
Large Scale Global Optimization: Experimental
Results with MOS-based Hybrid Algorithms

Antonio LaTorre∗†, Santiago Muelas∗, José-Marı́a Peña∗
∗ DATSI, Facultad de Informática, Universidad Politécnica de Madrid
† Instituto Cajal, Centro Superior de Investigaciones Cientı́ficas (CSIC)

Abstract—Continuous optimization is one of the most active
research lines in evolutionary and metaheuristic algorithms.
Through CEC 2005 to CEC 2013 competitions, many different
algorithms have been proposed to solve continuous problems.
The advances on this type of problems are of capital importance
as many real-world problems from very different domains (bi-
ology, engineering, data mining, etc.) can be formulated as the
optimization of a continuous function. In this paper we describe
the whole process of creating a competitive hybrid algorithm,
from the experimental design to the final statistical validation of
the results. We prove that a good experimental design is able
to find a combination of algorithms that outperforms any of
its composing algorithms by automatically selecting the most
appropriate heuristic for each function and search phase. We
also show that the proposed algorithm obtains statistically better
results than the reference algorithm DECC-G.

Keywords—Continuous Optimization, Large Scale Global Opti-
mization, Hybridization, MOS, MTS, MTS-LS1-Reduced, Solis and
Wets, GA, DE, GODE

I. INTRODUCTION

Continuous optimization is getting more and more attention
in the last years. Many real-world problems from different
domains (biology, data mining, engineering, etc.) can be for-
mulated as the optimization of a continuous function. These
problems have been tackled using Evolutionary Algorithms
(EAs) [1] or similar metaheuristics [2]. Selecting an appropri-
ate algorithm to solve a continuous optimization problem is not
a trivial task. Although a particular algorithm can be configured
to perform properly in a given scale of problems (considering
the number of variables as their dimensionality), the behavior
of the algorithm can degrade as this dimensionality increases,
even if the nature of the problem remains the same [3].

In this contribution, we have studied the behavior of several
well-known optimization algorithms, both population-based
and local searches, as well as two algorithms proposed for this
work, on the benchmark of problems proposed for the “Special
Session on Large Scale Global Optimization” held at the IEEE
CEC 2013 [4]. Each algorithm has been subject to a parameter
tuning to find the most suitable combination of parameters for
the proposed problems. Then, the best performing algorithms
among these have been selected for their combination within
the Multiple Offspring Sampling (MOS) framework. This
framework allows the combination of different metaheuristics
following a HRH (High-level Relay Hybrid) approach (this
nomenclature will be reviewed in Section II) in which the
number of evaluations that each algorithm can carry out is
dynamically adjusted. Analogously to the case of the individual
algorithms, the hybrid approach has also been subject to a

parameter tuning, to find the best performing hybridization
strategy for this benchmark and algorithms. Finally, the se-
lected hybrid combination has been statistically compared with
each of its composing algorithms as well as with the reference
algorithm proposed by the organizers of the Special Session.

The remainder of this paper is organized as follows. Section
II briefly reviews some relevant work conducted on similar
problems. In Section III the individual algorithms used in the
experimentation as well as the MOS framework are briefly
introduced, whereas section IV presents the experimental sce-
nario under study, describing both the considered benchmark
and the execution environment used in our tests. In Section
V, the results obtained are presented and discussed, listing the
main conclusions derived from this study. Finally, Section VI
contains the concluding remarks obtained from this work.

II. PRELIMINARIES

The HRH terminology was introduced in [5], one of the
first attempts to define a complete taxonomy of hybrid meta-
heuristics. This taxonomy is a combination of a hierarchical
and a flat classification structured into two levels. The first
level defines a hierarchical classification in order to reduce the
total number of classes, whereas the second level proposes a
flat classification, in which the classes that define an algorithm
may be chosen in an arbitrary order. From this taxonomy,
the following four basic hybridization strategies can be de-
rived: (a) LRH (Low-level relay hybrid): One metaheuristic
is embedded into a single-solution metaheuristic. (b) HRH
(High-level relay hybrid): Two metaheuristics are executed in
sequence. (c) LTH (Low-level teamwork hybrid): One meta-
heuristic is embedded into a population-based metaheuristic.
(d) HTH (High-level teamwork hybrid): Two metaheuristics
are executed in parallel. For this work, we have focused on
the HRH group, the one the proposed algorithm belongs to.

In the last years there has been an intense research in HRH
and, in particular, in memetic models, combining different
types of metaheuristics. A good example of this is that, in
most of the sessions that have focused on large scale global
optimization recently (CEC 2008, ISDA 2009, CEC 2010,
CEC 2012; and also a special issue in the “Soft Computing
- A Fusion of Foundations, Methodologies and Applications”
journal) most of the best performing algorithms were memetic
algorithms [2], [3], [6]–[8]. For this reason, a HRH algorithm
combining algorithms of different nature has been studied in
this paper.

Finally, for an updated survey on memetic algorithms in
the field of large scale global optimization, the readers are
referred to [9], [10].



