
Smoothing and Auxiliary Functions Based
Cooperative Coevolution for Global Optimization

Fei Wei, Yuping Wang, Yuanliang Huo
School of Computer Science and Technology

Xidian University
Xi’an, China

Email: wyp9000@yahoo.com.cn

Abstract—In this paper, a novel evolutionary algorithm frame-
work called smoothing and auxiliary functions based cooperative
coevolution (Briefly, SACC) for large scale global optimization
problems is proposed. In this new algorithm pattern, a smoothing
function and an auxiliary function are well integrated with a
cooperative coevolution algorithm. In this way, the performance
of the cooperative coevolution algorithm may be improved.
In SACC, the cooperative coevolution is responsible for the
parallel searching in multiple areas simultaneously. Afterwards,
an existing smoothing function is used to eliminate all the local
optimal solutions no better than the best one obtained until
now. Unfortunately, as the above takes place, the smoothing
function will lose descent directions, which will weaken the local
search. However, a proposed auxiliary function can overcome the
drawback, which helps to find a better local optimal solution.
A clever strategy on BFGS quasi-Newton method is designed to
make the local search more efficient. The simulations on standard
benchmark suite in CEC’2013 are made, and the results indicate
the proposed algorithm SACC is effective and efficient.

I. INTRODUCTION

Large scale global optimization problems with numerous
local and global optima have arisen in many fields such as
computer science, engineering design, and decision making.

A. Previous Work

In recent years, many new theoretical and computational
contributions have been reported for solving large scale global
optimization problems, e.g., cooperative coevolution [1]–[6],
decomposition methods [7], [8], estimation of distribution
algorithms [9]–[11], Memetic algorithms [12], [13]. However,
due to the complexity of large-scale problems, designing a
very effective algorithm becomes very difficult. In this paper,
we focus on a novel algorithm framework based on cooperative
coevolution.

For global optimization, in existing approaches, evolution-
ary algorithms (EAs) are one of the most efficient and popular
algorithms. They exploit a set of potential solutions, named a
population, and detect the optimal solution through cooperation
and competition among individuals of the population. How-
ever, for EAs, the major challenge is that an algorithm may be
trapped in the local optima of the objective function. This issue
is particularly challenging when the dimension of the problem
is high and there are numerous local optima. The performance
on such problem deteriorates rapidly as the dimensionality of
the problem increases. For these problems, the cooperative
coevolution (CC), proposed by Potter and De Jong [5], is more

popular and efficient than the classical evolutionary algorithms
(EAs), and it is a framework for decomposition of problem into
smaller subcomponents, each of which is evolved by using
a separate EA [5]. Unfortunately it can also trap into the
local optimal solutions, especially when the dimensionality of
the problem or the interaction between variables increases. In
order to solve these high-dimensional and complex problems
effectively, we combine the smoothing function and auxiliary
function into CC.

The smoothing function can eliminate all such local opti-
mal solutions no better than the best solution found so far, and
can keep all better local optimal solutions than the best solution
found so far unchanged. But it can lose some useful infor-
mation when looking for a descent direction. The auxiliary
function transforms the current local minimal solution into a
better local optimal solution of the original objective function.
However, it often cost the auxiliary function a lot of time that
searching for a global optimal solution by repeating the process
of jumping from one local optimal solution to another better
one. This makes the auxiliary function with a lower efficiency
in search for a global optimal solution, especially for problem
with large number of local optimal solutions. While CC can
search the local optimal solutions simultaneously in multiple
areas of the search space. If CC is integrated with smoothing
function and auxiliary function to form a new algorithm, the
new algorithm may overcome the limitations of CC, smoothing
function and auxiliary function.

B. Goals

To address the above issues, the goal of the paper is to
develop a new method that smoothing and auxiliary func-
tions based CC for large scale global optimization. If it is
specifically combined with the smoothing function, auxiliary
function, and CC in a reasonable way, the resulted algorithm
may be expected to have the following advantages: 1) can
eliminate a large number of local optimal solutions with the
evolving progress; 2) can escape from the local optima; 3) can
search for multiple areas in the search space simultaneously
by CC. Based on this motivation, in this paper, a new evo-
lutionary algorithm called SACC is designed which integrates
the advantages of smoothing function, auxiliary function and
CC. The simulations are made on 15 benchmark functions for
the CEC’2013 special session and competition on large-scale
global optimization [14].

