CB)

9: else

10: for each child CA ∈ Ac

11: FindFirstHitCD(CA, B)
12: return FALSE;

Figure: BVH-BVH collision detection

Spatial Data Structures



BVH Based View Volume Culling

BVHs are often used for view-volume culling:

root
internal nodes

eye

Spatial Data Structures



BVH Based View Volume Culling (cont.)

View-volume culling is an important real-time rendering
acceleration or speed-up technique. Scene-graph graphics libraries
provide view-volume culling automatically.

Spatial Data Structures



Quad-Trees and Oct-Trees

An oct-tree is a non-uniform subdivision of space where a
axis-aligned box region is split into eight octants by three
axis-aligned dividing planes.
A quad-tree is a non-uniform subdivision of area where a
axis-aligned box region is split into four quadrants by two
axis-aligned dividing lines.
In an oct-tree each node has eight children. In a quad-tree each
node has four children.

Spatial Data Structures



The following diagram shows a 2D quad-tree.

Spatial Data Structures



The advantages of an oct-tree over a uniform grid are:

1. it handles clustering of objects reasonably

2. space requirements may be reduced

However some disadvantages are:

1. more expensive traversal costs

2. large volumes of space may be occupied by only small objects

A trade-off inherent in oct-trees is limiting tree depth, thereby
increasing leaf node voxel size, but increasing the the number of
objects per voxel.

Spatial Data Structures



k-d Trees

The k-d tree is a spatial subdivision approach relying on binary
subdivision. D-dimensional hyperspace is cyclically sub-divided
along each of the d dimensions.
Thus each node has two children — regardless of the
dimensionality of the data (c.f. four for a quad-tree and eight for
an oct-tree).
In a 2d tree the plane is first divided into two at some value of x .
The next subdivision in each of the children is at some value of y .
And then back to x , and so on.

Spatial Data Structures



k-d Trees (cont.)

Spatial Data Structures



Binary Space Partition (BSP) Trees

BSP trees are similar to k-d trees. Space is subdivided by splitting
it in two at each level of the tree.

P5

P1

P4

P2

P3

Sample set of polygons

P1

P5 P2

P4P3

BSP tree

back

back

front

front

Spatial Data Structures



Binary Space Partition (BSP) Trees (cont.)

There are two forms of BSP tree — distinguished by whether the
splitting object is axis-aligned or object-aligned. Axis aligned BSP
trees are in fact (basically) the same as k-d trees.

Spatial Data Structures



Binary Space Partition (BSP) Trees (cont.)

To build a BSP tree a spliting plane is chosen and then used to
divide all objects into two lists, one in front of the plane and the
other list behind the plane. The same algorithm is then recursively
applied on each sub list until each list only contains a single
polygon. If any polygon (object) crosses the splitting plane it is cut
into into two each part added to the appropriate sublists.
BSP trees, like all trees, work best when balanced. However,
balancing BSP trees, and quad-trees, oct-trees and k−d trees,
tends to be difficult as rotations are difficult.
One method suitable for (largely) static data is to choose a limited
number (say 6) of test splitting planes, compare them based on the
number of polygons the place each side of the split, and use the
best. Thus the balancing algorithm is top-down rather than
bottom-up — and no rotations take place.

Spatial Data Structures



Creating a BSP Tree

The following diagrams illustrate the process of creating a BSP
tree.

3

5a
5b

5

2

1
4

3

1
2
5a

4
5b

backfront

3

5a
5b

5

2

1
4

3

4
5b

2

backfront

5a 1

3

5a
5b

5

2

1
4

3

2

backfront

5a 1

4

5b

front

front back

backback

Spatial Data Structures


