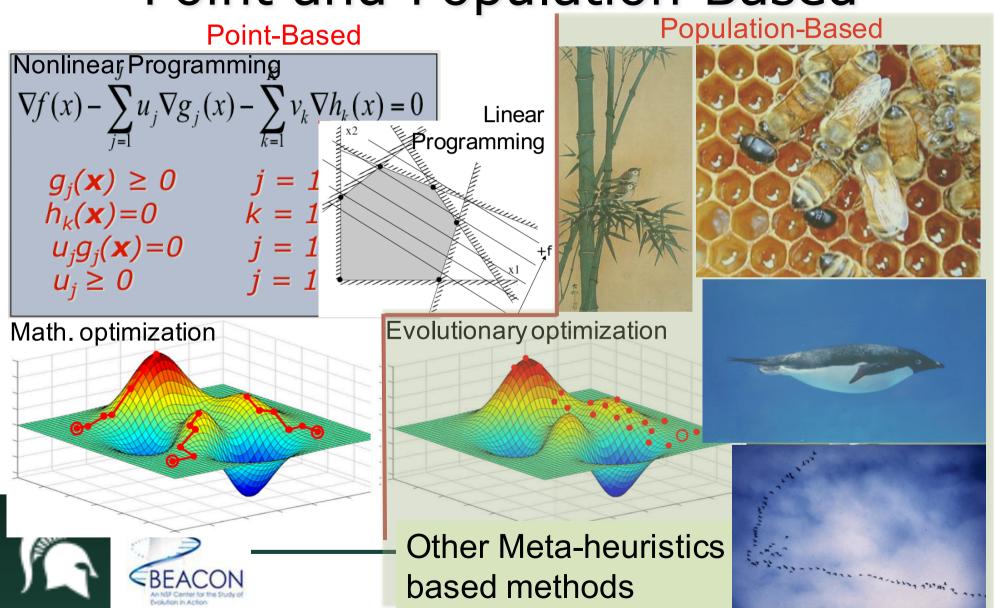
Niches of Population-Based Optimization Algorithms in Practice

Kalyanmoy Deb Koenig Endowed Chair Professor Michigan State University East Lansing, USA kdeb@egr.msu.edu http://www.coin-laboratory.com

Overview

- Point versus population based optimization approaches
 - Advantages
 - Disadvantages
- Evolutionary Algorithms as Population-Based methods
- ▶ Niches of EAs
- Customization is the key for complex problems
- ► An extreme-scale assignment problem
- ▶ Conclusions

Optimization Methods: Point and Population Based



Point-Based Optimization Methods

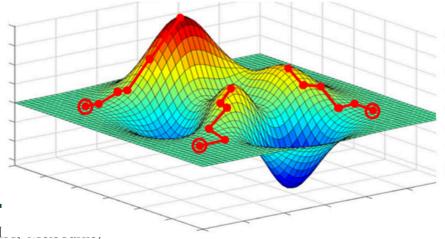
- 1. Start with one point, x
- 2. Update using a transition rule (T)

$$a. y = T(x)$$

- 3. Compare y with x, if better replace: $x \leftarrow y$
- 4. Move to Start, until termination criterion is met
 - Not much memory
 - Local search
 - No parallel processing

Easier to do theory

"One hammer for multiple nails"



Population-Based Optimization Methods

- 1. Start with a population of points, P(x)
- 2. Update using a transition rule (*T*)

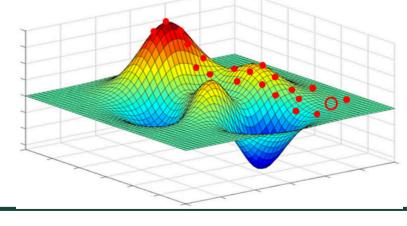
a.
$$Q(y) = T(P(x))$$

3. Compare Q(y) with P(x) and replace: $\leftarrow (P(x), Q(y))$

- P(x)
- 4. Move to Start, until termination criterion is met
- Requires memory

"Different hammers for multiple nails"

- Global search
- Parallel processing
- Not easy to do theory



No Free Lunch (NFL) Theorem

- ▶ In the context of *optimization*
 - ▶ Wolpert and McCardy (1997)
 - Algorithms A1 and A2
 - All possible problems F
 - Performances P1 and P2 using A1 and A2 for a fixed number of evaluations
 - ▶ P1 = P2
- NFL breaks down for a narrow class of problems or algorithms
- Research effort: Find the best algorithm for a class of problems
 - Unimodal, multi-modal, quadratic etc.

Current Status, Facts, and Myths

- Point-based methods:
 - Fast, local, theory-based, successful in deterministic problems, hard to modify and suit a problem
- Population-based methods:
 - "Slow", global, parallel, flexible, great potential for complex problems, easy to customize
- NFL theorem suggests a single algorithm cannot perform well on all problems
- Practical problems are complex in many ways
- Customization is the key
 - Initial knowledge and/or Derived knowledge

Population-Based Algorithm Generator

(Deb, 2005; Soft Computing)

At iteration t, Population P(t) of size N

- 1. Select the best *parent* and μ -1 other parents randomly
- 2. Generate λ offspring using a creation scheme
- 3. Choose r parents at random from P(t)
- 4. Form a combination of $r+\mu$ parents and λ offspring, choose best r solutions and replace the chosen r parents in Step 3 to update P(t)
- ▶ Requires a parametric study with μ , λ , r and N

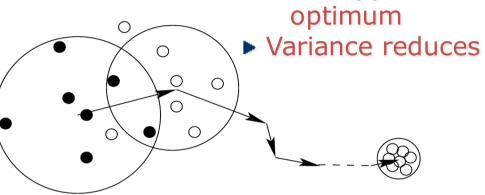
Population-based Algorithm Generator: An Illustration

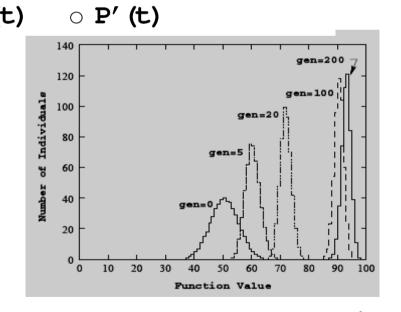
Generational Plan (GP) Selection Plan (SP) (λ solutions are created: Set C) (# solutions are chosen: Set P) f(x,y)f(x,y)Replacement plan (RP) (r solutions are chosen from B: Set R) f(x,y)f(x,y)f(x,y)(Deb, 2005; Soft Computing) New Population Update Plan (UP) (r solutions are picked from R,C,P)

Mean approaches

Evolutionary Algorithm as Population-Based Optimization Method

begin Solution Representation t := 0; // generation counter Initialize P(t); Evaluate P(t); while not Terminate • P(t) do P'(t) := Selection(P(t));P''(t) := Variation(P'(t));Evaluate P''(t); P(t+1) := Survivor(P(t),P''(t));t := t+1;od end





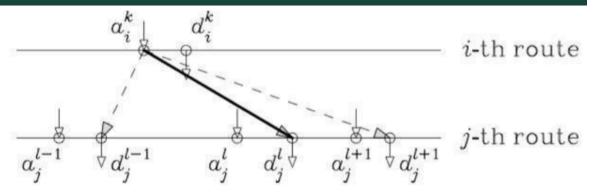
Strengths of Evolutionary Algorithms

- Population: Store a diverse set of solutions, global perspective, implicit parallelism, search for multiple solutions
- Initialization: Initial supply of diverse solutions
- Selection: Provides directions for search
- Recombination: Combines two or more evolving members to produce new and better solutions, *unique operator*
- Mutation: Local perturbation to find better solutions
- Modular, but each must work in unison with others
- Highly parallelizable
- Keep the essence, but customize for a complex problem