III. PROPOSED APPROACH

This section describes, first, the individual algorithms that
have been considered in our experimentation and, then, the
hybridization approach used in our study.

A. Individual Algorithms

1) Genetic Algorithm: A Genetic Algorithm (GA) has been
used in our experiments. In particular, we have used the
BLX − α crossover, with alpha = 0.5, and the Gaussian
mutation [11]. Different population sizes and operator proba-
bilities were tested, as described in Section IV.

2) Differential Evolution: A Differential Evolution (DE)
algorithm [12] with Exponential Crossover was used in the
experimentation. In the aforementioned special sessions and
competitions, there has always been a DE (or variant) among
the best performing algorithms. As for the GA, different
population sizes and F and CR constants were used.

3) Self-Adaptive Differential Evolution: A Self-Adaptive
Differential Evolution algorithm [13] has also been used. In
this case, the same parameters as for the DE have been
considered, as well as two new parameters, τF and τCR, which
determine the probability to adjust the F and CR parameters,
respectively.

4) Generalized Opposition-Based Differential Evolution:
The fourth algorithm used in our experiments was the Gener-
alized Opposition-Based Differential Evolution (GODE) algo-
rithm [14]. This algorithm uses the Opposition-Based Learning
concept which basically means that, with some probability,
the algorithm tries not only to evaluate the solutions in the
current population, but also the opposite ones. Apart from the
common DE parameters, this algorithm has been tuned for the
probability of applying the opposite search.

5) Self-Adaptive Generalized Opposition-Based Differen-
tial Evolution: This algorithm, proposed specifically for this
experimentation, combines the principles of the two previously
presented algorithms to try to exploit the benefits of the self-
adaptation of the DE control parameters and the opposite
search. Consequently, the parameter tuning affects the param-
eters of both algorithms.

6) Solis and Wets Algorithm: The well-known Solis and
Wets algorithm [15] has also been included in our study. This
direct search method performs a randomized local minimiza-
tion of a candidate solution with an adaptive step size. It has
several parameters that rule the way the candidate solution is
moved and how the step size is adapted. All these parameters
will be subject to parameter tuning, as for the rest of the
algorithms.

7) MTS-LS1 Algorithm: MTS-LS1 is the first of the three
local searches combined by the MTS algorithm [2]. It has
been successfully used in the past to search large scale global
optimization problems. In the same line than the Solis and
Wets algorithm, several parameters control the movements of
the local search, and all of them will be adjusted.

8) MTS-LS1-Reduced Algorithm: MTS-LS1-Reduced is a
new local search algorithm specifically proposed for this study.
It is a modification to the MTS-LS1 algorithm that tries to

optimize the number of evaluations consumed. The MTS-LS1-
Reduced algorithm conducts the same operations as the MTS-
LS1 local search but, instead of exploring all the dimensions,
it spends most of its efforts in the most promising dimensions.
At each step, the MTS-LS1-Reduced algorithm stores, for each
dimension, the score improvements obtained when exploring
that dimension, i.e., max(0, scoreold − scorenew) (for mini-
mization problems). This information is used at the beginning
of the next step to determine the dimensions to explore. MTS-
LS1-Reduced uses two parameters for conducting this task:
improvePerc, a percentage value used to select the dimensions
that represent the improvePerc percent of the stored score
improvements and minPerc, the percentage of other dimensions
(selected randomly) that are going to be explored. By means of
the minPerc parameter, MTS-LS1-Reduced can explore other
dimensions to detect potentially better dimensions for the next
steps and avoids falling into an excessive exploitative behavior.

B. Multiple Offspring Sampling

Multiple Offspring Sampling (MOS) is a framework for
the development of Dynamic Hybrid Evolutionary Algorithms
[16]. It has been successfully applied to combine different
types of algorithms on well-known continuous optimization
benchmarks [3], [17].

The MOS framework allows the seamless combination of
several algorithms (both population-based and local searches)
in a dynamic way. This means that the participation of each
algorithm (the number of new candidate solutions that each
algorithm is allowed to create) is adjusted dynamically accord-
ing to some quality measure, such as, for example, the average
fitness increment of the newly created individuals, that was the
measure used in this proposal. Moreover, the proposed hybrid
algorithm has followed a HRH approach, which means that
algorithms are used in sequence, one after the other, each of
them reusing the output population of the previous algorithm.
This approach fits better when there are non-population-based
techniques, such as local searches, as techniques are not
constrained to produce a % of the common population, which
is the case of the HTH approach. The overall search process
is thus divided into different steps (blocks of a fixed number
of Fitness Evaluations (FEs)) and the participation of each
algorithm for step i+1 is adjusted according to its performance
on the previous step i. Due to the limited space in this paper,
we refer the reader to a more detailed description of the MOS
framework that can be found in [16].

IV. EXPERIMENTAL SETUP AND PARAMETER TUNING

For the experimentation, the benchmark from the “Special
Session on Large Scale Global Optimization” held at the IEEE
CEC 2013 has been considered. This benchmark defines 15
continuous optimization functions with different degrees of
separability: from completely separable functions to fully non-
separable functions. Detailed information on the benchmark
can be found in [4].

