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Why this talk?

• Personal experience when talking to optimization 

researchers from math and operations research 

backgrounds;

• Dealing with practitioners who need solutions to their 

real-world problems;

• Growing popularity of nature-inspired optimization 

techniques;

• Clear gaps between existing methods and practical 

problems to be solved;

• Human-in-the-loop approach to optimization;

• Personal views on research needs and motivations.
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My pathway to become an EC researcher

• Graduated from Xidian University with a bachelor in Information Science;

• Master and PhD in Artificial Intelligence, Otago University, New Zealand;

• First academic job as a lecturer at Charles Sturt University, then Monash, and 

finally at RMIT University;

• In early years interested in artificial life, complexity, and swarming behaviour;

• After a PhD on “"Connectionist Learning Architecture Based on an Optical 

Thin-Film Multilayer Model“, looked for new research ideas…

• Developed a fire-spread simulation model using cellular automata (i.e., an 

artificial life model), which led to my interests in swarm intelligence;

• Attended Swarm Fest in 2001, and first time at CEC in 2002.

• Attended first GECCO in 2003; my first ever GECCO paper, on a multiobjective

PSO algorithm won the ACM SIGEVO Impact Award in 2013 for the highest 

citations among all GECCO’03 paper.

• Visiting research fellow to Prof. Xin Yao at the University of Birmingham in 

2008.

Li, X. (2003), "A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization", in Proceeding of Genetic and Evolutionary 

Computation Conference 2003 (GECCO'03), Lecture Notes in Computer Science (LNCS 2723),eds. Erick Cantu-Paz et al., Chicago, USA, 12-16, July, 

2003, pp.37-48.
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My pathway to become an EC researcher

CEC'17 conference, San Sebastián, Spain, receiving 2017 IEEE CIS TEVC Outstanding Paper Award.
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Staff: Prof. Xiaodong Li (Group leader), A/Prof. Vic Ciesielski, Dr. Andy Song, Dr. Jeffrey Chan, A/Prof. Fabio Zambetta

Students: more than 15 PhD candidates, plus several master and honours students

Teaching: Artificial Intelligence, Machine Learning, Evolutionary Computing, and Data Mining 

Further information: https://titan.csit.rmit.edu.au/~e46507/ecml/

We study and develop nature-inspired computational models and algorithms, especially in 

the areas of evolutionary computation and machine learning, and apply them to real-world 

problems. The group takes an inter-disciplinary approach drawing its inspirations from 

mathematical programming, meta-heuristics, and operations research. 

https://titan.csit.rmit.edu.au/~e46507/ecml/


ECML members



My research activities so far have been largely 

focussed on algorithmic development or enhancement.

Next few slides are some examples…
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But my interests have gradually shifted towards 

solving more practically relevant problems.



Divide-and-Conquer: Large Scale Global 

Optimization with variable grouping techniques

Omidvar, M.,Li, X. Mei, Y. Yao, X. (2014), "Cooperative Co-evolution with Differential Grouping for Large Scale Optimization", IEEE Transactions on 

Evolutionary Computation, 18(3): 378-393, June 2014 (2017 IEEE CIS "IEEE Transactions on Evolutionary Computation Outstanding Paper Award).

Mei, Y.,Li, X. and Yao, X. (2014), "Cooperative Co-evolution with Route Distance Grouping for Large-Scale Capacitated Arc Routing Problems", IEEE 

Transactions on Evolutionary Computation, 18(3): 435-449, June 2014.
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Multi-modal Optimization using Niching Methods

X. Li, “Niching without niching parameters: Particle swarm optimization using a ring topology,” IEEE Trans. on Evol. Comput., vol. 14, no. 1, pp. 150 

– 169, February 2010.

X. Li, A. Engelbrecht, and M. Epitropakis, “Benchmark functions for cec’2013 special session and competition on niching methods for multimodal 

function optimization,” Technical Report, Evolutionary Computation and Machine Learning Group, RMIT University, 2013.
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Preference-based Evolutionary Multiobjective 

Optimization

Mohammadi, A., Omidvar, M. and Li, X. (2013), "A New Performance Metric for User-preference Based Multi-objective Evolutionary Algorithms", in 

Proceedings of Congress of Evolutionary Computation (CEC 2013), IEEE, pp.2825 - 2832.