Niches of Population-based Algorithms

- Flexibility in representation of solutions
 - Avoids unnecessary fix-ups (two examples next)
 - Representation-Recombination dual is important
- For example, $x_1 \ge x_2 \ge ... \ge x_n$
 - Use $(x_1, p_2, p_3, ..., p_n)$, where $p_i = x_i/x_{i-1}$ and $p_i \in [0, 1]$ ensures $x_2 \le x_1$
- For example, $x_1 + x_2 + ... + x_n = 1$
 - Update: $x_i \leftarrow x_i / \sum_j x_j$, constraint is always satisfied
- Choose one from n options: Boolean variables (x)
 - Fix-up: $\sum_j x_j = 1$

Transit Network Optimization



Minimize $\sum_{i} \sum_{j} \sum_{k} \sum_{l} \delta_{i,j}^{k,l} (d_{j}^{l} - a_{i}^{k}) w_{i,j}^{k}$

$$+\sum_{i}\sum_{l}\int_{0}^{a_{i}^{k}-a_{i}^{k-1}}v_{i,k}(t)\!\!\left[(a_{i}^{k}-a_{i}^{k-1})-t
ight]\,dt$$

subject to

$$s_{\max} - (d_i^k - a_i^k) \ge 0$$

for all i and k,

$$(d_i^k - a_i^k) - s_{\min} \ge 0$$

for all i and k,

$$T - (d_j^l - a_i^k)\delta_{i,j}^{k,l} \ge 0$$

for all i, j, k and l,

$$(d_j^l - a_i^k) + M(1 - \delta_{i,j}^{k,l}) \ge 0$$

for all i, j, k and l,

$$h_i - (a_i^{k+1} - a_i^k) \ge 0$$

for all i and k,

$$\sum_{l} \delta_{i,j}^{k,l} = 1$$

for all i, j and k.

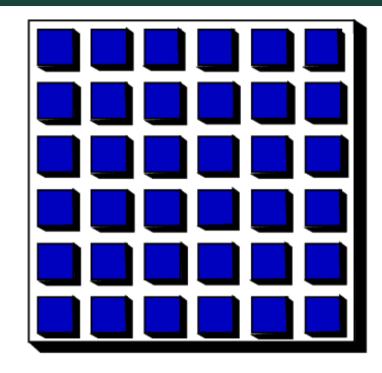
(Chakroborty et al., 1995)

- $\delta_{i,j}^{k,l}$ is Boolean
- Difference
 between
 departure and
 arrival time must
 be +ve for the
 actual case, don't
 care for all other
 cases!

Innovative Representation

- ▶ Permutation as fixed coding
- ► Permutation: (a-b-c-d-e)
- ► Fixed coding:
- \bullet (0, 0-1, 0-2, 0-3, 0-4)
- ► Example: (0 1 0 2 2)

- ▶ Allows any crossover to be used
- ▶ Valid permutations are created



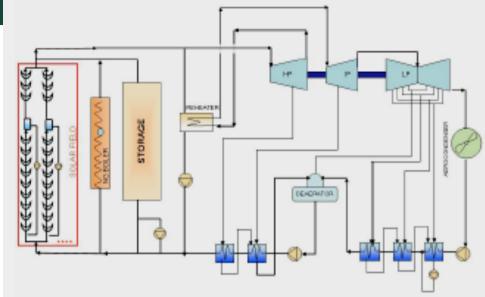
(Deb et al., 2003, IEEE)

Niches of Population-based Algorithms (cont.)

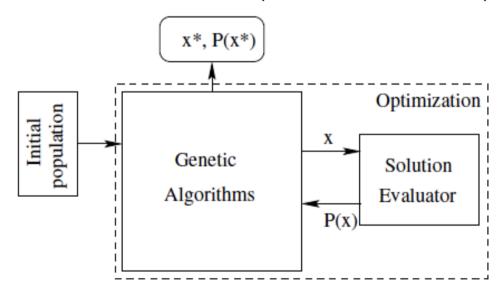
- Algorithmic flexibility
 - New problem-specific operators can be introduced
- Population approach
 - Better chance of finding global optimum
 - Potential to find and store multiple solutions
 - Multi-modal and multi-objective problems
- Direct approach (no need for gradients)
- Procedural objective and constraint functions
 - If-then-else or other procedures
- Parallel implementation

Black-box Optimization

- Maximize profit for operating a solar plant
 - ▶ Three variables
 - No mathematical description
 - Noise, isolation, multi-modality, and boundary solution
- ► LINDO, LGO software failed

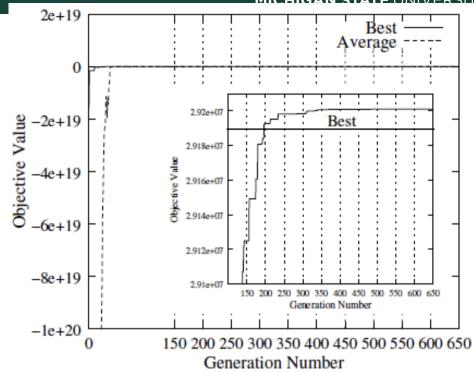


Solar Thermal Collector Design ENDESA, Spain (Cabello et al., 2011)



Customized GA

- Gradual improvement
- Multiple runs are consistent

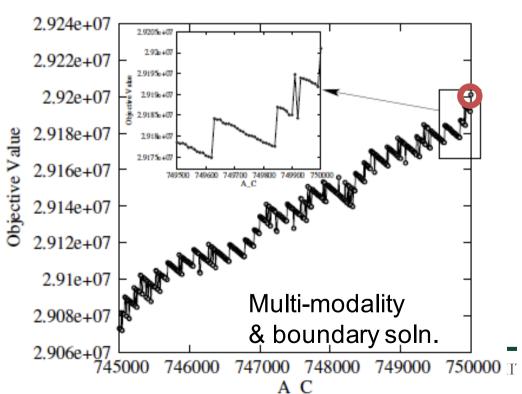


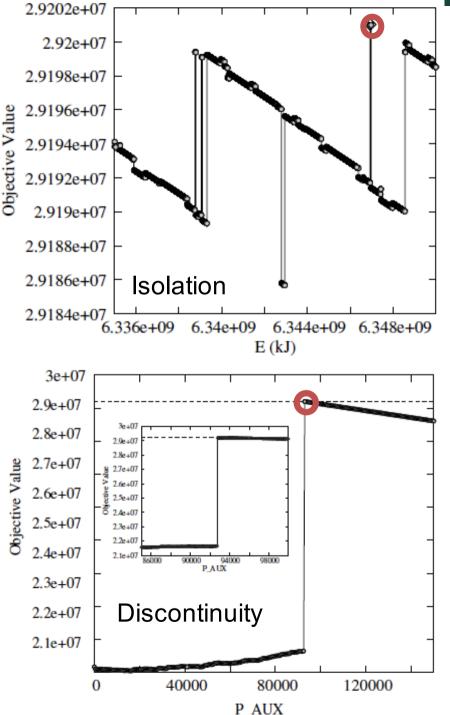
$P(\mathbf{x}^*)$		x*	
(€)	A_C (m ²)	E(kJ)	P_{AUX} (kW)
29201019.61	749999.99	6346926947.98	92768.27
29201018.75	749999.94	6346929408.75	92768.26
29201018.62	749999.94	6346929669.93	92768.26
29201018.62	749999.94	6346929478.79	92768.27
29200967.67	749997.61	6347055515.19	92768.46
29200967.42	749997.62	6347055515.19	92768.46
29200957.23	749997.01	6347087739.59	92768.27
29200953.07	749997.00	6347092303.42	92768.31
29200922.51	749999.96	6346929711.66	92777.49
29200522.97	749992.62	6318673893.16	92768.70

- Real-parameter GA
 - Popsize=50,
 - maxgen=150
 - P c=0.9
 - P m=0.333
- 10 runs
- 0.0017% difference between runs

Difficulties Negotiated Well!