In order to find the most suitable hybrid algorithm for the
proposed benchmark, we have conducted a large experimen-
tation to, first, find the most suitable individual algorithms
among those described in Section III and, second, find the
best strategy to combine them.



Table I contains the parameters and the tested values for all
the individual techniques. In particular, we have tested several
values for the following parameters, which can dramatically
influence on the performance of the algorithm. For the DE
algorithm, we have explored several population sizes (pop-
Size), F and CR constants. The same parameters have been
considered for the Self-Adaptive DE algorithm, the GODE
algorithm and the Self-Adaptive GODE algorithm. However,
each of them has also some specific parameters that were
subject to adjustment. For the GODE algorithm, the probability
to apply the Opposition-Based search (godeProb) has been
tuned. Regarding the Self-Adaptive DE, we considered the
probabilities to conduct the adjustment on the F and CR
constants (τF and τCR). Finally, for the Self-Adaptive GODE
algorithm, both parameters from Self-Adaptive DE and GODE
algorithms have been taken into account. Regarding the GA,
we have adjusted the population size (popSize) and the proba-
bilities for crossover and mutation (pcx and pm, respectively).
For the Solis and Wets algorithm, we have focused on the
maximum number of successful modifications of the solution
(maxSuccess) before increasing the adjustment ratio (delta), the
maximum number of unsuccessful modifications (maxFailed)
and the increasing and decreasing factors (adjustSuccess and
adjustFailed, respectively). On the other hand, regarding the
MTS-LS1 algorithm, we have considered the resetting factors
for the SR parameter after one iteration without improvements
(adjustFailed) or after reaching the minimum value for SR
(adjustMin) and the adjustment ratios in both directions of the
search space (moveLeft and moveRight, respectively). Finally,
the MTS-LS1-Reduced algorithm shares the same parameters
of MTS-LS1 plus the improvements percentage to focus the
search (improvePerc) and the minimum percentage for the
remaining dimensions to be explored (minPerc). The values
tested in this experimentation have been selected according to
previous studies [6], [8], [18] and a preliminary experimenta-
tion on this benchmark.

For the experimentation, a fractional design based on
orthogonal matrices according to the Taguchi method [19] has
been carried out. In this method, the concept of signal to noise
ratio (SN ratio) is introduced for measuring the sensitivity
of the quality characteristic being investigated in a controlled
manner to those external influencing factors (noise factors) not
under control. The aim of the experiment is to determine the
highest possible SN ratio for the results since a high value
of the SN ratio implies that the signal is much higher than
the random effects of the noise factors. From the quality
point of view, there are three possible categories of quality
characteristics: (i) smaller is better, (ii) nominal is best and
(iii) bigger is better. The obtained results fall in the “smaller
is better category” since the objective is to reduce the error
between the best solution found and the global optimum. For
this category, the SN ratio estimate is defined in Eq. 1, where
n denotes the total number of instances and y1, y2, . . . , yn the
target values (the error to the best solution in this case).

SN = −10 log

(
1

n

n∑
t=1

y2t

)
(1)

This method allows the execution of a limited number
of configurations and still reports significant information on

the best combination of parameter values. In particular, a
maximum of 27 different configurations were tested for each
algorithm on the whole set of functions (the exact number will
depend on the number of parameters to be tuned). The values
for the parameters of the best configuration appear in bold in
Table I.

TABLE I. PARAMETERS VALUES FOR INDIVIDUAL ALGORITHMS

Parameter Values of DE
popSize 25, 50, 100
F 0.1, 0.5, 0.9
CR 0.1, 0.5, 0.9

Parameter Values of Self-Adaptive DE
popSize 25, 50, 100
τF 0.05, 0.1, 0.2
τCR 0.05, 0.1, 0.2

Parameter Values of GODE
popSize 25, 50, 100
F 0.1, 0.5, 0.9
CR 0.1, 0.5, 0.9
godeProb 0.2, 0.4, 0.8

Parameter Values of Self-Adaptive GODE
popSize 25, 50, 100
F 0.1, 0.5, 0.9
CR 0.1, 0.5, 0.9
τF 0.05, 0.1, 0.2
τCR 0.05, 0.1, 0.2
godeProb 0.2, 0.4, 0.8

Parameter Values of GA
popSize 100, 200, 400
pcx 0.01, 0.05, 0.1
pm 0.1, 0.5, 0.9

Parameter Values of Solis and Wets
maxSuccess 2, 5, 10
maxFailed 1, 3, 5
adjustSuccess 2, 4, 6
adjustFailed 0.25, 0.5, 0.75
delta 0.6, 1.2, 2.4

Parameter Values of MTS-LS1
(initial) SR 50% of the search space
(min) SR 1e− 14
adjustFailed 2, 3, 5
adjustMin 2.5, 5, 10
moveLeft 0.25, 0.5, 1
moveRight 0.25, 0.5, 1

Parameter Values of MTS-LS1-Reduced
(initial) SR 50% of the search space
(min) SR 1e− 14
adjustFailed 2, 3, 5
adjustMin 2.5, 5, 10
moveLeft 0.25, 0.5, 1
moveRight 0.25, 0.5, 1
improvePerc 0.7, 0.8, 0.9
minPerc 0.025, 0.05, 0.1