C. Organization

The reminder of the paper is outlined as follows. Section II
presents the basic concepts and some remarks. In section III,
an existing smoothing function is introduced. A novel auxiliary
function is proposed in section IV. Section V shows a novel
algorithm framework that smoothing and auxiliary function
based cooperative coevolution. Numerical experiments are
given in section VI. Section VII presents conclusions and
future work directions.

II. BASIC CONCEPT AND SOME REMARK

In this paper, we consider the following global optimization
problem:

(P)

{
min f (x)
s.t. x ∈ Rn.

where f (x) : Rn → R. Suppose f (x) satisfies the condition
f (x)→+∞ as ‖x‖→+∞. Then there exists a closed bounded
domain Ω called an operating region that contains all local
minimizers of f (x). Then the global optimization problem (P)
can be rewritten into an equivalent form as follows.

(P1)

{
min f (x)
s.t. x ∈ Ω.

where Ω = [l,u] = {x|x ∈ l ≤ x ≤ u, l,u ∈ Rn}. Because Ω can
be estimated before problem (P) is solved, so we can assume
that Ω is known without loss of generality. We only consider
problem (P1) in the following, and adopt the following sym-
bols.
k : the iteration number;
x∗k :the local minimizer of the objective function in the k-th
iteration;
f ∗k :the function value at x∗k ;
x∗:the global minimizer of the objective function.

Assumption 1 The function f (x) in (P1) is continuously
differentiable in Rn and f (x) has only a finite number of
minimizers in Ω, and therefore every minimizer is isolated.

In the following, we first introduce an existing smoothing
function in [15]. The details are as follows.

III. SMOOTHING FUNCTION

The existence of multiple local minima of a general non-
convex objective function makes global optimization become
a great challenge. The key issue for the global optimization
problem is effectively handling a large number of local optimal
solutions and finding the global optimal solution as soon as
possible. In order to tackle this problem, a smoothing function
[15] at the current local minimizer for is used as follows:

S(x,x∗k) = f (x∗k)+1/2 · {1− sign[f (x)− f (x∗k)]} · [f (x)− f (x∗k)]
(1)

Obviously, this smoothing function has the following proper-
ties:

• S(x,x∗k) will keep any better local optimal solution
than x∗k of f (x) unchanged, i.e., for any local optimal
solution x∗k+1 of f (x) better than x∗k , x∗k+1 is also a
local optimal solution of S(x,x∗k).

Fig. 1. S(x,x∗k) is indicated by the dotted line and has only three local optimal
solutions, and three local optimal solutions of f (x) were eliminated, where x∗k
is the best solution found so far.

• S(x,x∗k) will eliminate all local optimal solutions no
better than the current local optimal solution x∗k , and
flatten the landscape at any point no better than x∗k ,
i.e., for ∀x ∈ Ω, if f (x)≥ f (x∗k), then S(x,x∗k) = f (x∗k).

This means that the smoothing function will not destroy
the region containing better solutions than the best solution
found so far and the global optimal solution of f (x).

The properties of smoothing function can be intuitively
illustrated by a function with one variable in the following
Fig. 1, where the solid line represents the original function,
and the dotted line represents the smoothing function. It can
be seen from Fig. 1 that the smoothing function (dotted line)
eliminates three local optimal solutions, but keep the better
three local optimal solutions unchanged.

However, it also can be seen from Fig. 1 that the smoothing
function often loses some useful information while looking for
a descent direction. For example, at point x∗k , either right or
left, the direction is not descending for smoothing function.
To overcome this limitation, we design another function called
auxiliary function. The auxiliary function can be constructed
as follows.

IV. AUXILIARY FUNCTION

When we have found a local minimizer of f (x) and used
the smoothing function to flatten the landscape of f (x), the
difficulty arisen is how to escape from the current local
minimizer to reach a lower local minimizer.