One practical problem demonstrates different difficulties

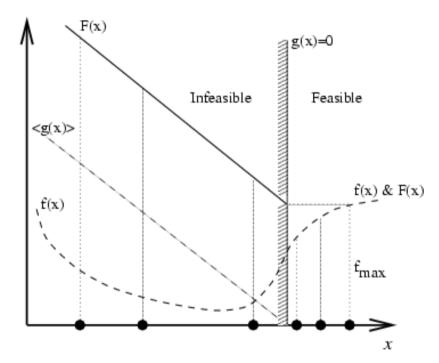




Constraint Handling

(Deb, 2000, CMAME)

- Modify tournament sel.:
 - A feasible is better than an infeasible
 - For two feasibles, choose the one with better f
 - For two infeasibles, choose the one with smaller constraint violation $(\sum_{i} \langle g_{i}(x) \rangle)$

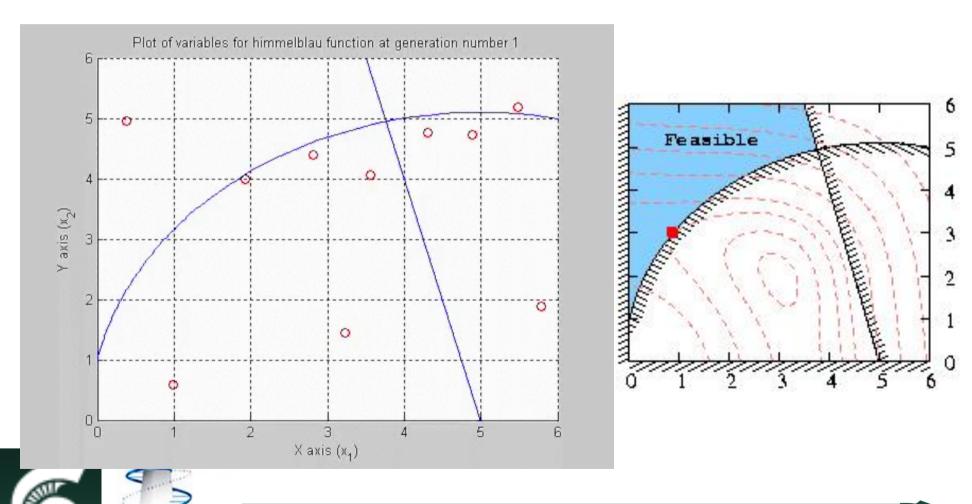


$$F(\vec{x}) = \begin{cases} f(\vec{x}) & \text{if } g_j(\vec{x}) \ge 0 \quad \forall j = 1, 2, \dots, m, \\ f_{\text{max}} + \sum_{j=1}^m \langle g_j(\vec{x}) \rangle & \text{otherwise.} \end{cases}$$

if
$$g_j(\vec{x}) \ge 0 \quad \forall j = 1, 2, \dots, m$$
, otherwise.

Only possible with a population of points

A Computer Simulation



Test Problem 1

Minimize
$$f_0(x_1,x_2)=(x_1^2+x_2-11)^2+(x_1+x_2^2-7)^2$$

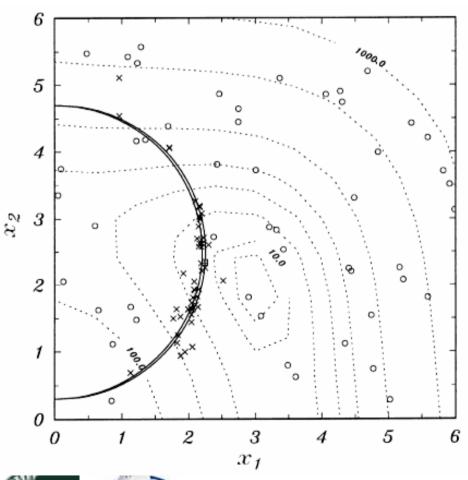
Subject to $g_1(x)\equiv 4.84-x_1^2-(x_2-2.5)^2\geq 0$
 $g_2(x)\equiv (x_1-0.05)^2+(x_2-2.5)^2-4.84\geq 0$
 $0\leq x_1\leq 6, 0\leq x_2\leq 6$

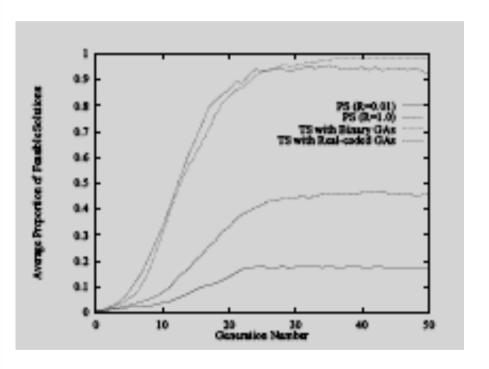
- Opt. Soln.: (2.246826, 2.381865), f=13.59085.
- ▶ 0.7% of the search space feasible

		€							
Method	√ 1%	≤ 2%	≤ 5%	 10%	≤ 20%	≤ 50%	> 50%	Infea- sible	
PS(R = 0.01)	5	5	7	8	15	23	8	19	
PS(R=1)	17	19	20	20	24	32	7	11	
TS-B	2	2	5	6	9	13	37	0	
TS-R	29	31	31	32	33	39	11	0	

Method	Best	Median	Worst
PS(R = 0.01)	13.58958	24.07437	114.69033
PS(R=1)	13.59108	16.35284	172.81369
TS-B	13.59658	37.90495	244.11616
TS-R	13.59085	13.61673	117.02971

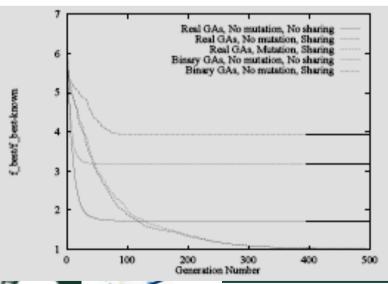
Results on Test Problem 1





Welded-Beam Design Problem

			ε								
Method	Muta-	shar	≤	≤	≤	≤	≤	≤	>		
	tion	ing	1%	2%	5%	10%	20%	50%	50%		
Maximum generations = 500											
TS-B	No	No	0	0	0	0	0	0	50		
TS-B	No	Yes	0	0	0	0	0	0	50		
TS-R	No	No	0	0	1	4	8	16	34		
TS-R	No	Yes	28	36	44	48	50	50	0		
	Maximum generations = 4,000										
TS-R	No	Yes	28	37	44	48	50	50	0		
TS-R	Yes	Yes	50	50	50	50	50	50			



