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Optimization Methods:  
Point and Population Based
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Programming

Nonlinear Programming

Math. optimization Evolutionary optimization

Point-Based Population-Based

Other Meta-heuristics 
based methods



Point-Based Optimization Methods
1. Start with one point, x
2. Update using a transition rule (T)

a. y = T(x)
3. Compare y with x, if better replace: x ç y
4. Move to Start, until termination criterion is met
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• Not much memory
• Local search
• No parallel processing
• Easier to do theory

“One hammer for multiple nails” 



Population-Based Optimization Methods
1. Start with a population of points, P(x)
2. Update using a transition rule (T)

a. Q(y) = T(P(x))
3. Compare Q(y) with P(x) and replace: P(x)

ç (P(x),Q(y))
4. Move to Start, until termination criterion is met
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• Requires memory
• Global search
• Parallel processing
• Not easy to do theory

“Different hammers for multiple nails” 



In the context of optimization
Wolpert and McCardy (1997)
Algorithms A1 and A2
All possible problems F
Performances P1 and P2 using A1 and A2 for a 
fixed number of evaluations
P1 = P2

NFL breaks down for a narrow class of 
problems or algorithms
Research effort: Find the best algorithm for a 
class of problems

Unimodal, multi-modal, quadratic etc.

No Free Lunch (NFL) Theorem

IEEE DLP Lecture (RMIT, 
Melbourne)



Current Status, Facts, and Myths
• Point-based methods:

• Fast, local, theory-based, successful in deterministic 
problems, hard to modify and suit a problem

• Population-based methods:
• “Slow”, global, parallel, flexible, great potential for complex 

problems, easy to customize
• NFL theorem suggests a single algorithm cannot 

perform well on all problems
• Practical problems are complex in many ways
• Customization is the key 

• Initial knowledge and/or Derived knowledge
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Population-Based Algorithm Generator

At iteration t, Population P(t) of size N
1. Select the best parent and µ-1 other parents 

randomly
2. Generate λ offspring using a creation scheme 
3. Choose r parents at random from P(t)
4. Form a combination of r+µ parents and λ

offspring, choose best r solutions and replace 
the chosen r parents in Step 3 to update P(t)

Requires a parametric study with µ, λ, r and N
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(Deb, 2005; Soft Computing)



Population-based Algorithm Generator: 
An Illustration
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(Deb, 2005; Soft Computing)
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Evolutionary Algorithm as Population-
Based Optimization Method

begin 
Solution Representation  
t := 0;  // generation counter
Initialize P(t);  
Evaluate P(t);  
while not Terminate  
do

P'(t)  := Selection (P(t));
P''(t) := Variation (P'(t));
Evaluate P''(t);
P(t+1):= Survivor (P(t),P''(t));
t := t+1;

od
end

Mean approaches        
optimum

Variance reduces



Strengths of Evolutionary Algorithms
• Population: Store a diverse set of solutions, global 

perspective, implicit parallelism, search for multiple 
solutions

• Initialization: Initial supply of diverse solutions 
• Selection: Provides directions for search
• Recombination: Combines two or more evolving members 

to produce new and better solutions, unique operator
• Mutation: Local perturbation to find better solutions
• Modular, but each must work in unison with others
• Highly parallelizable
• Keep the essence, but customize for a complex problem
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Niches of Population-based Algorithms
• Flexibility in representation of solutions

• Avoids unnecessary fix-ups (two examples next)
• Representation-Recombination dual is important

• For example, x1 ≥ x2 ≥ … ≥ xn
• Use (x1, p2, p3, …, pn), where pi = xi/xi-1 and pi∈ [0, 1] ensures 

x2 ≤ x1

§ For example, x1+ x2 + … + xn = 1
§ Update: xi ← xi /∑j xj, constraint is always satisfied

§ Choose one from n options: Boolean variables (x)
§ Fix-up: ∑j xj = 1
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Transit Network 
Optimization