In this section, we propose an auxiliary function at a local
minimizer x∗k as follows:

F(x,x∗k) =−‖x− x∗k‖
2g(f (x)− f (x∗k)), (2)

g(t) =

{
π/2, t ≥ 0,
r1 · arctan(t2)+π/2, t < 0.

where r1 is an adjustable large positive real number used as
the weight factor.

Note that the proposed auxiliary function has some ad-
vantages: first, it has one parameter r1 which is a positive
real number as large as possible, thus it is easy to adjust.

Second, arctan(t2) ∈ [0,π/2) is bounded, which ensures that
the calculation of F(x,x∗k) will not overflow and is of numerical
stability.

The auxiliary function can change the flat area, and has no
local minimizer in the landscape higher than the landscape at
the current local minimizer. The major issue for the auxiliary
function is to find a lower minimizer than the current local
minimizer of f (x) when the current local minimizer is not a
global minimizer of f (x).

Using the auxiliary function on the smoothing function can
escape from the current local minimizer and reach to a lower
local minimizer, however, it cannot search in multiple region
parallelly. When there are a lot of local minimizers and we are
not lucky enough, we have to find all local minima in order
to find the global minimizer, e.g., the smoothing function can
only eliminate a few (or even no) local minima each time
and the auxiliary function can only gradually jump from the
current local minimizer to another which is just better than
the current one. In this case, the search will enumerate almost
all local minima in order to get the global minimizer. This
will cost a lot of computation and cannot make the algorithm
efficient. Note that evolutionary algorithm has the ability to
exploit and explore the multiple regions of the search space
in parallel, and has more possibility to find multiple local
minima in one generation, especially at the beginning of the
evolution. However, it is generally known that most of the
evolutionary algorithms are easily trapped in the local optimum
and appeared premature convergence. Thus, if we integrate
evolutionary algorithm with smoothing and auxiliary functions,
it is very possible to eliminate a lot of minima and jump from
a local minimizer to a much better local minimizer, especially
in the later stage of evolution, such that the computation of
the proposed algorithm is much decreased and its efficiency
may be increased.

In the following section, we integrate smoothing function
and auxiliary function into cooperative coevolution to design
a new algorithm: smoothing and auxiliary functions based
cooperative coevolution (SACC).

V. SMOOTHING AND AUXILIARY FUNCTIONS
BASED EVOLUTIONARY ALGORITHM

In order to make the advantages of our algorithm more
clearly reflected, one of the most popular algorithms MLCC
[6] is used in our algorithm. The crossover, mutation, selection
will be introduced in [6]. The local search scheme is very
important to the performance of evolutionary algorithms, and
we will introduce how to design it in the following.

A. A local search strategy

A local search strategy is often executed after a good
solution is found by using the evolutionary algorithm. A
good local search strategy would be helpful to improve the
searching efficiency of the algorithm. Some efficient local
search algorithms, e.g., Conjugate Gradient Method, Newton’s
Method and Quasi Newton Method, require the gradients of
functions. Therefore, these methods are not suitable for solving
nondifferentiable problems. To adopt the advantages of these
local search algorithms and avoid computing the gradients,

a revised version of the BFGS Quasi Newton algorithm is
designed. The detail is as follows:

Algorithm 1 (local search strategy)

Step 1. Initialization Step
a. Choose a tolerance ε > 0, e.g., ε = 1.0e−5, and a small
constant δ ∈ (0,1), σ ∈ (0,0.5).
b. Give an initial point x0 and an approximate inverse of
the Hessian matrix B0.
c. k = 0.

Step 2. Calculate the forward difference quotient
[f (xk +	x)− f (xk)]/	x at xk,
if ‖gk‖ ≤ ε
stop x∗ = xk, and output xk;
else go to step 3;
endif

Step 3. Obtain a direction dk by solving Bkdk =−gk.

Step 4. Perform a line search based on the Armijo criterion
[16] to find an acceptable stepsize λk = δ mk , where mk is
the smallest non-negative integer that satisfy the following
inequality:

f (xk + δ mkdk)≤ f (xk)+σδ mkgT
k dk.

Then update xk+1 = xk +λkdk.