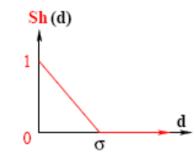
Case	Best	Median	Worst
1	4.939027	7.183082	12.084255
2	3.820984	8.899963	14.298933
3	2.442714	3.834121	7.444246
4	2.381191	2.392892	2.645833
5	2.381187	2.392025	2.645833
6	2.381447	2.382634	2.383554

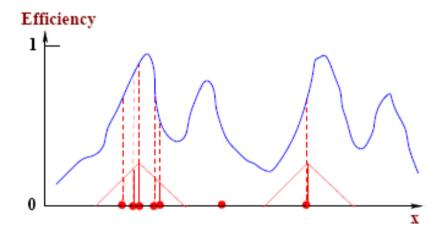
(Deb, 2000)

Multi-Modal Optimization

Multiple niches (human and animal) coexist in nature

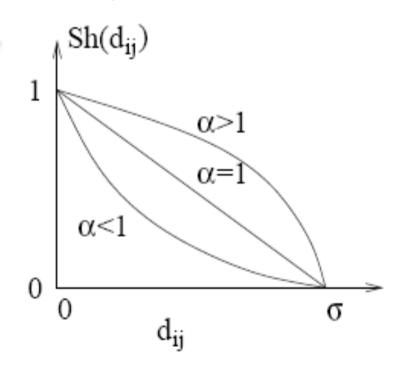
- ▶ By sharing resources (land, food, etc.)
- ► How to mimmick the concept in EAs?
- ► Reduce selection pressure for crowded solutions
- ► Use a sharing function based on two-armed bandit problem





Sharing Function

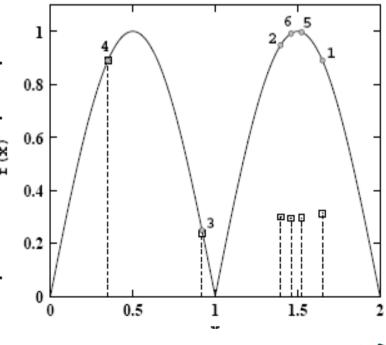
- ► Goldberg and Richardson (1997)
- ▶ d is a distance measure betwee $Sh(d_{ij}) = \begin{cases} 1 \left(\frac{d_{ij}}{\sigma}\right)^{\alpha} & \text{if } d_{ij} \leq \alpha, \\ 0 & \text{otherwise.} \end{cases}$
 - ► Phenotypic distance: d(x_i,x_i), x: variable
 - ► Genotypic distance: $d(s_i,s_i)$, s: string
- ► Calculate niche count, $nc_i = \sum_i Sh(d_{ij})$
- ► Shared fitness: $f_i' = f_i/nc_i$
- ► Use proportionate selection opeartor



An Example: Phenotypic Sharing

- Maximize $f(x) = |\sin(\pi x)|, x \in [0, 2]$
- $nc_i = \sum_{j=1}^N Sh(d_{ij})$

1.	String	$x^{(i)}$	f_i	nc_i	f_i'
i					
L	110100	1.651	0.890	2.856	0.312
2	101100	1.397	0.948	3.160	0.300
3	011101	0.921	0.246	1.048	0.235
ł	001011	0.349	0.890	1.000	0.890
5	110000	1.524	0.997	3.364	0.296
3	101110	1.460	0.992	3.364	0.295

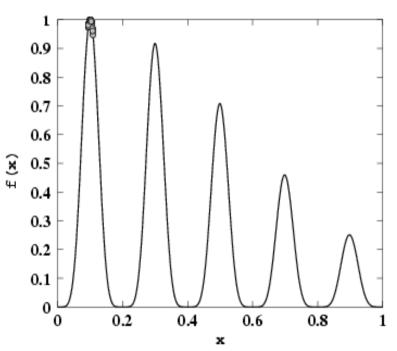


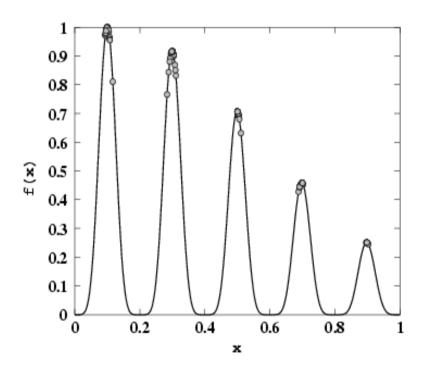
(Deb and Goldberg, 1989)

Simulation Results

► Inclusion of niche-formation strategy

Without Sharing

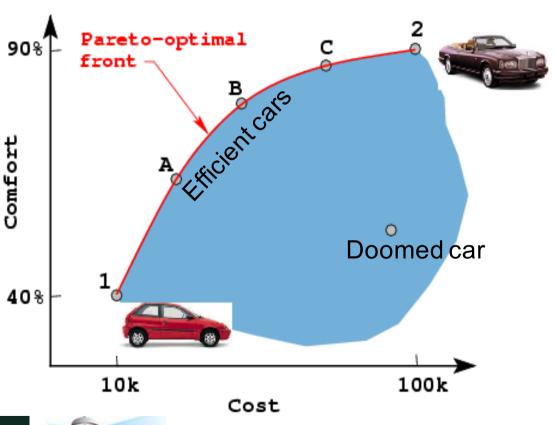




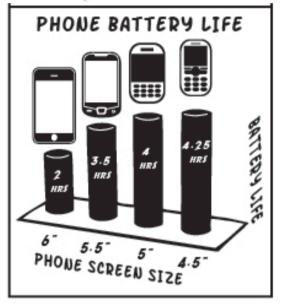
More results in (Li et al., in press, IEEE TEVC)

Multi-Objective Optimization:

Handling multiple conflicting objectives



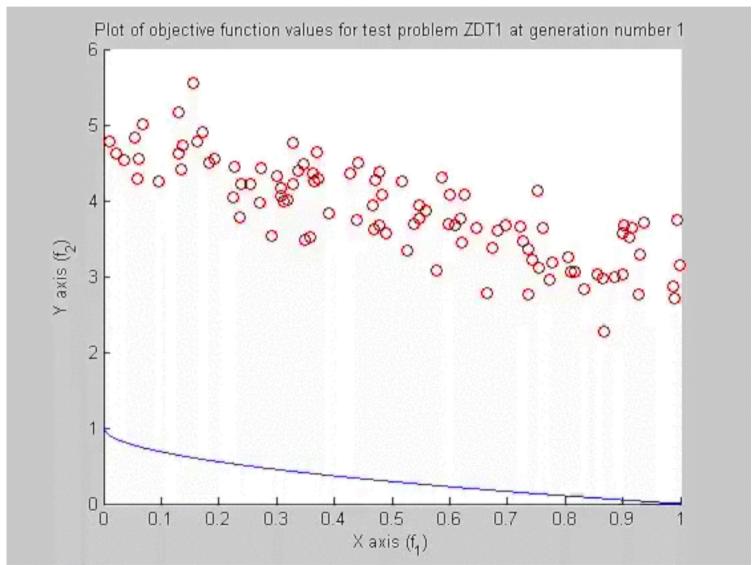
Have you wondered?