• δi,j
k,l is Boolean

• Difference 
between 
departure and 
arrival time must 
be +ve for the 
actual case, don’t 
care for all other 
cases!
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(Chakroborty et al., 1995)
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Innovative 
Representation

Permutation as fixed coding
Permutation: (a-b-c-d-e)
Fixed coding: 
(0, 0-1, 0-2, 0-3, 0-4)

Example: (0 1 0 2 2)

Allows any crossover to be used
Valid permutations are created

_a_-> _c_a_b_ -> _c_a_d_b_-> (c-a-e-d-b)

(Deb et al., 2003, IEEE)



Niches of Population-based Algorithms (cont.)

• Algorithmic flexibility
• New problem-specific operators can be introduced

• Population approach 
• Better chance of finding global optimum
• Potential to find and store multiple solutions

• Multi-modal and multi-objective problems

• Direct approach (no need for gradients)
• Procedural objective and constraint functions

• If-then-else or other procedures
• Parallel implementation
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Black-box 
Optimization
Maximize profit for 
operating a solar plant

Three variables
No mathematical 
description
Noise, isolation, 
multi-modality, and 
boundary solution

LINDO, LGO software 
failed 

Solar Thermal Collector Design
ENDESA, Spain (Cabello et al., 2011)
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Customized GA

Gradual 
improvement
Multiple runs are 
consistent

• Real-parameter GA
• Popsize=50, 
• maxgen=150
• P_c=0.9
• P_m=0.333

• 10 runs
• 0.0017% difference

between runs



Difficulties 
Negotiated Well!
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Multi-modality 
& boundary soln.

Isolation

Discontinuity

One practical problem 
demonstrates different 
difficulties
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Constraint Handling

Modify tournament sel.:
A feasible is better than an 
infeasible
For two feasibles, choose the 
one with better f
For two infeasibles, choose 
the one with smaller 
constraint violation ( )( )∑ j j xg

(Deb, 2000, CMAME)

Only possible with a population of points
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A Computer Simulation
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Test Problem 1

Opt. Soln.: 
(2.246826, 
2.381865), 
f=13.59085.
0.7% of the 
search space 
feasible
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Results on Test Problem 1
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Welded-Beam Design 
Problem

(Deb, 2000)
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Multi-Modal Optimization

By sharing resources (land, 
food, etc.)
How to mimmick the concept 
in EAs?
Reduce selection pressure for 
crowded solutions
Use a sharing function based 
on two-armed bandit problem

Multiple niches (human and animal) coexist in nature
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Sharing Function

Goldberg and Richardson 
(1997)
d is a distance measure between 
two solns.

Phenotypic distance: d(xi,xi), 
x: variable
Genotypic distance: 
d(si,si), s: string

Calculate niche count, 
nci=∑jSh(dij)
Shared fitness: fi’=fi/nci
Use proportionate selection 
opeartor
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An Example: Phenotypic Sharing
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Simulation Results
Inclusion of niche-formation strategy

(Deb and Goldberg, 1989)

More results in (Li et al., in press, IEEE TEVC)
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Multi-Objective Optimization:
Handling multiple conflicting objectives

Have you wondered?

Most practical problems 
are multi-objective in 
nature

Doomed car

(Deb, 2001, WILEY)



IEEE DLP Lecture (RMIT, Melbourne)

Simulation on ZDT1
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Inter-planetary Trajectory 
Optimization

Find a set of trade-off solutions, then choose one
More confident decision-making (Coverstone-Carroll et al., 2000)



IEEE DLP Lecture (RMIT, 
Melbourne)

Mine Scheduler in Australia

3D scheduling for three objectives
Each simulation takes 3-4 hours (Deb et al., 2003, IEEE)

Millions of blocks sequenced



Many-Objective EMO:
NSGA-III
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10-obj. Problem