Step 5. Let Sk = λkdk, and yk = g(k+ 1)− gk, then{
Bk+1 = Bk +[βksksT

k −BkyksT
k − skyT

k Bk]/sT
k yk

βk = 1+(yT
k Bkyk)/(sT

k yk)

Step 6. Let k = k+ 1, and go to step 2.

B. Smoothing and auxiliary function based cooperative coevo-
lution (SACC)

Based on the preparations above, a novel evolutionary
algorithm: smoothing and auxiliary functions based CC, briefly
denoted by SACC, is proposed as follows.

Algorithm 2 (SACC)

Step 1. Initialization Step
Let k = 0. Choose a positive real numbers r1 large enough,
m > 0 is a positive integer, ε is a tolerance threshold,
and the population size is N. Generate N points uniform
randomly, and put them into the initial population POP(k).

Step 2. Evolve POP(k) by MLCC on original function f (x) for
one generation, and then get set OFF(k) of all offspring.
Select the best individual among POP(k)

⋃
OFF(k) . This

best individual is denoted as x∗k . Execute the local search
at x∗k on f (x) by algorithm 1 to get a local minimizer x∗k+1
. Go to Step 7.

Step 3. Eliminate all local minima no better than x∗k by smooth-
ing function: Construct a smoothing function S(x,x∗k) at x∗k
by formula (1).

Step 4. Escape from the minimizer x∗k via auxiliary function:
Construct an auxiliary function at x∗k by formula (2).

Step 5. Execute the local search at x∗k on F(x,x∗k) to get a local
minimizer y∗k of the auxiliary function.

Step 6. Update the current best solution: Starting from y∗k , do
the local search on f (x) by algorithm 1 to obtain a local
minimizer x∗k+1 of f (x). Then go to Step 7.

Step 7. If the termination condition is satisfied, x∗k = x∗k+1 is
taken as a global minimizer of f (x), stop; otherwise, if
f (x∗k+m)− f (x∗k) ≤ ε , where m > 0 is a perset positive
integer, and ε is a tolerance threshold. Then go to step
3; else put OFF(k) into POP(k+ 1), let k = k+ 1 , go to
Step 2.

VI. NUMERICAL EXPERIMENTS

In this section, benchmark suite, parameters setting for
SACC, and the simulation results are given.

A. Benchmark suite and parameters setting for SACC

• In this section, the proposed algorithm SACC is tested
on CEC’2013 benchmark suite, the detailed descrip-
tion of which can be found in [14]. f1-f3 are fully
separable functions, and f4-f11 are partially additively
separable functions, and f12-f14 are overlapping func-
tions and f15 is nonseparable functions.

• SACC is executed 25 independent runs for each test
problem. In experiments, SACC was tested on an
Intel(R) Core(TM) i7 CPU 870 with 2.93GHz in
Matlab R2012a.

• Population size: N = 50.

• Parameters in algorithm SACC: r1 = 100, m= 50, ε =
1.0e− 4.

B. The simulation results

The statistic data over 1000 Dimension for all problems
except f9 is 905 dimensional after maximum number of fitness
evaluations (MaxFEs = 3.0e6) in 25 runs is listed in table
I. The first column lists the number of function evaluations.
Sort the best function values achieved after the given number
of function evaluations in 25 runs from the smallest to the
largest. The ”Best” means that the smallest value in 25 runs;
the ”Median” is the median value in 25 runs; the ”Worst” is
the largest value in 25 runs; the ”Mean” is the average value
in 25 runs; the ”Std” is the standard deviation in 25 runs.

The best, median, worst, mean, and standard deviation of
the 25 runs are recorded in table I when FEs = 1.2e5, 6.0e5
and 3.0e6. From table I, we can see that the proposed algorithm
SACC is very effective for fully separable functions f1-f3, and
the results for partially additively separable functions f4-f11
and overlapping functions f12-f15 are far from their real global
optimal values, this may be caused by several reasons. Firstly,
the population may be easy to run into premature. Secondly,
because some of the problems are not differentiable, if the
selected parameters are not appropriate that may lead to the
failure of the local search and the filled function. Thirdly, f12-
f14 are overlapping functions and f15 is nonseparable function,
which may make the grouping strategy in SACC do not work.
Finally, the number of local minima grows exponentially as the
number of decision variables increases, so that the computation
cost (the number of function evaluations) also increases greatly.