Figure 1 represents an example on how the Taguchi method
works. In particular, it shows the main effects plot for the
SN ratio results obtained with the GA. A main effect plot is
a plot of the mean response values (the SN ratio for these
graphs) at each level of a design parameter. This plot can
be used to compare the strength of the effects of the values
of the parameter. From these results it can be observed that
the most important parameter for the GA is the crossover
probability. Furthermore, there are also clear differences on the



400200100

-291

-294

-297

-300

-303
0.90.50.1

0.100.050.01

-291

-294

-297

-300

-303

population size

M
e

a
n

 o
f 

S
N

 r
a

ti
o

s

crossover probability

mutation probability

Main Effects Plot for SN ratios
Data Means

Signal-to-noise: Smaller is better

Fig. 1. Main Effects Plot for the SN ratios for the GA. As it can be
observed, the parameter with more influence on the performance of the GA is
the crossover probability (higher value is better). Furthermore, the other two
parameters also show a clear performance bias to large population sizes and
low mutation probability, respectively.

performance of the algorithm regarding the population size and
the mutation probability. This plot reveals which combination
of values for the parameters of the GA should be selected for
further experimentation, as shown in Table I.

In order to compare the best configurations of all the
individual algorithms across all the functions, the average rank
according to the Friedman test [20] was computed for each
algorithm. The nWins procedure [21] was also applied to the
average error per function to perform a global comparative
analysis. This procedure carries out a pair-wise statistical
comparison over the distribution values of all the available al-
gorithms by means of the Wilcoxon signed-rank test [22] with
a confidence level of 0.05. With these results, the following
analysis is carried out: if one algorithm is significantly better
than other (pvalue < 0.05), the winning algorithm is granted
+1 wins and the losing algorithm is penalized with -1 wins.
The sum of all the “wins” constitutes the nWins value.

TABLE II. AVERAGE RANKING

Ranking nWins
MTS-LS1-Reduced 2.63 7
MTS-LS1 3.70 3
Solis and Wets 4.13 2
GA 4.47 1
Self-Adaptive DE 4.20 0
Self-Adaptive GODE 4.47 -1
GODE 6.13 -6
DE 6.27 -6

Table II presents the results of both rankings for each of
the eight considered algorithms. On this table, we have marked
in bold the algorithms that were selected for hybridization.
According to these data, it is clear that the best performing
individual algorithm is the MTS-LS1-Reduced, both in rank
and nWins. The second best algorithm is the plain MTS-LS1
but, as it is a simplified version of the previous algorithm, it
was discarded for its combination. The third algorithm is the
Solis and Wets algorithm, whereas for the fourth place there
are differences between the rank (Self-Adaptive DE) and the
number of wins (GA). As the difference in the rank is very

low and the GA has one more win than the Self-Adaptive DE,
we preferred to select the GA for its combination. Regarding
the remaining algorithms, as all of them are population-based
algorithms and the required population sizes by each of them
are too different to that of the GA, we decided to just
consider these three algorithms for their hybridization: MTS-
LS1-Reduced, Solis and Wets and GA.

TABLE III. PARAMETERS VALUES FOR THE HYBRID ALGORITHM

minPart 0%, 1%, 5%, 10%, 20%
stepFactor 3000, 9000, 18000, 27000, 36000

Analogously, Table III contains the parameters and the
tested values for the hybrid algorithm combining the best
configurations of the GA, the MTS-LS1-Reduced and the
Solis and Wets algorithms. Concretely, we have studied two
parameters: the minimum participation ratio for a technique
(minPart) and the step factor (stepFactor). We have conducted
the same fractional design as with individual techniques, and
the final selected parameters are shown in bold.

In Section V we present the results of the MOS-based
hybrid algorithm combining the three selected algorithms with
the configuration reported in Tables I and III. In order to make
the results comparable with other algorithms, we have strictly
followed the conditions imposed by the benchmark. Therefore,
for each combination, 25 independent executions were carried
out. The stopping criterion, as defined in the benchmark, was a
fixed number of fitness evaluations (3M FEs). The performance
criterion (i.e. the response variable) is the distance (error)
between the best individual found and the global optimum in
terms of fitness value.

V. RESULTS AND DISCUSSION

In this section we present and discuss the results of the
proposed algorithm on the benchmark used for this special
session and competition. This analysis is divided into four
parts. First, we show the convergence graphs for several
functions in Section V-A. Second, we analyze the behavior of
the MOS-based algorithm on the different groups of functions
in Section V-B. Third, we statistically compare the proposed
hybrid approach with its composing algorithms in Section V-C.
Finally, Section V-D presents a statistical comparison of our
results with those of the reference algorithm.

