Vertex Buffer Objects (VBOs)

Vertex Buffer Objects (VBOs)

References

Notes based on
Shreiner, D., Woo, M., Neider, J. and Davis, T., (2006), OpenGL
Programming Guide, 5th Edition, Addison Wesley

Vertex Buffer Objects (VBOs)

Vertex Buffer Objects (VBOs)

» Vertex arrays (VAs) are stored in client space, i.e. in system
memory.

» Vertex arrays in client space allow improved performance by
operating on larger chunks of data, and moving away from the
vertex at a time approach of immediate mode.

» However, still need to transfer vertex data into server space,
i.e. graphics memory, usually repeatedly.

> Vertex buffer objects or VBOs allow storing of vertex arrays in
server space, i.e. in graphics memory.

Vertex Buffer Objects (VBOs)

OpenGL Objects

>

OpenGL objects are entities which have data or state, can be
created, read, written, manipulated etc using functions.
There are many kinds of OpenGL objects: texture objects,
buffer objects, framebuffer objects, render objects, etc.
OpenGL is not an object oriented programming API, and its
objects are not quite objects in that sense, but are related.
OpenGL can be viewed as a state machine, (bound) objects
are part of it.

An OpenGL program runs using a OpenGL context, essentially
an instance of an OpenGL state machine.

Different OpenGL programs have different contexts, and do
not affect each other, e.g. setting colour in one does not
affect the other.

Objects bound to a context become part of and affect it,
unbound objects don't, although they may still occupy space.

Vertex Buffer Objects (VBOs)

OpenGL Objects (cont.)

» OpenGL objects are given integer identifiers/names, and are
references not pointers.

» The identifier 0 is a special case, usually (but not always) akin
to NULL.

» OpenGL objects are created using
glGen*(GLsizei n, GLuint *objects) functions.

» OpenGL objects are bound using
glBind*(GLenum target, GLuint object)
functions.

» There are different ways to change the objects’ state or data,
but primarily using appropriate GL functions.

Vertex Buffer Objects (VBOs)

OpenGL Buffer Objects and Vertex Buffer Objects

» Buffer objects are a kind of OpenGL object

» Buffer objects store an array of data server-side i.e. in
graphics memory.

» Vertex buffer objects are a kind of buffer object, in which
vertex or index data is stored.

Vertex Buffer Objects (VBOs)

Vertex Buffer Objects: Steps

Six steps to use vertex buffer objects

1.

ok W

Create vertex buffer objects

Bind a buffer object, specifying target as vertex or index data
Request storage, optionally initialise

Specify data including offsets into buffer object

Bind buffer object to be used in rendering

Render using vertex array techniques, e.g. glDrawElements

Vertex Buffer Objects (VBOs)

Step 1: Create Buffer Objects

» Similar to creating identifiers for display lists using
glGenLists

» To generate one or more buffer objects use
glGenBuffers(GLsizei n, GLuint *buffers)

» Names/identifers returned in buffers.
» glIsBuffer(GLuint buffer) to test if an integer is in use
» Zero is reserved identifier

> To delete use glDeleteBuffers

Vertex Buffer Objects (VBOs)

Step 2: Bind Buffer Object

» Binding makes a buffer object active

» Once bound a buffer object is used for operations to initialise
it with data and/or for vertex array rendering operations

> Use
void glBindBuffer(GLenum target, GLuint *buffer)

» target can be GL_ARRAY BUFFER for vertex data e.g.
coordinates, normals etc. or GL_ELEMENT _ARRAY_ BUFFER for
index data.

Vertex Buffer Objects (VBOs)

Step 3: Allocate and Initialise

> Need to reserve space for the buffer object in the OpenGL
server

» Once bound a buffer object is used for operations to initialise
it with data and/or for vertex array rendering operations

» Use
void glBufferData(GLenum target, GLsizeiptr size,

const GLvoid *data, GLenum usage)
> target again GL_ARRAY BUFFER or GL_ELEMENT_ARRAY _BUFFER
> size is number of bytes
> data is pointer to client memory or NULL
> usage is a hint for performance
» Memory is finite, may get GL_OUT_OF_MEMORY

» Store vertex, color, normal etc data in one or more VBOs.

Vertex Buffer Objects (VBOs)

Step 4: Specify Data

» For vertex arrays we saw glVertexPointer,
glNormalPointer, glColorPointer etc for specifying
pointers to the client side data.

» The same functions are used for vertex buffer objects

» However the data is in the vertex buffer object(s), initialised
with glBufferData as above

» The pointer argument becomes an offset in the VBO.

> A single VBO can be used to store all the vertex data if it is
stored in a single array, e.g. normals then coordinates.

» Data can be interleaved or non-interleaved.
» If data is stored in an interleaved array stride is non-zero

Vertex Buffer Objects (VBOs)

Step 5: Bind

» Use glBindBuffer as above

» No need to rebind if buffer already bound from step 2, but no
harm either (other than small performance cost for unecessary
operation).

Vertex Buffer Objects (VBOs)

Step 6: Render

» Use glDrawArrays, glDrawElements etc as for vertex arrays

Vertex Buffer Objects (VBOs)

Modifying VBO data

» To change/edit the values in a VBO can supply new values
using glBufferData. This means all data is updated, not
just changed values.

» Can use glBufferSubData to update just some values.

» Another approach is to use glMapBuffer to get a (special)
pointer to the data in the video/graphics memory and use
that to update specific values. Must use glUnmapBuffer
when finished editing and before rendering.

Vertex Buffer Objects (VBOs)