Table II shows a comparison result of SACC with a recently
proposed DECC-G [4] on CEC’2013 benchmark test functions,
where Q is the quality of the 25 runs are recorded when
FEs = 3.0e6, P is the test problems, V is the fitness values
of problems, and A is the comparison algorithms. The results
of the two algorithms were recorded under the same MaxFEs,
where bold text means that the proposed algorithm is superior
to DECC-G. From table II, we can see that there are 9 results
of SACC are better than the results of DECC-G showed in [4].
Among them, the results of f1-f3 show that SACC is effective
to fully separable functions. Only three functions in f4-f11 are
better than DECC-G which show that SACC is worse than
DECC-G. Unexpectedly, the results of f12-f15 by SACC are
much better than that by DECC-G.

Fig.2 to Fig.7 show that the convergence curves of the six
selected functions: f2, f7, f11, f12, f13, and f14. For each
selected function, a single convergence curve be plotted using
the average results over all 25 runs. From Fig.2 to Fig.7, we
can see that the fitness values of the function decrease rapidly
at the beginning of the evolution. This indicates that SACC
is effective at the beginning of the evolution. However, at the
later evolution process, the evolution become slower and the
global optimal solutions have not been found for Fig.2 to Fig.7.
The reason may be when the population runs into premature,
because of the complexity of problems, the efficiency of the
local search and the filled function is likely to become bad.

Overall, whether the data in tabel I, II, or figuers 2-7 shows
that the proposed algorithm SACC is effective.

VII. CONCLUSION

The goal of this paper was to investigate a novel algo-
rithm framework for global optimization. It was successfully
achieved by developing SACC, which integrated a smoothing
function and a novel proposed auxiliary function into a coop-
erative coevolution algorithm for global optimization. The new
algorithm SACC not only could eliminate many local optimal
solutions and escape from the local optima, but also could
parallel search in the feasible domain.

In order to test the performance of the proposed algorithm
SACC, a set of experiments were made on 15 standard
benchmark problems in CEC2013 [14]. The results indicated
the proposed algorithm was effective.

There are several relevant issues need to be further studied
in the future. Firstly, design such evolutionary algorithms
suitable to auxiliary functions. Secondly, design self-adaptive
mechanism for the various evolution operators. Thirdly, design
better auxiliary functions and study the efficient way to inte-
grate the auxiliary function with evolutionary algorithms. At
last, design new techniques to enhance EAs.

ACKNOWLEDGMENT

This work is supported by The National Natural Science
Foundation of China (No. 61272119).

REFERENCES

[1] X. Li and X. Yao, ”Cooperatively coevolving particle swarms for large
scale optimization,” IEEE Transactions on Evolutionary Computation,
vol. 16, pp. 210-224, April 2012.

TABLE I. EXPERIMENTS RESULTS FOR F1-F15

1000D f1 f2 f3 f4 f5

1.2e5

Best 6.43e+03 3.36e+03 8.71e+00 1.21e+11 6.65e+06
Median 1.25e+05 4.23e+03 1.07e+01 1.66e+12 1.32e+07
Worst 2.90e+07 1.44e+04 1.29e+01 5.11e+12 2.31e+07
Mean 2.76e+06 5.15e+03 1.08e+01 1.60e+12 1.37e+07
Std 7.39e+06 2.67e+03 1.16e+00 1.15e+12 5.12e+06

6.0e5

Best 1.45e-21 3.78e+02 3.59e-04 3.32e+10 4.02e+06
Median 9.87e-14 1.42e+03 4.46e+00 1.54e+11 1.16e+07
Worst 1.32e-09 7.58e+03 1.03e+01 6.08e+11 2.03e+07
Mean 1.82e-10 2.19e+03 4.95e+00 1.77e+11 1.19e+07
Std 3.98e-10 1.80e+03 2.98e+00 1.37e+11 5.07e+06

