Intersection Detection

Intersection Detection

References

Notes based on

Tomas Moller and Eric Haines, Real-Time Rendering, A K Peters,
2nd edition, 2002. Chapter 9.

Franco Preparata and Michael Shamos, Computational Geometry:
An Introduction, Springer Verlag, 1990. Chapter 2.

Intersection Detection

uction

Intersection detection is the problem of detecting whether two
objects intersect — overlap in space. Intersection detection is
carried out by performing intersection tests.

4

Intersection detection is a problem which occurs in computer
graphics in many forms, including: clipping, view-volume culling,
ray-tracing, picking and collision detection.

Intersection detection lies at the heart of collision detection.
Collision detection is intersection detection amongst a set of
moving objects.

Intersection Detection

Three Possibilities

There are three spatial relationships between two objects:
» no intersection, (disjoint, exclusion),
» partial intersection (overlap) and

» containment (inclusion).

Vv E

It is important to keep all these possibilities in mind when
performing intersection detection.

Intersection Detection

Bounding Volumes

The classic computer graphics technique of bounding volumes is
applied in intersection detection.

<\ i &

Instead of performing expensive intersection tests amongst
complex objects (relatively) simpler tests using bounding volumes
can be performed.

These tests allow quick (“trivially”) determination of exclusion and
inclusion cases, where no further work needs be done, and
potential overlap cases where further work does need to be done in
order to get a correct answer.

Intersection Detection

Types of Bounding Volumes

Common bounding volumes (BVs) are:
1. Axis-aligned bounding boxes (AABBs).
2. Oriented bounding boxes (OBBs).
3. Discrete oriented polytopes (k-DOPs).
4. Spheres.

There is an obvious trade-off: tightness of fit versus complexity
and cost of test.

One quantitive measure used in relation to BVs is void volume: the
difference between the bounding volume and the object volume.

Intersection Detection

Convex Hulls

The tightest fitting bounding volume is the convex hull, although
it is only strictly defined for polygonal objects or sets of points.

Intersection Detection

Axis-Aligned Bounding Boxes (AABBs)

An axis-aligned bounding box (also called an extent or a
rectangular box).

Z
[l
X

An axis-aligned bounding box is defined by two extreme points.
For example an AABB called A is defined by a™" and a™®*, where
ai"" < a"™\Viex,y,z.

Intersection Detection

Oriented Bounding Boxes (OBBs)

An oriented bounding box is a box which may be arbitrarily
oriented (rotated). It is still a box; its faces have normals which
are pairwise orthogonal.

z
[l
X

An OBB B can be described by the center point of the box b€,
and three normalised positively oriented vectors which describe the
side directions of the box.

The vectors are bY, bY and b" and their half lengths are hf, hf
and hB.

Intersection Detection

Discrete Oriented Polytopes (k-DOPs)

A k-DOP is the intersection of a set of pairs of parallel planes,
where each pair of parallel planes is called a slab.

A k-DOP is defined by k/2 (k even) normalised normals, n;,

1 < i < k/2 each with two associated scalar values d™" and d/"*
where dmin < dmax,

Each triple (n;, din, d"ax) defines a slab S; which is the volume
betwen two planes 7" : n;.(x) + d™" = 0 and

7l ni(x) +d"> = 0.

The k-DOP volume is then the intersection of all slabs Ny</<j/2S;.

Intersection Detection

Hierarchical Bounding Volumes

Bounding volumes can be placed inside other bounding volumes,
recursively, thereby building bounding volume hierarchies.

~=

]

7 I
. =

Bounding volume hierarchies are one approach to improving
collision detection performance amongst many objects or between

complex objects.
Bounding volume hierarchies may reduce collision detection from
an O(n?) algorithm to O(nlg(n)) or even O(n).

Intersection Detection

Intersection Detection Principles or “Rules of Thumb”

» Perform calculations which allow trivial acceptance or trivial
rejection.

» If possible, use results from above tests, even if they fail.

» Try re-ordering rejection and acceptance tests for better
performance.

» Postpone expensive calculations.
» Consider reducing dimensionality of problem.