Carrese, R., Sobester, A., Winarto, H., and Li, X. (2011), "Swarm heuristic for identifying preferred solutions in surrogate-based multiobjective 

engineering design", American Institute of Aeronautics and Astronautics Journal, 49(7): 1437- 1449, July 2011.
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Shifting towards solving more practical problems

• When interacting with operations research community;

• NICTA/Data61 optimization summer schools;

• People in engineering and mathematical programming (RMITOpt group, 

AMSI Optimise 2017, Data61 talk series);

• PhD projects with more practical problems;

• Personal communication with Prof. Zbigniew Michalewicz; his company 

SolveIT (specialised in integrated planning and supply chain optimization) 

winning big contracts with some of the largest companies in Australia such as 

BHP, Rio Tinto.

• Changing from more algorithms focused to more problem focused.

Michalewicz, Z., The Emperor is Naked: Evolutionary Algorithms for Real-World Applications ACM Ubiquity, November 2012, pp. 1 - 13.

Michalewicz, Z., Quo Vadis, Evolutionary Computation? On a growing gap between theory and practice, Springer LNCS State-of-the-Art Survey, J. Liu, 

C. Alippi, B. Bouchon-Meunier, G. Greenwood, H. Abbass (Editors), 2012.
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Strengths of nature-inspired optimization methods

• Pros

– Robust and generic solution methods;

– No gradient information is required;

– Less demanding on rigorous math formulation;

– Usually work with a population of candidate solutions (implicit 

parallelism);

– Strong global search capability, i.e., less prone to getting 

stuck on local optima, and work well on non-convex problems;

– Fewer assumptions

• Cons

– Weak theoretical foundation; less established;

– Computationally more expensive, as compared with 

conventional methods;

– Little consideration on solution constructive approaches;

– Difficult to analyse population dynamics;

– Difficult to apply to complex large-scale problems with 

multitudes of components inter-dependent to each other.
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Mathematical programming methods

• Pros

– Strong theoretical foundation, more established;

– Work well on linear and integer programming 

problems; if problems are not linear, and 

approximation can be still good enough for certain 

problems;

– Work well on problems with convex shapes;

– “Construct and search” approach can be effective;

– Some effective problem reduction techniques;

– Usually single-solution search methods.

• Cons

– Often have strong assumptions, e.g., convexity;

– Non-convex and nonlinear problems are much 

harder to deal with; unfortunately many real-world 

problems belong to this class;

– MIP solvers such as CPLEX or GUROBI often can 

only solve small or medium sized problem 

instances, e.g., the branch-and-bound methods.
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Mathematical programming methods

• Lagrangian relaxation:

• Now the original problem is transformed into the following 

relaxed problem:

• Now the task is to find the greatest lower bound for the 

above relaxed problem.

• Other well known methods include LP relaxation, Dantzig-

Wolfe decomposition, column generations, dynamic 

programming, Benders’ decomposition, etc.
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Hybrid methods – new potential?

• Synergy - bring together the bests from both paradigms -

EC and math programming methods;

• Focusing more on solving problems that are practically 

relevant, rather than purely for new algorithms;

• Fertile grounds for new research ideas!!

• EC methods can leverage on the strong theoretical 

foundation of the exact methods, from the field of 

operations research;

• Exact methods can be enhanced to solve non-convex and 

nonlinear problems for large problem instance sizes, and 

can be made more robust, with fewer assumptions.

Blum, C. and Raidl, G.R. Hybrid Metaheuristics - Powerful Tools for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms, 

Springer 2016.

Blum, C., Puchinger, J. and Raidl, G.R. and Roli, A.”Hybrid metaheuristics in combinatorial optimization: A survey”. Applied Soft Computing 

11(6): 4135-4151 (2011).
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Constrained Pit (CPIT) problems in mining

• Open-pit mining is an important industry in 

Australia

• Small increases, or decreases, in 

efficiency can have a large effect on profit. 

