Vertex Arrays

Vertex Arrays

References

Notes based on

Shreiner, D., Woo, M., Neider, J. and Davis, T., (2006), OpenGL
Programming Guide, 5th Edition, Addison Wesley

McReynolds, T. and Blythe, D. (2005), Advanced Graphics
Programming Using OpenGL, Morgan Kaufman.

Vertex Arrays

Introduction

» 3D graphics geometric models can be specified in various
ways.

» Polygonal modelling where objects are defined by sets of
polygons, and in turn vertices, is the most common.

» OpenGL, and its rendering pipeline, primarily uses a primarily
polygonal approach, although there is support for higher order
surfaces.

» OpenGL has a small number of primitives for modelling 2D
and 3D objects: points, lines, triangles, quadrilaterals, and
general convex polygons.

» There are also OpenGL primitives specifically to improve
performance for polygon meshes.

Vertex Arrays

Polygon Meshes

> In polygon meshes, or just meshes, polygons share vertices
and edges.

» Eliminating repetition of redundant shared vertex information
is a way of improving performance.

» OpenGL has strip primitives, e.g., GL_.TRIANGLE_STRIP and
GL_QUAD_STRIP to improve performance for meshes, which
remove some repetition.

» Strips usually require special processing of meshes, as meshes
are not normally stored as strips.

» Another approach to improving performance for meshes is the
use of vertex arrays.

Vertex Arrays

Cube Example

A cube has 8 vertices, 12 edges and 6 faces:

3 2

back 7 6

4 front 5

» Each vertex is shared between 3 faces.

» Using quads, i.e., glBegin(GL_QUADS) and glVertex to
specify the cube gives 6 quads with 24 vertices.

> However, really only 8 vertices!

Vertex Arrays

Peformance and Architectural Considerations

» Redundant vertices still require transfer and processing of the
data

» Similar considerations for vertex colours and normals.

» Usually a graphics accelerator, typically a GPU, sits on a fast
bus, e.g., PCl express (PCle) and has its own memory.

» Even with a fast bus, data must be transferred from system
memory to the GPU for processing.

» Transferring data can become the bottleneck, particularly
when millions of polygons per frame are involved.

Vertex Arrays

Vertex Arrays

» Basic idea: regard meshes as a primitive.
» Transfer and process as a group vertices belong to a mesh.

» Specify connectivity amongst vertices to form primitives:
polygons, quads, triangles.

» Eliminate redundant transfer and processing of vertex data:
coordinates, normals, colours etc.

» Pass client space array pointers in into the OpenGL renderer.

» OpenGL transfers vertex data using the client space array
pointers into server space for processing and rendering.

» (Probably) still requires transfer of data each time mesh is
rendered. Some data will change, some will not.

» Use vertex buffer objects to store data in server space, i.e., on
the GPU to avoid repeated transfer, and to cache processed
data.

Vertex Arrays

Vertex Arrays: Steps

Three steps to use vertex arrays
1. Activate/enable data arrays
2. Specify data

3. Dereference and render.

Vertex Arrays

Step 1: Enable Arrays

void glEnableClientState(GLenum cap)
is used to specify the array to enable.

The cap parameter can take on a symbolic constant value:
GL_VERTEX_ARRAY, GL_COLOR_ARRAY, GL_EDGE_FLAG_ARRAY,
GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_TEXTURE_COORD_ARRAY, and GL_VERTEX_ARRAY.

Examples:
glEnableClientState (GL_VERTEX_ARRAY)
glEnableClientState (GL_.NORMAL_ARRAY)

Vertex Arrays

Step 2: Specify Data

void glVertexPointer(GLint stze,

GLenum type,

GLsizei stride,

const GLvoid *pointer)
is used to specify the location and data type and format of
coordinate data.

The pointer parameter is the client space pointer to the
coordinate data. The size parameter specifies the number of
coordinates per vertex. The type parameter can be: GL_SHORT,
GL_INT, GL_FLOAT, GL_DOUBLE. The stride parameter is the
offset between consecutive coordinate values, with 0 specifying
tight packed.

There are similar calls for the seven other arrays.