» If many objects are being tested against one object,
pre-calculate values if possible.

» Perform timing tests and profiling to investigate performance.
» Make code robust (80% of work!).

Intersection Detection

Point-Point Intersection Testing

Two points p1(x1, y1,21) and pa(x2, y2, z2) intersect if they are
coincident:
X1 = X2,Y1 = ¥2,21 = 22

Intersection Detection

Interval-Interval Intersection Testing

Two intervals [a™" a™3] and [b™", b™3] are disjoint (do not
intersect) if either ™" > b™M@ or p™" > gMax,

interval_intersect (A, B)
returns (OVERLAP,DISJOINT)
if (amin > pMmax or bmin > amax)
return (DISJOINT);
else
return (OVERLAP);

IOV

Figure: Interval Intersection Test

Intersection Detection

AABB-AABB Intersection Testing

Two axis-aligned bounding boxes (AABBs) intersect if they overlap
in x or y or z. The AABB intersection test is essentially three
interval intersection tests, with short-circuiting.

AABB _intersect (A, B)
returns (OVERLAP,DISJOINT)
for each i € x,y,z
if (a,f"i” > b or b}"i” > a"¥)
return (DISJOINT);
else
return (OVERLAP);

SO W N e

Figure: AABB Intersection Test

Intersection Detection

Sphere-Sphere Intersection Testing

Two spheres intersect if the distance between their centres ¢; and
Cy is less than the sum of their radii B + 1.

sphere_intersect (A, B)
returns (OVERLAP,DISJOINT)
| = C —C;
d? =1l
if (d? < (n+ r2)2)

return (OVERLAP);
else

return (DISJOINT);

DO WN -

Figure: Sphere-Sphere Intersection Test

Using distance squared rather than distance avoids a square root
calculation. Square roots used to be very expensive c.f. other
operations, and are still somewhat expensive c.f. other operations.

Sphere-AABB Intersection Testing

The sphere-AABB test also uses a distance test. The distance
(squared) from the sphere centre to the box is accumlated in each
dimension, then a distance test is applied.

sphere_AABB_intersect(c,r,A)
returns (OVERLAP,DISJOINT)

1: d>=0

2: for each i €x,y,z

3: if (¢ < a,f"i")

4: d? = d? + (¢; — an)?
5: else if (¢ > a™™)

6: d? = d? + (¢ — a"™)?
7: if (d?> < r?)

8: return (OVERLAP)

9: else

1

0: return (DISJOINT)

Figure: Sphere-AABB Intersection. Test

Intersection Detection

Rays are directed lines. They may be finite, semi-infinite or infinite.

r(t)=o+td

e

Rays are an important geometric object (“shape”) used in
intersection detection, (and, of course, ray tracing!). Rays are
useful in intersection detection because:

1. They are sometimes good models of paths taken by moving
objects, e.g., high speed bullets over short distances.

2. They can be used as a computationally efficient (“cheap”)
way to perform approximate intersection detection

Intersection Detection

Representing Rays

A ray is represented parametrically using a combination of a point
(origin) o and a vector (direction) d.

r = o+ td

If (X0, Yo, Zo) is the ray origin and (u, v, w) is the ray direction
then a point on the ray is given by

Xo + tu
= Yo+ tv

zZ = Zo+tw

Intersection Detection

A ray may also be specified by giving two points p; and p> in
which case the equations become:

X1 + t(Xg — X1)

y1+tly2 —)
z = z+t(zn—2z)

It is often advantageous to normalise the ray direction. This saves
repeatedly taking the magnitude (involving a sqrt operation) in
dot products where vector projections are being calculated.

Intersection Detection

Ray-Sphere Intersection Testing

A sphere may be represented by the equation

(x—a)’ +(y—bP+(z—cf =1

The ray-sphere intersection is found by substituting the equations
for the x, y and z coordinates of the ray into the sphere equation

(Xo +tu—a)® + (Yo + tv — b)? + (2o + tw — ¢)? = r?
Rearrangement then gives
(v + v+ w?)t

2(u(xo — a) + v(Yo — b) + w(zo — ¢))t +
(X0 —a)? + (Yo —b)* + (20 —c)>—r* = 0

i.e. a quadratic in t. If the quadratic has real roots then the ray
intersects the sphere, otherwise it does not.