Most practical problems are multi-objective in nature

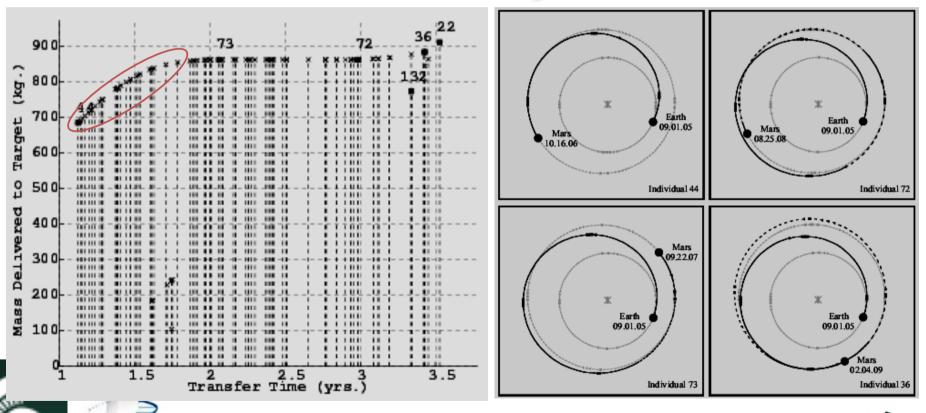
(Deb, 2001, WILEY)

Simulation on ZDT1



Inter-planetary Trajectory Optimization

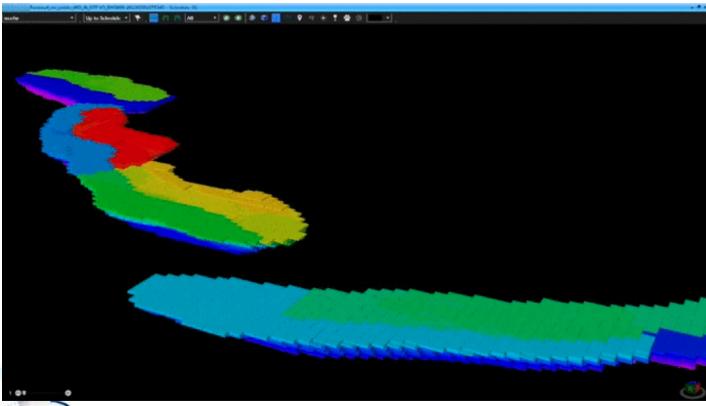
- Find a set of trade-off solutions, then choose one
- More confident decision-making (Coverstone-Carroll et al., 2000)

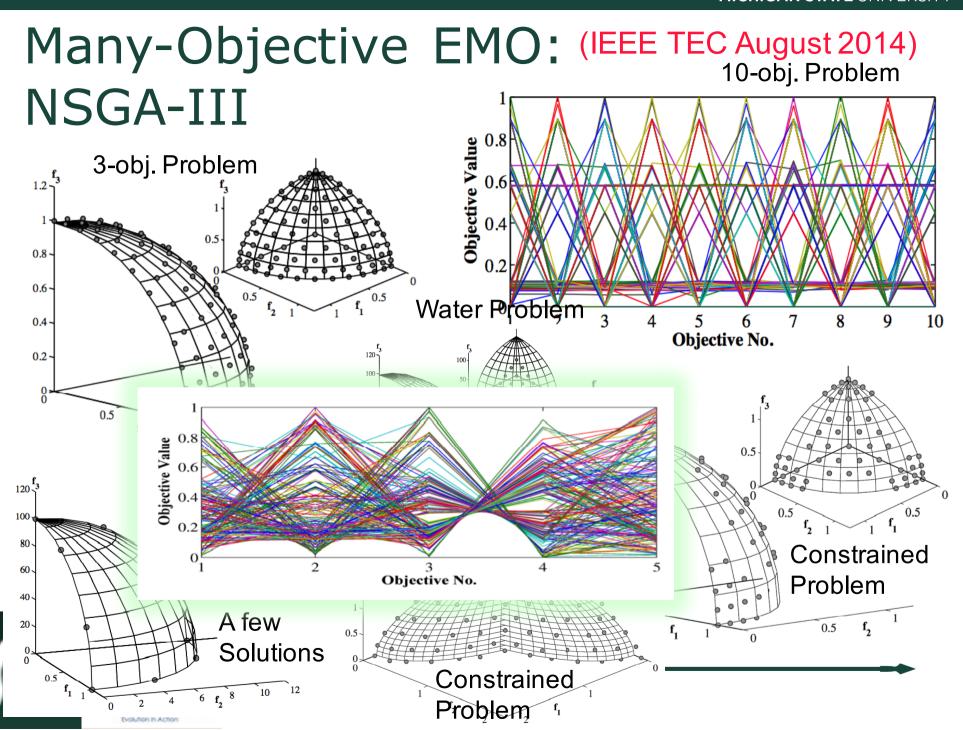


Mine Scheduler in Australia

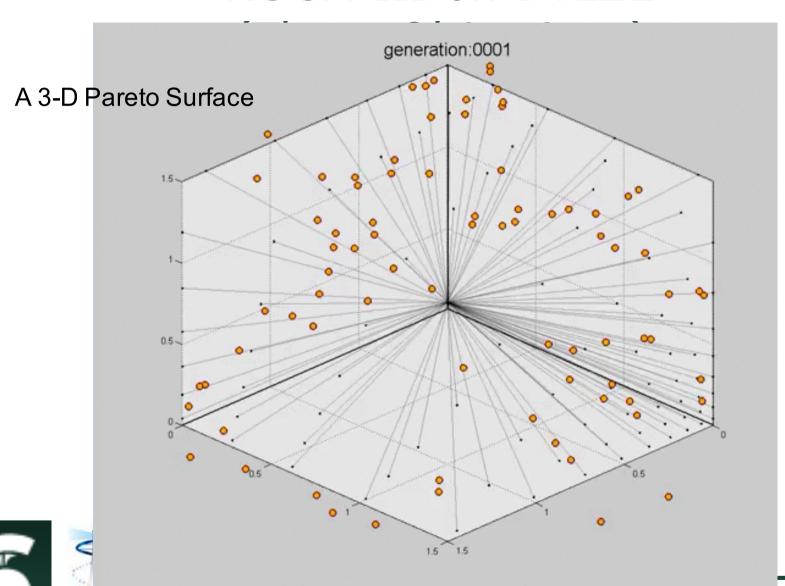
- 3D scheduling for three objectives
- ► Each simulation takes 3-4 hours

(Deb et al., 2003, IEEE)





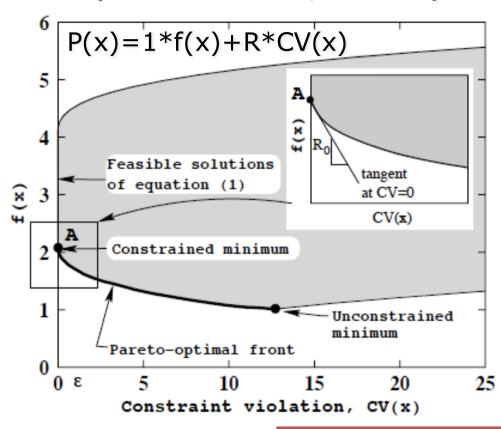
NSGA-III on DTLZ2



Hybrid Point-Population Based Approaches

- Best approach, if done well
- Pop-based approach to get R
- Classical penalized approach to find a local solution
- Improvements of one or two-orders of magnitude

(Deb and Datta, CEC-10)