3-obj. Problem

Constrained
Problem

A few
Solutions

Constrained
Problem

Water Problem

(IEEE TEC August 2014)



NSGA-III on DTLZ2 
(Three Objectives)

A 3-D Pareto Surface



Hybrid Point-Population 
Based Approaches

Best approach, if done well
Pop-based approach to get 
R 
Classical penalized 
approach to find a local 
solution
Improvements of one or 
two-orders of magnitude

(Deb, 2001, Book)

(Deb and Datta, CEC-10)

P(x)=1*f(x)+R*CV(x)



Extreme-Scale 
Optimization
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Allocate batches of molten 
metal for making castings 
Heat: One melt of W kg
N casting, j-th one requiring 
rj copies and having wj kg
Given: W, N, rj and wj

Metal utilization: Avg. Ratio 
of used metal to W

Max. possible: 100% util.  
Find a feasible casting 
schedule to achieve a given 
target in metal utilization (η) 

• A typical assignment 
problem

• Often found in 
practice

• Large-scale problem:
∼50,000 variables

(Deb and Myburgh, 2016)



Opt. Problem 
Formulation

• H computed from total 
required metal

• Variables: n = N x H
• Constraints: N+H
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(ILP)



Classical Approaches
• An integer linear program (ILP)
• Multi-dim. knapsack problem (MKP)
• NP-Hard problem

• Polynomial time algorithm to
optimum not possible

• Without integer restrictions 
• Dantzig’s Simplex or Karmarkar’s

Predictor-Corrector method

• Branch-and-bound or 
branch-and-cut method
• A fix-up
• Exponential method
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Industry-standard Softwares:
IBM’s CPLEX, Ocatve’ glpk, 
Gurobi optimizer
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A Small-Sized Problem Using CPLEX and glpk

• With W=650 kg and Target η=99.7%, H=31 heats
• Total variables n=10 x 31 = 310
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• # Copies=65 (63) require 64,650 kg metal, H=100 
heats, Total variables n=10 x 100 = 1,000

kg.



A	ILP	from	Practice	Using	
IBM’s	CPLEX

• 1,800-var: 3342 nodes, 1.22 s
• 2,000-var: 37M nodes, DNC in 30 min, 32,704 nodes 

remaining
• Does not scale up with variables, as branch-and-cut is 

exponential
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Proposed Population-Based ILP Method
• Step 1: Custom Initialization of a population to handle all 

equality constraints
• Custom Mutation2 to attempt to fix inequality 

constraints
• Step 2: Assign Fitness based on objective and constraints
• Step 3: Tournament Selection to choose two parent 

solutions
• Step 4: Custom Recombination to combine heat-wise 

partial solutions into a child solution
• Step 5: Custom Mutation1 to fix equality constraints
• Step 6: Custom Mutation2 to fix inequality constraints
• Step 7: If F(xbest) ≥ η, Go to Step 2, else print xbest
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Target metal util.



Custom Recombination Operator
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Can easily extend to multi-
parent recombination

Ideal recomb. 
Operator;
Complexity:
O(NH)



Custom Mutation1 Operator
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3è2 3è2 7è4

• All equality constraints are guaranteed to be satisfied
– Complexity: O(N2H)

0è3



Custom Mutation2 Operator
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• All inequality constraints are not guaranteed to be satisfied; 
F(x) takes care of constraint violation
• Complexity: O(NH)

1è2
2è1



Small-Sized Problem Revisited

• Recall:
• CPLEX and glpk could not solve more than 1,000 variables
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• PILP requires 220 (avg.) FEs (popsize = 20 and 11 gens.)
• PILP solves 2,000 variable problem in 0.19 seconds, which 

CPLEX could not solve!