A. Convergence Analysis

In this section we provide the convergence graphs of the
MOS-based algorithm on the six selected functions by the
organizers of the special session: F2, F7, F11, F12, F13 and
F14. For each function, a single convergence curve has been
plotted using the average results of 25 independent executions.
Figures 2-7 show the convergence graphs for functions F2-F14,
respectively. The following characteristics can be observed:

• In most of the functions (especially for F2, F7, F12 and
F13) we can see several search phases in which the slope
of the convergence curve changes. This corresponds with
an exchange on the current prevalent algorithm, as it can
be clearly seen in Figures 8 and 9, that represent the
participation plot for F12 and F13, respectively, where
each of the combined algorithms dominates at a different



0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

102

103

104

105

106

Score

Fig. 2. Average convergence graph of 25 runs of function F2

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

104

105

106

107

108

109

1010

1011

1012

1013

1014

1015

1016

Score

Fig. 3. Average convergence graph of 25 runs of function F7

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

107

108

109

1010

1011

1012

1013

1014

1015

1016

1017

1018

Score

Fig. 4. Average convergence graph of 25 runs of function F11

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

102

103

104

105

106

107

108

109

1010

1011

1012

1013

Score

Fig. 5. Average convergence graph of 25 runs of function F12

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

106

107

108

109

1010

1011

1012

1013

1014

1015

1016

1017

1018

Score

Fig. 6. Average convergence graph of 25 runs of function F13

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

107

108

109

1010

1011

1012

1013

1014

1015

1016

1017

1018

Score

Fig. 7. Average convergence graph of 25 runs of function F14



0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

GA
MTS-LS1-Reduced
Solis-Wets

Fig. 8. Average participation plot of 25 runs of function F12

0.0 0.5 1.0 1.5 2.0 2.5 3.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0

GA
MTS-LS1-Reduced
Solis-Wets

Fig. 9. Average participation plot of 25 runs of function F13

stage of the search process. Similar plots can be obtained
for the remaining functions.

• The hybrid algorithm does not seem to completely con-
verge in none of the analyzed functions, as it continues to
improve the best solution until the end of its execution.

B. Results of the MOS-based Algorithm

Table IV contains the results of the MOS-based algorithm
on the considered benchmark. From these results we can make
the following observations:

• The algorithm is able to solve one function to the maxi-
mum precision (F1) and another one to a very low error
value (F3).

• For all the functions the differences between the mean and
the median are very low, which implies that our algorithm
is rather robust.

C. Comparison with Composing Algorithms

Table V contains the statistical comparison of the MOS-
based hybrid algorithm with each of its composing algorithms.

For this comparison, we have used the well-known Wilcoxon
signed-rank test. Additionally, and due to the limited size of
the sample (the average error of just 15 functions), we have
also included the standardized p− value as described in [23].
The objective of this correction is to standardize the arbitrary
p− values for a sample size of 100 individuals and to correct
the obtained p − values according to the actual sample size
(Eq. 2, where N is the sample size).

pstan = min

(
1

2
, p ·
√
N

10

)
(2)

This correction tries to compensate the bias introduced by
the sample size, making it easier to find significant differences
when the sample size is smaller than 100 individuals and,
consequently, making it harder when the sample size is over
100 individuals.

According to the Wilcoxon p − value, the MOS-based
hybrid algorithm is statistically better than the GA and the
Solis and Wets algorithms. It is also quite close to the 0.05
threshold when compared with the MTS-LS1-Reduced. If we
take into account the standardized p − values, the hybrid
algorithm is statistically better than any of its composing
algorithms. We also report the overall p− values, taking into
account the Family-Wise Error (FWER) [24]. Considering the
raw Wilcoxon p − value, the MOS-based algorithm is close
to be statistically better than its three composing algorithms
globally, whereas the standardized p−value reports significant
results in this multiple comparison.

TABLE V. STATISTICAL VALIDATION (MOS IS THE CONTROL
ALGORITHM)

Wilcoxon Standardized
MOS vs. p-value p-value

MTS-LS1-Reduced 6.03E − 02 2.44E − 02
√

GA 9.03E − 03
√

3.50E − 03
√

Solis and Wets 3.05E − 05
√

1.18E − 05
√

Wilcoxon p-value with FWER: MOS vs.
MTS-LS1-Reduced, GA, Solis and Wets 9.06E − 02 3.51E − 02

√

√
means that there are statistical differences with significance level α = 0.05

D. Comparison with the Reference Algorithm

Table VI compares the results obtained by the MOS-based
hybrid algorithm with those of the reference algorithm: DECC-
GG [25]. In this table, the best results for each function appear
with a light gray background to ease their further analysis. By
comparing the results of both algorithms, we can observe the
following:

• The MOS-based algorithm obtains the best performance
in 14 out of 15 functions, whereas DECC-GG obtains the
best results only in 1 function.

• In F6, in which DECC-GG obtains better results, the
difference with MOS is of just one order of magnitude. On
the other hand, MOS is able to reduce the error in several
orders of magnitude (up to four) in several functions.

• The Wilcoxon signed-rank test reports a p − value of
3.05E− 04 (1.18E− 04 for the standardized p− value),
which means that the results obtained by the MOS-based
algorithm are statistically better than those of DECC-G.