Prob.	Zavala, A	guirre & Di	harce [52]	Takahama & Sakai [45]				Brest [6]		Proposed Hybrid Approach		
	Best	Median	Worst	Best	Median	Worst	Best	Median	Worst	Best	Median	Worst
g01	80,776	90,343	96,669	18,594	19,502	19,917	51,685	55,211	57,151	2,630	3,722	4,857
g02	87,419	93,359	99,654	1,08,303	114347	1,29,255	1,75,090	2,26,789	2,53,197	26,156	50,048	63,536
g04	93,147	1,03,308	1,109,15	12,771	13,719	14,466	56,730	62,506	67,383	1,210	1,449	2,295
g06	95,944	1,09,795	1,30,293	5,037	5,733	6,243	31,410	34,586	37,033	1,514	4,149	11,735
g07	1,14,709	1,38,767	2,08,751	60,873	67,946	75,569	1,84,927	1,97,901	2,21,866	15,645	30,409	64,732
g08	2,270	4,282	5,433	621	881	1,173	1,905	4,044	4,777	822	1,226	2,008
g09	94,593	1,03,857	1,19,718	19,234	21,080	21,987	79,296	89,372	98,062	2,732	4,850	5,864
g10	1,09,243	1,35,735	1,93,426	87,848	92,807	1,07,794	2,03,851	2,20,676	2,64,575	7,905	49,102	1,80,446
g12	482	6,158	9,928	2,901	4,269	5,620	364	6,899	10,424	496	504	504
g18	97,157	1,07,690	1,24,217	46,856	57,910	60,108	1,39,131	1,69,638	1,91,345	4,493	7,267	10,219
g24	11,081	18,278	6,33,378	1,959	2,451	2,739	9,359	12,844	14,827	1,092	1,716	2,890

Extreme-Scale Optimization

- Allocate batches of molten metal for making castings
- Heat: One melt of W kg
- N casting, j-th one requiring r_j copies and having w_j kg
- ▶ Given: W, N, r_j and w_j
- Metal utilization: Avg. Ratio of used metal to W
 - Max. possible: 100% util.
- Find a feasible casting schedule to achieve a given target in metal utilization (η)

- A typical assignment problem
- Often found in practice
- Large-scale problem:
 - ~50,000 variables

Opt. Problem Formulation

• *H* computed from total required metal

• Variables: $n = N \times H$

• Constraints: *N*+*H*

Maximize

$$f(\mathbf{x}) = \frac{1}{H} \sum_{i=1}^{H} \frac{1}{W_i} \sum_{j=1}^{N} w_j x_{ij},$$

Subject to

$$\sum_{j=1}^{N} w_j x_{ij} \leq W_i, \quad \text{for } i = 1, 2, \dots, H,$$

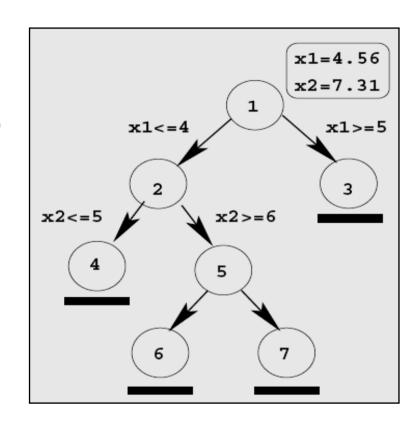
$$\sum_{i=1}^{H} x_{ij} = r_j, \quad \text{for } j = 1, 2, \dots, N,$$

 $x_{ij} \ge 0$ and is an integer. (ILF

Ar	ı Exa	xample: LINGO MILP Solver											
	eat	<i>j</i> =			Order Number N							Utilization/	Efficiency
No.		1	2	3	4	5	6	7	8	9	10	Cruc. Size	(%)
<i>j</i> =	1	0	1	1	0	0	0	2	1	0	0	623/650	95.85
	2	2	0	0	0	1	0	0	0	2	0	615/650	94.62
	3	1	0	0	1	3	1	0	0	0	0	611/650	94.00
<u>ر</u> ا	4	2	0	0	0	1	0	0	1	0	0	645/650	99.23
ats	5	0	0	0	1	0	2	0	0	1	6	612/650	94.15
Heats	6	1	1	0	0	2	1	0	0	0	0	591/650	90.92
1 -	7	0	0	2	2	1	0	0	0	2	0	585/650	90.00
ıl	8	0	3	0	0	0	1	0	0	1	0	611/650	94.00
	9	0	2	3	0	1	0	0	0	0	0	650/650	100.00
H	10	1	0	0	5	0	0	0	0	1	0	635/650	97.69
Den	nand=	7	7	6	9	9	5	2	2	7	6	Average	f(x)= 95.05

Classical Approaches

- An integer linear program (ILP)
- Multi-dim. knapsack problem (MKP)
- NP-Hard problem
 - Polynomial time algorithm to optimum not possible
- Difficult to Beat Without integer restrictions
 - Dantzig's Simplex or Karmarkar's Predictor-Corrector method
- Branch-and-bound or branch-and-cut method
 - A fix-up



Industry-standard Softwares:

IBM's CPLEX, Ocatve' glpk, Gurobi optimizer

A Small-Sized Problem Using CPLEX and glpk

No.	1	2	3	4	5	6	7	8	9	10	Total
Wt. (kg)	175	145	65	55	95	75	195	20	125	50	
# Copies	20	20	20	20	20	20	20	20	20	20	200
Total (kg)	3500	2900	1300	1100	1900	1500	3900	400	2500	1000	20,000

kg.

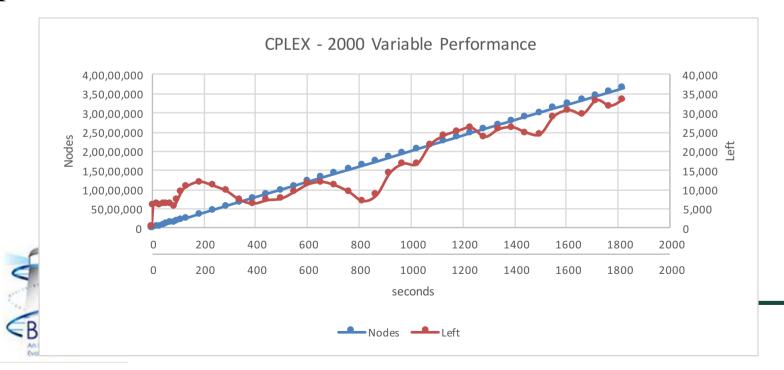
- With W=650 kg and Target η =99.7%, H=31 heats
- Total variables $n=10 \times 31 = 310$

Method	Tim	e (s)	# Evals.		Metal	Time (s)		# Evals.		Metal	
	Avg.	SD	Avg.	SD	Util	Avg.	SD	Avg.	SD	Util	
			320-Varia	ble		310-Variable					
glpk	1.24	0.22	44,675	0.00	96.154%	_	_	_	_	_	
CPLEX	0.03	0.00	184	0.00	96.154%	0.05	0.00	249	0.00	99.256%	
			1000-Varia	able		2000-Variable					
CPLEX	0.13	0.00	947	0.00	99.462%	_	_	_	_	_	

• # Copies=65 (63) require 64,650 kg metal, H=100 heats, Total variables n=10 x 100 = 1,000

A ILP from Practice Using IBM's CPLEX

- 1,800-var: 3342 nodes, 1.22 s
- 2,000-var: 37M nodes, DNC in 30 min, 32,704 nodes remaining
- Does not scale up with variables, as branch-and-cut is exponential



Proposed Population-Based ILP Method

- Step 1: Custom Initialization of a population to handle all equality constraints
 - Custom Mutation2 to attempt to fix inequality constraints
- Step 2: Assign Fitness based on objective and constraints
- Step 3: Tournament Selection to choose two parent solutions
- Step 4: Custom Recombination to combine heat-wise partial solutions into a child solution
- Step 5: Custom Mutation1 to fix equality constraints
- Step 6: Custom Mutation2 to fix inequality constraints
 - tep 7: If $F(x^{best}) \ge \eta$, Go to Step 2, else print x^{best} Target metal util.