3.0e6

Best 0.00e+00 2.88e+02 9.24e-14 8.48e+09 3.36e+06
Median 0.00e+00 5.71e+02 1.21e+00 3.66e+10 6.95e+06
Worst 6.81e-23 2.72e+03 3.76e+00 1.71e+11 1.40e+07
Mean 2.73e-24 7.06e+02 1.11e+00 4.56e+10 7.74e+06
Std 1.36e-23 4.72e+02 1.11e+00 3.60E+10 3.22e+06

1000D f6 f7 f8 f9(905D) f10

1.2e5

Best 2.45e+05 1.12e+09 6.18e+14 4.08e+08 1.92e+07
Median 9.60e+05 5.26e+09 4.94e+16 8.75e+08 8.50e+07
Worst 1.04e+06 1.38e+10 1.67e+17 1.72e+09 9.09e+07
Mean 7.72e+05 5.75e+09 5.13e+16 8.98e+08 7.08e+07
Std 2.97e+05 3.86e+09 4.67e+16 3.04e+08 2.59e+07

6.0e5

Best 1.86e+05 1.58e+08 4.34e+14 2.88e+08 1.46e+07
Median 2.92e+05 1.13e+09 2.35e+15 7.37e+08 7.67e+07
Worst 9.86e+05 3.04e+09 1.51e+16 1.60e+09 8.99e+07
Mean 4.23e+05 1.21e+09 3.88e+15 7.69e+08 5.84e+07
Std 2.53e+05 8.18e+08 3.59e+15 3.08e+08 2.97e+07

3.0e6

Best 1.57e+05 1.72e+06 1.47e+14 2.29e+08 1.38e+07
Median 2.07e+05 1.58e+07 9.86e+14 5.77e+08 2.11e+07
Worst 6.00e+05 1.18e+09 3.08e+15 1.01e+09 7.75e+07
Mean 2.47e+05 8.98e+07 1.20e+15 5.98e+08 2.95e+07
Std 1.02e+05 2.48e+08 7.63e+14 2.03e+08 1.93e+07

1000D f11 f12 f13 f14 f15

1.2e5

Best 2.12e+11 8.64e+06 2.85e+10 2.11e+11 4.63e+07
Median 6.81e+11 1.85e+07 4.42e+10 6.80e+11 3.34e+08
Worst 2.01e+12 6.02e+09 7.59e+10 1.57e+12 1.50e+09
Mean 8.06e+11 6.48e+08 4.69e+10 7.47e+11 4.28e+08
Std 5.47e+11 1.46e+09 1.24e+10 3.86e+11 3.52e+08

6.0e5

Best 2.38e+10 1.96e+03 9.74e+09 6.17e+10 8.21e+06
Median 1.19e+11 3.08e+03 1.59e+10 1.40e+11 1.43e+07
Worst 5.81e+11 1.10e+04 2.70e+10 4.28e+11 2.11e+07
Mean 1.57e+11 3.62e+03 1.63e+10 1.79e+11 1.46e+07
Std 1.33e+11 2.13e+03 4.27e+09 1.04e+11 3.16e+06

3.0e6

Best 8.12e+07 2.43e+02 6.72e+08 8.21e+07 1.26e+06
Median 5.30e+08 8.74e+02 1.51e+09 7.34e+09 1.88e+06
Worst 2.30e+10 1.72e+03 3.40e+09 1.10e+11 4.90e+06
Mean 2.78e+09 8.73e+02 1.78e+09 1.75e+10 2.01e+06
Std 5.90e+09 3.71e+02 8.05e+08 2.87e+10 7.23e+05

0 0.5 1 1.5 2 2.5 3
x 106

102

103

104

105

106

FEs

Th
e

fit
ne

ss
 v

al
ue

 o
f f

2

SACC−2−1000

Fig. 2. The convergence curve of SACC on f2

[2] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, ”Cooperative coevolution
for large scale optimization through more frequent random grouping,”
in Proc. IEEE Congress on Evolutionary Computation, 2010, pp. 1754-
1761.