Vertex Arrays

Step 3: Dereference and Render

There are three calls for dereferencing data using indices

1. Single array element
void glArrayElement(GLint %th)
2. List of array elements
void glDrawElements(GLenum mode, GLsizei count,
GLenum type, void *indices)
3. List of list of array elements
void glMultiDrawElements(GLenum mode,
GLsizei count,
GLenum type,
void **indices,
GLsizei primcount)

Vertex Arrays

ence and Render: Single Array Element

Example

glEnableClientState (GL_VERTEX_ARRAY);
glEnableClientState (GL_COLOR_ARRAY);
glVertexPointer (2, GL_INT, O, vertices);
glColorPointer (3, GL_FLOAT, 0, colors);

glBegin (GL_TRIANGLES);
glArrayElement (2); glArrayElement (3); glArrayElement (5);
glEnd QO;

has the same effect as

glBegin (GL_TRIANGLES);
glColor3fv (colors + (2 * 3));
glVertex2iv (vertices + (2 * 2));
glColor3fv (colors + (3 * 3));
glVertex2iv (vertices + (3 * 2));
glColor3fv (colors + (5 * 3));
glVertex2iv (vertices + (5 * 2));
glEnd ();

Vertex Arrays

Derefence and Render: List of Array Elements

The effect of
void glDrawElements(GLenum mode, GLsizei count,
GLenum type, void *indices)
is similar to

glBegin (mode);
for (i = 0; i < count; i++)
glArrayElement (indices[i]);
glEnd O ;

Vertex Arrays

Cube glDrawElements () Example

For the cube shown earlier could use glDrawElements () as
follows:

glEnableClientState (GL_VERTEX_ARRAY) ;
glVertexPointer (3, GL_FLOAT, O, vertices);

static GLuint frontIndices[] = { 4, 5, 6, 7 };
static GLuint backIndices[] = { 0
static GLuint leftIndices[] = { 0, 4, 7, ;
static GLuint rightIndices[] ={ 1, 2, 6, 5 };
static GLuint bottomIndices[] = { 0,

static GLuint topIndices[] = { 2, 3

-

glDrawElements (GL_QUADS, 4, GL_UNSIGNED_INT, frontIndices);
glDrawElements (GL_QUADS, 4, GL_UNSIGNED_INT, backIndices);
glDrawElements (GL_QUADS, 4, GL_UNSIGNED_INT, leftIndices);
glDrawElements (GL_QUADS, 4, GL_UNSIGNED_INT, rightIndices);
glDrawElements (GL_QUADS, 4, GL_UNSIGNED_INT, bottomIndices);
glDrawElements (GL_QUADS, 4, GL_UNSIGNED_INT, topIndices);

Vertex Arrays

Cube glDrawElements () Example (cont)

A further improvement is to combine the 6 calls to
glDrawElements into one:

GLuint indiceslDArrayl[] = {
4, 5, 6, 7, // Front

0, 3, 2, 1, // Back
o, 4, 7, 3, // Left
1, 2, 6, 5, // Right
0, 1, 5, 4, // Bottom
2, 3,7, 6 // Top

};

glEnableClientState (GL_VERTEX_ARRAY);
glVertexPointer (3, GL_FLOAT, O, vertices);

glDrawElements (GL_QUADS, 24, GL_UNSIGNED_INT, indiceslDArray);

Vertex Arrays

Derefence and Render: List of Lists of Array Elements

The effect of
void glMultiDrawElements(GLenum mode,

GLsizei count,

GLenum type,

void **indices,

GLsizei primcount)
is similar to

for (i = 0; i < primcount; i++) {

if (count[i] > 0)
glDrawElements (mode, count[i], type, indices[il);

Vertex Arrays

Cube glMultiDrawElements () Example

For the cube could use glMultiDrawElements() as follows:

static GLuint* indices1DArrayOfArray[] = {
frontIndices,
backIndices,
leftIndices,
rightIndices,
bottomIndices,
topIndices
};
static GLsizei indicesCounts[] = { 4, 4, 4, 4, 4, 4 %};

glMultiDrawElements (GL_QUADS, indicesCounts,
GL_UNSIGNED_INT, indicesl1DArrayOfArray, 6);

Vertex Arrays

Dereferencing and Rendering: Sequence of Array Elements

In the above approaches indices — or elements — are used to
provide indirect addressing into the vertex array and thereby “hop
around".

Another approach provided is to form primitives from the vertices
in the vertex array in the sequence they are stored. However, this
typically re-introduces need for redundant vertices.

void glDrawArrays(GLenum mode, GLint first,
GLsizei count)
This has a similar effect to

glBegin(mode) ;
for (i = 0; i < count; i++) {
glArrayElement (first + i);

Vertex Arrays

Interleaved Arrays

Vertex data may be interleaved. That means instead of having
separate arrays for say vertex coordinates and vertex colours a
single array is used with the coordinate and colour values
alternating.

Data from interleaved arrays may be extracted by specifying an
appropriate stride value in the glVertexPointer (),
glColorPointer () and other similar pointer calls.

glInterleavedArrays() allows accessing interleaved data in a
single call:
void glInterleavedArrays(GLenum format,

GLsizei stride,

void *pointer)
Initialises all eight arrays and disables unused arrays according to
the GLenum format parameter. stride indicates the number of
bytes between vertices. pointer is a pointer to the data array.

Vertex Arrays