Intersection Detection

So we have

A = (0 + v+ w)t?
B = 2(u(xo—a)+ v(yo—b)+w(z —c))t
C = (0—a°+—b)?+(z0—c)*—r?

Solving for t we get

L —B 4+ VB2 —4AC
- 2A

where the smallest positive root is the first intersection.

Intersection Detection

Minor Optimisation

A small optimisation can be achieved by noting that a factor of
two cancels, giving

B = u(xop — a) + v(yo — b) + w(zy — o)t

and
—-B++vB2-AC
A

These kinds of optimisations tend to be of decreasing value with
increasing floating point performance. They are also potential
source for introducting bugs and creating obscurity.

Intersection Detection

Optimised Solution

Haines optimised version of the ray-sphere intersection detection
algorithm allows earlier short-circuiting.

ray_sphere_intersect (o,d,c,r)

returns (REJECT,INTERSECT,t,p)
l=c-o

d=1d

P =1l

if (d <0 and 2> r?) return (REJECT,0,0);
m? =12 —d?

if (m? > r?) return (REJECT,0,0);
N

if (P>r) t=d—-qelset=d+gq
return (INTERSECT,t,o0+ td);

© 00 N O O W+

Figure: Optimised Algorithm

Intersection Detection

Ray-Polygon Intersection Detection

To find the intersection point between a ray and a polygon:
1. Find the intersection point of the ray and the plane containing
the polygon. If it does not exist then finished.
2. Determine if the ray-plane intersection point is inside the
polgon, i.e., perform a point-polygon intersection
(containment) test.

Intersection Detection

Ray-Polygon Intersection Point

The equation of a plane is
Ax+By+Cz+ D=0
The equation of a ray is

= Xo t+ tu
= Yo+ tv

zZ = Zy+tw
Substituting into the plane equation we get
A(xo + tu) + B(yo + tv) + C(zo +tw) + D =0
Rearrangement gives

_(AXO + By, + Cz, + D)
Au+ Bv + Cw

Intersection Detection

t=

Polygon Containment Test

The polygon containment test is performed by projecting the
polygon and the intersection point onto one of the coordinate
planes along one of the three principal axis directions and then
performing a 2D point in polygon test.

Which axis do we project along?

Intersection Detection

Point in Polygon: Crossings Test

One O(n) approach is to count the number of crossings or
intersections between a semi-infinite line or ray and edges of the

polygon.

N

Count the number of intersections of P with R. If the number of
intersections (crossings) of is odd then z is inside, otherwise it is
outside. This is a result of the Jordon curve thereom.

Special cases, e.g., vertices on the ray, need to be handled.

How can this be done?

Intersection Detection

Convex Polygons

In the case of a convex polygon an O(lg(n)) point-in-polygon (or
containment) algorithm is possible.

The point g can be any internal point, e.g., the centroid of the
triangle determined by any three vertices of P.

Using polar coordinates, a binary search can be performed to find
the wedge which contains z. Then z can be compared against the
wedge edge.

How much preprocessing is required?

Intersection Detection

Concave Polygons

Can point containment for concave polygons be performed in
O(lg(n)) time?
If so, how much preprocessing is required?

Intersection Detection

Brute Force Collision Detection

A brute force approach to collision detection uses intersection tests
of all object pairs — or pairwise testing — at discrete points in
time where all objects are assumed to be stationary

1: for i=1to n—1
2: for j =i ton
3: intersect(object (i), object())

Figure: Brute-force collision detection
There are @ pairs amonst n objects, and this is the number of
object-object intersection tests the brute-force algorithm performs
at each point in time.
Using the big O notation, the brute-force algorithm uses O(n?)
object-object intersection tests. If each intersection test can be
performed in O(1) time, i.e., constant time, then the algorithm is
O(n?) time.

Intersection Detection