TABLE IV. EXPERIMENTAL RESULTS WITH MOS

F1 F2 F3 F4 F5 F6 F7 F8

FEs = 1.2e+05

Best 1.13E+07 2.30E+03 6.31E+00 2.16E+10 5.25E+06 2.79E+05 1.46E+08 1.67E+14
Median 2.99E+07 2.59E+03 7.77E+00 3.58E+10 6.80E+06 3.11E+05 3.28E+08 3.72E+14
Worst 3.95E+07 3.12E+03 9.24E+00 4.41E+10 8.57E+06 3.91E+05 6.30E+08 5.49E+14
Mean 2.71E+07 2.64E+03 7.85E+00 3.47E+10 6.96E+06 3.11E+05 3.46E+08 3.72E+14
Std 7.97E+06 1.88E+02 6.53E-01 6.44E+09 9.09E+05 2.26E+04 1.39E+08 9.43E+13

FEs = 6.0e+05

Best 8.62E-02 1.63E+03 1.25E-11 1.39E+09 5.25E+06 1.82E+03 2.44E+06 4.13E+13
Median 1.38E+00 1.77E+03 4.09E-11 2.46E+09 6.79E+06 1.39E+05 8.07E+06 8.56E+13
Worst 1.80E+01 1.96E+03 1.22E-09 3.64E+09 8.56E+06 2.31E+05 1.53E+07 1.24E+14
Mean 3.48E+00 1.78E+03 1.33E-10 2.56E+09 6.95E+06 1.48E+05 8.19E+06 8.41E+13
Std 4.67E+00 8.24E+01 2.61E-10 5.14E+08 9.04E+05 6.54E+04 3.43E+06 2.23E+13

FEs = 3.0e+06

Best 0.00e+00 7.40e+02 8.20e-13 1.10e+08 5.25e+06 1.95e+01 3.49e+03 3.26e+12
Median 0.00e+00 8.36e+02 9.10e-13 1.56e+08 6.79e+06 1.39e+05 1.62e+04 8.08e+12
Worst 0.00e+00 9.28e+02 1.00e-12 5.22e+08 8.56e+06 2.31e+05 3.73e+04 1.32e+13
Mean 0.00e+00 8.32e+02 9.17e-13 1.74e+08 6.94e+06 1.48e+05 1.62e+04 8.00e+12
Std 0.00e+00 4.48e+01 5.12e-14 7.87e+07 8.85e+05 6.43e+04 9.10e+03 3.07e+12

F9 F10 F11 F12 F13 F14 F15

FEs = 1.2e+05

Best 3.15E+08 7.46E+05 1.99E+09 7.27E+03 5.05E+09 1.88E+10 1.21E+07
Median 4.32E+08 1.24E+06 2.78E+09 1.02E+04 7.34E+09 4.46E+10 1.43E+07
Worst 6.01E+08 1.27E+06 7.00E+09 1.78E+04 1.38E+10 7.89E+10 1.83E+07
Mean 4.29E+08 1.16E+06 3.13E+09 1.16E+04 8.37E+09 4.61E+10 1.45E+07
Std 6.24E+07 1.70E+05 1.07E+09 3.61E+03 2.51E+09 1.71E+10 1.66E+06

FEs = 6.0e+05

Best 2.64E+08 1.39E+03 4.94E+08 1.57E+03 3.32E+08 7.91E+07 5.32E+06
Median 3.89E+08 1.18E+06 7.79E+08 2.02E+03 7.64E+08 1.24E+08 6.25E+06
Worst 5.42E+08 1.23E+06 1.20E+09 5.54E+03 1.58E+09 1.70E+09 7.55E+06
Mean 3.84E+08 9.03E+05 8.05E+08 2.20E+03 8.10E+08 2.03E+08 6.24E+06
Std 6.40E+07 5.18E+05 1.60E+08 7.84E+02 2.62E+08 3.17E+08 5.97E+05

FEs = 3.0e+06

Best 2.63e+08 5.92e+02 2.06e+07 2.22e-01 1.52e+06 1.54e+07 2.03e+06
Median 3.87e+08 1.18e+06 4.48e+07 2.46e+02 3.30e+06 2.42e+07 2.38e+06
Worst 5.42e+08 1.23e+06 9.50e+07 1.17e+03 6.16e+06 4.46e+07 2.88e+06
Mean 3.83e+08 9.02e+05 5.22e+07 2.47e+02 3.40e+06 2.56e+07 2.35e+06
Std 6.29e+07 5.07e+05 2.05e+07 2.54e+02 1.06e+06 7.94e+06 1.94e+05

TABLE VI. COMPARISON WITH REFERENCE ALGORITHM, FES = 3.0E6

F1 F2 F3 F4 F5 F6 F7 F8

DECC-CG

Best 1.57e-13 9.90e+02 2.63e-10 7.58e+09 7.28e+14 6.96e-08 1.96e+08 1.43e+14
Median 2.00e-13 1.03e+03 2.85e-10 2.12e+10 7.28e+14 6.08e+04 4.27e+08 3.88e+14
Worst 2.45e-13 1.07e+03 3.16e-10 6.99e+10 7.28e+14 1.10e+05 1.78e+09 7.75e+14
Mean 2.03e-13 1.03e+03 2.87e-10 2.60e+10 7.28e+14 4.85e+04 6.07e+08 4.26e+14
Std 1.78e-14 2.26e+01 1.38e-11 1.47e+10 1.51e+05 3.98e+04 4.09e+08 1.53e+14