Custom Recombination Operator

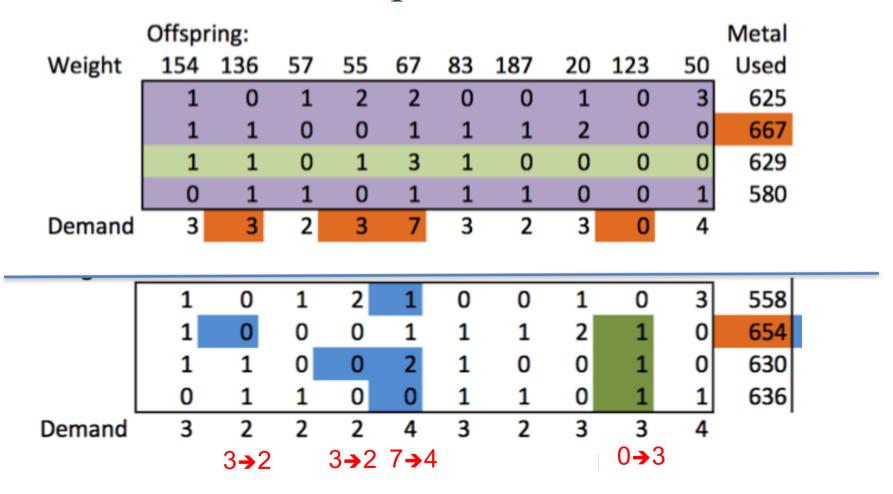
Parent 1: Metal 154 136 Weight 57 55 67 83 187 20 123 50 Used 0 343 arent 808 629 698 0 3 3 0.953 Infeasible Demand -63.6 Fitness: Parent 2: Metal Weight 154 136 57 55 83 187 20 123 50 Used 67 3 625 arent 667 606 580 2 3 0.953 Infeasible **Demand** 0.269 Fitness:

Ideal recomb. Offspring: Metal Offspring Weight 154 136 57 55 187 123 50 Used Operator; 625 Complexity: 667 629 1 0 0 O(NH)580 0 3 3 2 3 0.962 Infeasible **Demand** 0.278

IEEE DLP Lecture (RMIT, Melbo

Can easily extend to multiparent recombination

Custom Mutation 1 Operator



All equality constraints are guaranteed to be satisfied

Complexity: $O(N^2H)$

Custom Mutation2 Operator

	Mutat	ion 1:									Metal
Weight	154	136	57	55	67	83	187	20	123	50	Used
	1	0	1	2	1	0	0	1	0	3	558
	1	0	0	0	1	1	1	2	1	0	654
	1	1	0	0	2	1	0	0	1	0	630
	0	1	1	0	0	1	1	0	1	1	636
Demand	3	2	2	2	4	3	2	3	3	4	

	Mutat	ion 2:									Metal	
Weight	154	136	57	55	67	83	187	20	123	50	Used	
	1	0	1	2	1	0	0	2	0	3	578	1→ 2
	1	0	0	0	1	1	1	1	1	0	634	2 → 1
	1	1	0	0	2	1	0	0	1	0	630	
	0	1	1	0	0	1	1	0	1	1	636	
Demand	3	2	2	2	4	3	2	3	3	4		

All inequality constraints are not guaranteed to be satisfied;
 F(x) takes care of constraint violation

Small-Sized Problem Revisited

- Recall:
 - CPLEX and glpk could not solve more than 1,000 variables

Method	Tim	e (s)) # Evals.		Metal	Time (s)		# Evals.		Metal		
	Avg.	SD	Avg.	SD	Util	Avg.	SD	Avg.	SD	Util		
			320-Varia	ble		310-Variable						
glpk	1.24	0.22	44,675	0.00	96.154%	_	_	_	_	_		
CPLEX	0.03	0.00	184	0.00	96.154%	0.05	0.00	249	0.00	99.256%		
PILP	0.02	0.00	26	5.06	96.154%	0.04	0.01	150	48.08	99.256%		
			1000-Varia	able			2	2000-Var	iable			
CPLEX	0.13	0.00	947	0.00	99.462%	_	_	_	_	_		
PILP	0.05	0.004	220	37.71	99.462%	0.19	0.010	224	18.38	99.596%		

- PILP requires 220 (avg.) FEs (popsize = 20 and 11 gens.)
- PILP solves 2,000 variable problem in 0.19 seconds, which CPLEX could not solve!

1M variables

1. Random solutions are not feasible

- 1M variables, 56,352,140 kg casting
- W=650 (x10) and 500 (x13) kg on alternating days
- 10,000 random solutions:
 - F(x): -7.029M, -7.22M, -7.38M

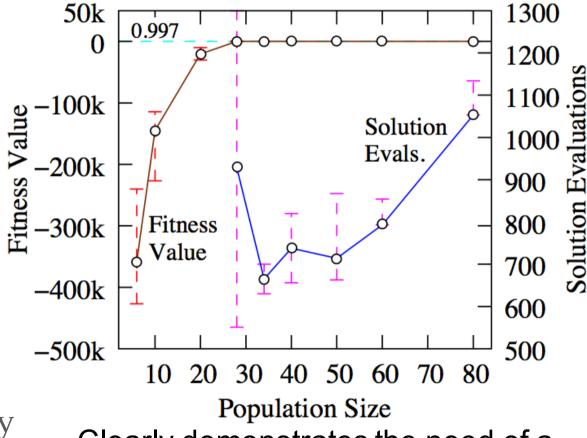
Target F(x) = 0.997

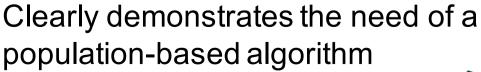
- Mutation 1 and 2 bring down F(x):
 - F(x): -1.39M, -1.41M, -1.45M
- A tiny part of the search space is feasible or near-feasible
 - Random or repairs thereof are not enough

1M variables

2. A Critical Population Size is essential

- More is redundant
- Less is inadequate
- Typical performance of a population-based approach
- Recombination op.
 needs a sample of
 points to work properly

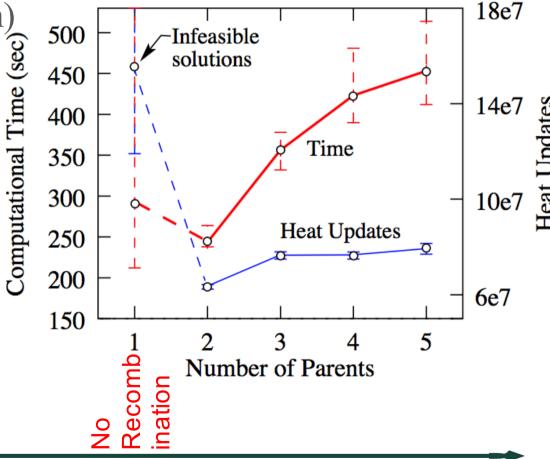




1M variables

3. Recombination is Essential

- Multi-parent implementation
- NP=1 (no recombination)
 - No feasible solution found
- NP=2 performs best
- NP>2 found greedy for 60 popsize
 - Target always found