[3] Mohammad Nabi Omidvar, X. Li, and X. Yao, ”Cooperative co-evolution
with delta grouping for large scale non-separable function optimization,”
in Proc. IEEE Congress on Evolutionary Computation, 2010, pp. 1762-

TABLE II. COMPARISON BETWEEN SACC AND DECC-G ON 1000-D
FUNCTIONS

P
A

V
Q

SACC DECC-G

f1

Best 000...000000eee+++ 000000 1.75e-13
Median 000...000000eee+++ 000000 2.00e-13
Worst 666...888111eee−−− 222333 2.45e-13
Mean 222...777333eee−−− 222444 2.03e-13
Std 111...333666eee−−− 222333 1.78e-14

f2

Best 222...888888eee+++ 000222 9.90e+02
Median 555...777111eee+++ 000222 1.03e+03
Worst 2.72e+03 1.07e+03
Mean 777...000666eee+++ 000222 1.03e+03
Std 4.72e+02 2.26e+01

f3

Best 999...222444eee−−− 111444 2.63e-10
Median 1.21e+00 2.85e-10
Worst 3.76e+00 3.16e-10
Mean 1.11e+00 2.87e-10
Std 1.11e+00 1.38e-11

f4

Best 8.48e+09 7.58e+09
Median 3.66e+10 2.12e+10
Worst 1.71e+11 6.99e+10
Mean 4.56e+10 2.60e+10
Std 3.60E+10 1.47e+10

f5

Best 333...333666eee+++ 000666 7.28e+14
Median 666...999555eee+++ 000666 7.28e+14
Worst 111...444000eee+++ 000777 7.28e+14
Mean 777...777444eee+++ 000666 7.28e+14
Std 3.22e+06 1.51e+05

f6

Best 1.57e+05 6.96e-08
Median 2.07e+05 6.08e+04
Worst 6.00e+05 1.10e+05
Mean 2.47e+05 4.85e+04
Std 1.02e+05 3.98e+04

f7

Best 111...777222eee+++ 000666 1.96e+08
Median 111...555888eee+++ 000777 4.27e+08
Worst 111...111888eee+++ 000999 1.78e+09
Mean 888...999888eee+++ 000777 6.07e+08
Std 222...444888eee+++ 000888 4.09e+08

f8

Best 1.47e+14 1.43e+14
Median 9.86e+14 3.88e+14
Worst 3.08e+15 7.75e+14
Mean 1.20e+15 4.26e+14
Std 7.63e+14 1.53e+14

f9(905D)

Best 2.29e+08 2.20e+08
Median 5.77e+08 4.17e+08
Worst 1.01e+09 6.55e+08
Mean 5.98e+08 4.27e+08
Std 2.03e+08 9.89e+07

f10

Best 1.38e+07 9.29e+04
Median 2.11e+07 1.19e+07
Worst 7.75e+07 1.73e+07
Mean 2.95e+07 1.10e+07
Std 1.93e+07 4.00e+06

f11

Best 888...111222eee+++ 000777 4.68e+10
Median 555...333000eee+++ 000888 1.60e+11
Worst 222...333000eee+++ 111000 7.16e+11
Mean 222...777888eee+++ 000999 2.46e+11
Std 555...999000eee+++ 000999 2.03e+11

f12

Best 222...444333eee+++ 000222 9.80e+02
Median 888...777444eee+++ 000222 1.03e+03
Worst 1.72e+03 1.20e+03
Mean 888...777333eee+++ 000222 1.04e+03
Std 3.71e+02 5.76e+01

f13

Best 666...777222eee+++ 000888 2.09e+10
Median 111...555111eee+++ 000999 3.36e+10
Worst 333...444000eee+++ 000999 4.64e+10
Mean 111...777888eee+++ 000999 3.42e+10
Std 888...000555eee+++ 000888 6.41e+09

f14

Best 888...222111eee+++ 000777 1.91e+11
Median 777...333444eee+++ 000999 6.27e+11
Worst 111...111000eee+++ 111111 1.04e+12
Mean 111...777555eee+++ 111000 6.08e+11
Std 222...888777eee+++ 111000 2.06e+11

f15

Best 111...222666eee+++ 000666 4.63e+07
Median 111...888888eee+++ 000666 6.01e+07
Worst 444...999000eee+++ 000666 7.15e+07
Mean 222...000111eee+++ 000666 6.05e+07
Std 777...222333eee+++ 000555 6.45e+06