MOS

Best 0.00e+00 7.40e+02 8.20e-13 1.10e+08 5.25e+06 1.95e+01 3.49e+03 3.26e+12
Median 0.00e+00 8.36e+02 9.10e-13 1.56e+08 6.79e+06 1.39e+05 1.62e+04 8.08e+12
Worst 0.00e+00 9.28e+02 1.00e-12 5.22e+08 8.56e+06 2.31e+05 3.73e+04 1.32e+13
Mean 0.00e+00 8.32e+02 9.17e-13 1.74e+08 6.94e+06 1.48e+05 1.62e+04 8.00e+12
Std 0.00e+00 4.48e+01 5.12e-14 7.87e+07 8.85e+05 6.43e+04 9.10e+03 3.07e+12

F9 F10 F11 F12 F13 F14 F15

DECC-CG

Best 2.20e+08 9.29e+04 4.68e+10 9.80e+02 2.09e+10 1.91e+11 4.63e+07
Median 4.17e+08 1.19e+07 1.60e+11 1.03e+03 3.36e+10 6.27e+11 6.01e+07
Worst 6.55e+08 1.73e+07 7.16e+11 1.20e+03 4.64e+10 1.04e+12 7.15e+07
Mean 4.27e+08 1.10e+07 2.46e+11 1.04e+03 3.42e+10 6.08e+11 6.05e+07
Std 9.89e+07 4.00e+06 2.03e+11 5.76e+01 6.41e+09 2.06e+11 6.45e+06

MOS

Best 2.63e+08 5.92e+02 2.06e+07 2.22e-01 1.52e+06 1.54e+07 2.03e+06
Median 3.87e+08 1.18e+06 4.48e+07 2.46e+02 3.30e+06 2.42e+07 2.38e+06
Worst 5.42e+08 1.23e+06 9.50e+07 1.17e+03 6.16e+06 4.46e+07 2.88e+06
Mean 3.83e+08 9.02e+05 5.22e+07 2.47e+02 3.40e+06 2.56e+07 2.35e+06
Std 6.29e+07 5.07e+05 2.05e+07 2.54e+02 1.06e+06 7.94e+06 1.94e+05



VI. CONCLUSIONS

In this paper we have tested several well-known algorithms,
as well as a new variant of the first of the local searches
of the MTS algorithm, which we have named MTS-LS1-
Reduced, and a new DE variant combining the principles of
the self-adaptation of the parameters of DE and the opposition
search on a set of 15 large scale continuous functions with
an experimental design defined with the Taguchi method. This
experimentation allowed us to find the best configuration of
parameters for each of the individual algorithms and compare
them with statistical tests to select which of them should be
combined. Then, a similar procedure has been conducted to
create the hybrid algorithm combining a Genetic Algorithm,
the Solis and Wets algorithm and the MTS-LS1-Reduced,
within the MOS framework. The best hybrid configuration was
compared with its composing algorithms as well as with the
well-known DECC-GG algorithm. This experimentation shows
that our proposal obtains significantly better results than any
of its composing algorithms and also than the reference algo-
rithm. In a future work, the parameters study could be extended
as we conjecture that there is still room for improvement on
the performance of the hybrid algorithm. For example, the GA
may work better with a larger population size. Furthermore,
a mechanism to combine several population-based algorithms
with different population sizes needs will also be studied, as
preliminary efforts do not yield satisfactory results.

ACKNOWLEDGMENTS

This work was financed by the Spanish Ministry of Science
(TIN2010-21289-C02-02) and supported by the Cajal Blue
Brain Project. The authors thankfully acknowledge the com-
puter resources, technical expertise and assistance provided by
the Centro de Supercomputación y Visualización de Madrid
(CeSViMa) and the Spanish Supercomputing Network. A.
LaTorre gratefully acknowledges the support of the Spanish
Ministry of Science and Innovation (MICINN) for its funding
throughout the Juan de la Cierva program.

REFERENCES

[1] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, Dec. 1995.

[2] L. Y. Tseng and C. Chen, “Multiple Trajectory Search for Large
Scale Global Optimization,” in Proceedings of the 10th IEEE Congress
on Evolutionary Computation, CEC 2008 (IEEE World Congress on
Computational Intelligence). IEEE Press, Jun. 2008, pp. 3052–3059.

[3] A. LaTorre, S. Muelas, and J. M. Peña, “A MOS-based dynamic
memetic differential evolution algorithm for continuous optimization:
a scalability test,” Soft Computing-A Fusion of Foundations, vol. 15,
no. 11, pp. 2187–2199, 2011.

[4] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark
Functions for the CEC’2013 Special Session and Competition on Large-
Scale Global Optimization,” Tech. Rep., 2013.