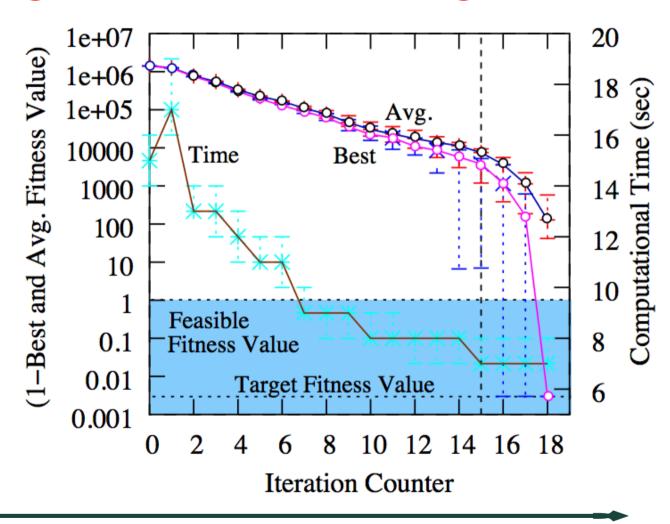


1M variables

Properties of PILP:

4. Exponential Progress towards Feasible Region

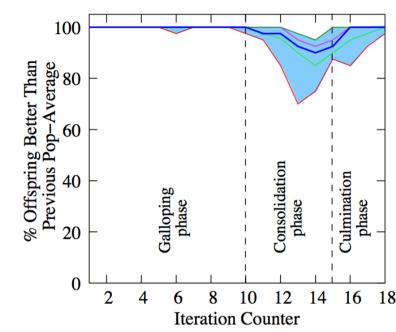
- A typical run
- Popsize = 40
- 18 iterations of PILP to find 99.7% util.
- Exponential reduction in fitness

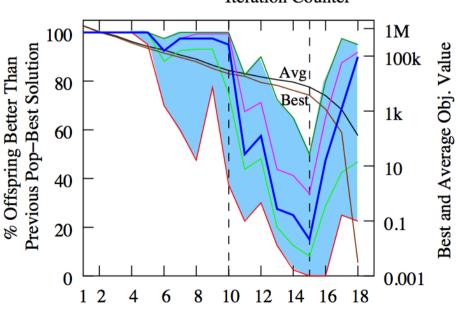


5. Exploring Dynamics of PILP

- Continuous improvement with generations
- >70% offspring better than previous pop. average
- Three phases:
 - 1. Galloping phase
 - 2. Consolidation phase
 - 3. Culmination phase
- Phase 2 most difficult pd.
- After phase 2, near-optimal

1M variables





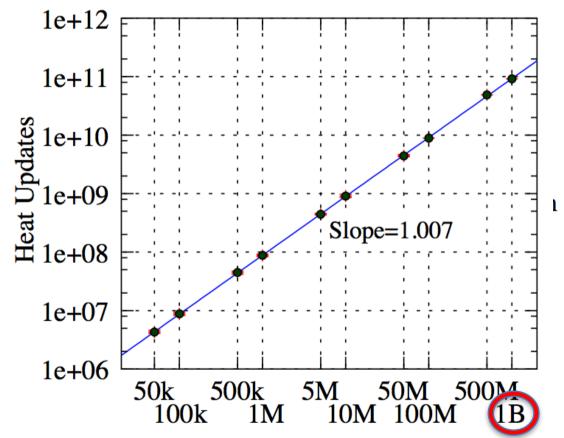
Iteration Counter

Further Results of PILP:

Computer: 2 × Intel 8-Core Xeon-2640V3 2.66 GHz, 16 threads with 16 × 16GB

of Changes in Variables: *O(n)*

- 6. PILP is Scalable
- 50k to 1B variables (Time: $5.34(10^{-5})n^{1.11}$)
- Multi-knapsack problem is NP-hard
- Poly. Time for approximate solutions:
 - 99.7% utilization
- Popsize: 60 for all problems



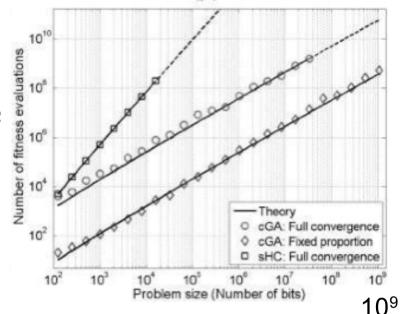
How much is a Billion?

Number of Variables

4GBytes for a solution, 240GB RAM for a population

Other Billion-variable Studies using EC

- Goldberg, Sastry and Llora (2006) (Compact GA):
 - Noisy, one-max, Boolean-variable problem
 - Full convergence: 34M variable
 - 50.1% convergence: Up to 1B variable



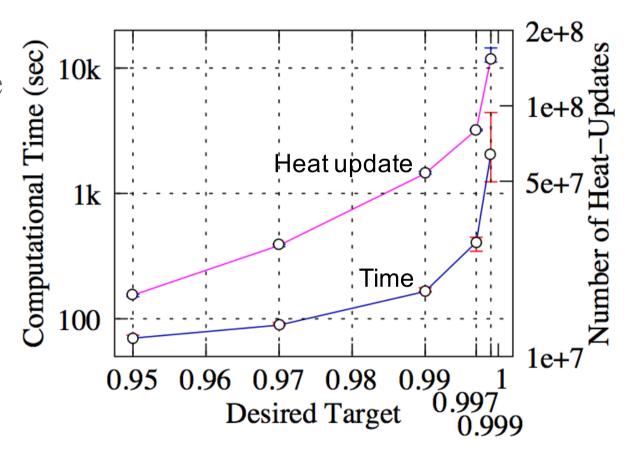
- Suwannik and Chongstitvatana, (2008), Iturriaga and Nesmachnow (2012) 64% conv. with GPU
- Wang et al. (2013) (CMA-ES)
 - 2 real-var. embedded in *n*=1B variable (*n*-2 variables do not contribute to the objective function!)

More Results of PILP:

1M Variables

7. PILP is Exponential in Accuracy

- For more accuracy, exponentially more time and heatupdates
- Agrees with NP-hardness of MKP problems



1M variables

Why Does PILP Work?

- Random solutions are not feasible
- Certain intelligent individual fix-ups do not make them feasible as well
- Mutations alone (intelligent repairs) cannot find feasible solutions
- A critical population size is essential to introduce adequate diversity
- Recombination of multiple partial solutions is a key operator
 - Recombination+Mutations+Adequate popsize make it happen
- PILP exponentially moves towards feasible region
 - PILP finds high proportion of improved solutions every gen.

Generic Assignment Problem

• PILP can solve problems of following type:

Maximize $f(\mathbf{x}) = \sum_{i=1}^{H} \sum_{j=1}^{N} a_{ij} x_{ij},$ Subject to $\sum_{j=1}^{N} b_{ij} x_{ij} \leq c_i, \quad \text{for } i = 1, 2, \dots, H,$ $\sum_{i=1}^{H} d_{ij} x_{ij} = e_j, \quad \text{for } j = 1, 2, \dots, N,$ $x_{ij} \geq 0 \text{ and is an integer.} \quad \text{for all } (i, j).$

- Multiply-constrained knap-sack problem and its relaxations (Kellerer et al., 2004)
- Cutting stock problem
- Multiple subset problem (Martello and Toth, 1990)
- Linear assignment problems (Akgul, 1992)

Conclusions

- Point-based methods has their niche
- Same is true for population-based methods
- No hope for a single method to be efficient for all problems
- Customized optimization is the key
 - EC based population methods are flexible
- Large-scale optimization through customization
- Solved a billion-variable real-world problem to near-optimality for the first time
 - A triumph for Evolutionary Algorithms

Further Information: http://www.coin-laboratory.com