0 0.5 1 1.5 2 2.5 3

x 106

106

108

1010

1012

1014

1016

FEs

Th
e

fit
ne

ss
 v

al
ue

 o
f f

7

SACC−7−1000

Fig. 3. The convergence curve of SACC on f7

0 0.5 1 1.5 2 2.5 3

x 106

106

108

1010

1012

1014

1016

1018

FEs

Th
e

fit
ne

ss
 v

al
ue

 o
f f

11

SACC−11−1000

Fig. 4. The convergence curve of SACC on f11

0 0.5 1 1.5 2 2.5 3

x 106

102

104

106

108

1010

1012

1014

FEs

Th
e

fit
ne

ss
 v

al
ue

 o
f f

12

SACC−12−1000

Fig. 5. The convergence curve of SACC on f12

1769.

[4] Z. Yang, K. Tang, and X. Yao, ”Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, pp. 2986-
2999, August 2008.

[5] Mitchell A. Potter and Kenneth A. De Jong, ”A cooperative coevolution-
ary approach to function optimization,” in Proc. International Conference
on Parallel Problem Solving from Nature, vol. 2, 1994, pp. 249-257.

[6] Z. Yang, K. Tang, and X. Yao, ”Multilevel cooperative coevolution
for large scale optimization,” in Proc. IEEE Congress on Evolutionary
Computation, 2008, pp. 1663-1670.

[7] Z. Wu and N. Huang, ”A study of the characteristics of white noise using

0 0.5 1 1.5 2 2.5 3

x 106

108

1010

1012

1014

1016

1018

FEs

Th
e

fit
ne

ss
 v

al
ue

 o
f f

13

SACC−13−1000

Fig. 6. The convergence curve of SACC on f13

0 0.5 1 1.5 2 2.5 3

x 106

106

108

1010

1012

1014

1016

1018

FEs

Th
e

fit
ne

ss
 v

al
ue

 o
f f

14

SACC−14−1000

Fig. 7. The convergence curve of SACC on f14

the empirical mode decomposition method,” in Proc. the royal society A:
mathematical physical engineering sciences, vol. 460, 2004, pp. 1597-
1611.

[8] R. Rach, J. S. Duan, ”Near-field and far-field approximations by the
Adomian and asymptotic decomposition methods,” Applied Mathematics
and Computation, vol. 217, pp. 5910-5922, 2011.

[9] S. Ivvan Valdez, Arturo Hernndez, Salvador Botello, ”A Boltzmann based
estimation of distribution algorithm,” Information Sciences, vol. 236, pp.
126-137, July 2013.

[10] L. Wang, C. Fang, ”A hybrid estimation of distribution algorithm for
solving the resource-constrained project scheduling problem,” Expert
Systems with Applications, vol. 39, pp. 2451-2460, February 2012.

[11] Chang Wook Ahn, Jinung An, Jae-Chern Yoo, ”Estimation of particle
swarm distribution algorithms: Combining the benefits of PSO and
EDAs,” Information Sciences, vol. 192, pp. 109-119, June 2012.

[12] G. Iacca, F. Neri, E. Mininno, Y. S. Ong, and M. H. Lim, ”Ockham’s
Razor in memetic computing: three stage optimal memetic exploration,”
Information Sciences, Elsevier, vol. 188, pp. 17-43, 2012.

[13] F. Caraffini, F. Neri, G. Iacca, and A. Mol, ”Parallel memetic structures,”
Information Sciences, Elsevier, vol. 227, pp. 60-82, 2013.

[14] X. Li, K. Tang, M. Omidvar, Z. Yang and K. Qin, ”Benchmark
Functions for the CEC’2013 Special Session and Competition on Large
Scale Global Optimization,” Technical Report, Evolutionary Computation
and Machine Learning Group, RMIT University, Australia, 2013.

[15] Y. P. Wang and D. L. Liu, ”A global optimization evolutionary algorithm
and its convergence based on a smooth scheme and line search,” Chinese
Journal of Computers, vol. 29, no. 4, pp. 670-675, 2006.

[16] J. Nocedal and S. J. Wright, Numerical Optimization, New York:
Springer-Verlag, 1999.