[5] E.-G. Talbi, “A Taxonomy of Hybrid Metaheuristics,” Journal of
Heuristics, vol. 8, no. 5, pp. 541–564, Sep. 2002.

[6] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic
Algorithm Based on Local Search Chains for Large Scale Continuous
Global Optimization,” Proceedings of the 2010 IEEE Congress on
Evolutionary Computation, CEC 2010, pp. 1–8, 2010.

[7] M. Lozano, D. Molina, and F. Herrera, “Editorial Scalability of
Evolutionary Algorithms and Other Metaheuristics for Large-Scale
Continuous Optimization Problems,” Soft Computing - A Fusion of
Foundations, Methodologies and Applications, vol. 15, pp. 2085–2087,
2011.

[8] A. LaTorre, S. Muelas, and J. M. Peña, “Multiple Offspring Sampling
in Large Scale Global Optimization,” in Proceedings of the 2012 IEEE
Congress on Evolutionary Computation, Brisbane, Australia, Jun. 2012,
pp. 964–971.

[9] Y. Chen, Y. S. Ong, M. H. Lim, and K. C. Tan, “A Multi-Facet
Survey on Memetic Computation,” IEEE Transactions on Evolutionary
Computation, vol. 15, no. 5, pp. 591–607, 2011.

[10] F. Neri, C. Cotta, and P. Moscato, Eds., Handbook of Memetic Algo-
rithms, ser. Studies in Computational Intelligence. Springer, 2012, vol.
379.

[11] F. Herrera and M. Lozano, “Gradual Distributed Real-Coded Genetic
Algorithms,” IEEE Transactions on Evolutionary Computation, vol. 4,
no. 1, pp. 43–63, 2000.

[12] R. Storn and K. V. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
Global Optimization, vol. 11, no. 4, pp. 341–359, 1997.

[13] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
Adapting Control Parameters in Differential Evolution: a Comparative
Study on Numerical Benchmark Problems,” IEEE Transactions on
Evolutionary Computation, vol. 10, no. 6, pp. 646–657, 2006.

[14] H. Wang, Z. Wu, S. Rahnamayan, and L. Kang, “A Scalability Test
for Accelerated DE Using Generalized Opposition-Based Learning,” in
Proceedings of the 9th International Conference on Intelligent Systems
Design and Applications, ISDA 2009, pp. 1090–1095.

[15] F. J. Solis and R. J. B. Wets, “Minimization by Random Search
Techniques,” Mathematics of Operations Research, vol. 6, no. 1, pp.
19–30, Feb. 1981.

[16] A. LaTorre, “A Framework for Hybrid Dynamic Evolutionary Al-
gorithms: Multiple Offspring Sampling (MOS),” Ph.D. dissertation,
Universidad Politécnica de Madrid, Nov. 2009.

[17] A. LaTorre, S. Muelas, and J. M. Peña, “Benchmarking a MOS-
based algorithm on the BBOB-2010 Noiseless Function Testbed,” in
12th Genetic and Evolutionary Computation Conference, GECCO 2010
(Companion). ACM, 2010, pp. 1649–1656.

[18] A. LaTorre, J. M. Peña, S. Muelas, and M. Zaforas, “Hybrid Evolution-
ary Algorithms for Large Scale Continuous Problems,” in 11th Genetic
and Evolutionary Computation Conference, GECCO 2009. ACM
Press, 2009, pp. 1863–1865.

[19] G. Taguchi, S. Chowdhury, and Y. Wu, Taguchi’s Quality Engineering
Handbook. John Wiley.

[20] M. Friedman, “The Use of Ranks to Avoid the Assumption of Normality
Implicit in the Analysis of Variance,” Journal of the American Statistical
Association, vol. 32, no. 200, pp. 675–701, 1937.

[21] S. Muelas, J. M. Peña, V. Robles, A. LaTorre, and P. de Miguel, “Ma-
chine Learning Methods to Analyze Migration Parameters in Parallel
Genetic Algorithms,” in Proceedings of the International Workshop
on Hybrid Artificial Intelligence Systems 2007, E. Corchado, J. M.
Corchado, and A. Abraham, Eds. Salamanca, Spain: Springer Verlag,
Nov. 2007, pp. 199–206.

[22] F. Wilcoxon, “Individual Comparisons by Ranking Methods,” Biomet-
rics Bulletin, vol. 1, no. 6, pp. 80–83, 1945.

[23] I. J. Good, “The Bayes/Non-Bayes Compromise: a Brief Review,”
Journal of the American Statistical Association, vol. 87, no. 419, pp.
597–606, 1992.

[24] S. Garcı́a, D. Molina, M. Lozano, and F. Herrera, “A Study on the Use
of Non-Parametric Tests for Analyzing the Evolutionary Algorithms’
Behaviour: A Case Study on the CEC’2005 Special Session on Real
Parameter Optimization,” Journal of Heuristics, vol. 15, no. 6, pp. 617–
644, Dec. 2009.

[25] Z. Yang, K. Tang, and X. Yao, “Large Scale Evolutionary Optimization
Using Cooperative Coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.