Properties of PILP:
1. Random solutions are not feasible 
• 1M variables, 56,352,140 kg casting
• W=650 (x10) and 500 (x13) kg on alternating days
• 10,000 random solutions: 

• F(x): -7.029M, -7.22M, -7.38M
• Mutation1 and 2 bring down F(x):

• F(x): -1.39M, -1.41M, -1.45M
• A tiny part of the search space is feasible or near-feasible

• Random or repairs thereof are not enough
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Target F(x)=0.997

1M variables



2. A Critical Population Size is essential 
• More is redundant
• Less is inadequate

• Typical performance
of a population-
based approach

• Recombination op. 
needs a sample of 
points to work properly
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Properties of PILP: 1M variables

Clearly demonstrates the need of a 
population-based algorithm



Properties of PILP:
3. Recombination is Essential
• Multi-parent implementation
• NP=1 (no recombination)

• No feasible solution
found

• NP=2 performs best
• NP>2 found greedy 

for 60 popsize
• Target always found
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1M variables
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Heat Updates: # of 
Variable Changes



Properties of PILP:
4. Exponential Progress towards Feasible Region
• A typical run
• Popsize = 40
• 18 iterations of 

PILP to find 
99.7% util.

• Exponential 
reduction in 
fitness
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1M variables



Properties of PILP:
5. Exploring Dynamics of PILP
• Continuous improvement with

generations
• >70% offspring better than

previous pop. average
• Three phases:

1. Galloping phase
2. Consolidation phase
3. Culmination phase

• Phase 2 most difficult pd.
• After phase 2, near-optimal

solutions
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1M variables



• 50k to 1B variables 
(Time: 5.34(10-5)n1.11)

• Multi-knapsack problem 
is NP-hard

• Poly. Time for 
approximate solutions: 
• 99.7% utilization

• Popsize: 60 for all 
problems
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# of Changes in Variables: O(n)

How much is a Billion?
• 4GBytes for a solution, 240GB RAM for a population 

Computer:2×Intel 8-Core 
Xeon-2640V3 2.66 GHz, 16 
threads with 16×16GB 
DDR4

Further Results of PILP:
6. PILP is Scalable
•



Other Billion-variable Studies using EC
• Goldberg, Sastry and Llora (2006) 

(Compact GA):
• Noisy, one-max, Boolean-variable 

problem
• Full convergence: 34M variable
• 50.1% convergence: Up to 1B 

variable
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• Suwannik and Chongstitvatana,  (2008), Iturriaga and Nesmachnow
(2012) 64% conv. with GPU

• Wang et al. (2013) (CMA-ES)
• 2 real-var. embedded in n=1B variable (n-2 variables do not 

contribute to the objective function!)
•

109



7. PILP is Exponential in Accuracy

• For more accuracy, 
exponentially more 
time and heat-
updates

• Agrees with 
NP-hardness
of MKP problems
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1M VariablesMore Results of PILP:

Time

Heat update



Why Does PILP Work?
• Random solutions are not feasible
• Certain intelligent individual fix-ups do not make them 

feasible as well
• Mutations alone (intelligent repairs) cannot find feasible 

solutions
• A critical population size is essential to introduce adequate 

diversity
• Recombination of multiple partial solutions is a key operator

• Recombination+Mutations+Adequate popsize make it happen

• PILP exponentially moves towards feasible region
• PILP finds high proportion of improved solutions every gen.
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1M variables



Generic Assignment Problem
• PILP can solve problems of following type:

• Multiply-constrained knap-sack problem and its 
relaxations (Kellerer et al., 2004)

• Cutting stock problem
• Multiple subset problem (Martello and Toth, 1990)
• Linear assignment problems (Akgul, 1992)
• Currently investigating binary knap-sack problems
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Conclusions
Point-based methods has their niche
Same is true for population-based methods
No hope for a single method to be efficient 
for all problems
Customized optimization is the key

EC based population methods are flexible
Large-scale optimization through 
customization
Solved a billion-variable real-world problem 
to near-optimality for the first time

A triumph for Evolutionary Algorithms
Further Information: http://www.coin-laboratory.com