• The two most critical tasks in planning an 

open pit mine is deciding what to mine, 

and also the order in which to mine it. 

• The CPIT problem combines these two 

tasks, allowing the mine operator to 

estimate the total value of the mine over its 

life and also to identify the most valuable 

areas for excavation.

• Properties: 

– very large-scale

– Few side constraints, but many 

variables and precedence constraints;

– Current MIP solvers cannot handle 

without first using decomposition.
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CPIT problem modelling

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the 

2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.

Kenny, A., Li, X., Ernst, A.T. and Thiruvady, D., (2017), "Towards Solving Large-Scale Precedence Constrained Production Scheduling Problems in 

Mining", in Proceedings of the 2017 Conference on Genetic and Evolutionary Computation Conference (GECCO), Berlin, Germany, ACM, pp.1137-

1144, 2017.

The problem can be modelled as a network flow problem, 

and the goal is to find the maximum closure, which gives 

the maximum profit.
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CPIT problem modelling

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the 

2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.
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Merge search – from a population perspective

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the 

2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.

Principle: if a variable takes the same 

value across many solutions to the same 

problem, then it is likely to take the same 

value again (if another solution is 

generated). As the population size 

increases, the probability of this being 

true also increases. The nature of CPIT 

problem makes it a perfect fit to test this 

idea.

• The merge operation is a problem reduction technique that identifies groups of 

variables that can be removed from main problem.

• Once the merge has occurred, a MIP solver can be used to find a solution to this 

restricted problem. 

• This solution can then be used to generate another population of neighbouring solutions, 

and the cycle continues.
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Merge search – from a population perspective

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the 

2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.

Figure: a) Parallel merge search; b) Time expanded problem graph for two time periods. The 

cumulative variables ensure that once a block is mined, it stays mined in subsequent periods.
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Merge search – from a population perspective

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the 

2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.

Initial solution construction: cones of 

blocks are computed and ranked according 

to their value and resource usage and then 

mined heuristically until the resource limits 

were reached for each period.
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Further improvement on merge search

Kenny, A., Li, X., Ernst, A.T. and Sun, Y., (2019), "An Improved Merge Search Algorithm For the Constrained Pit Problem in Open-pit Mining", in 

Proceedings of the 2019 Conference on Genetic and Evolutionary Computation Conference (GECCO), Prague, 2019 (accepted on 21/03/2019).
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Minimum cost network flow problems
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Minimum cost integer flow problem (MCFP)
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Ghasemishabankareh, B., Ozlen, M., Neumann, F. and Li, X. (2018), "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow 

Problems", in Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN'2018), LNCS, Springer, Coimbra, 

Portugal, pp.69 - 81, 2018.
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PTbR Generate a path Send flow

Option 1: Maximum

Option 2: one-by-one

Option 3: Random

Based on

probabilities

Flow= 6

Flow= 4

Generate a path Send flow

Probability tree-based representation (PTbR)

• Using GA to evolve representation 

schemes for solving MCFP;

• Using non-convex cost functions.

Solution 

Space
Encoding 

Space

Encoding

Decoding

Ghasemishabankareh, B., Ozlen, M., Neumann, F. and Li, X. (2018), "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow 

Problems", in Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN'2018), LNCS, Springer, Coimbra, 

Portugal, pp.69 - 81, 2018.



Minimum cost integer flow problem (MCFP)
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Ghasemishabankareh, B., Ozlen, M., Neumann, F. and Li, X. (2018), "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow 

Problems", in Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN'2018), LNCS, Springer, Coimbra, 

Portugal, pp.69 - 81, 2018.

A set of 35 single-source single sink MCFP instances is randomly generated with different 

number of nodes (n = {5, 10, 20, 40, 80, 120, 160}). Each instance has n nodes and m arcs. 

Five different networks are randomly generated for each node size n. 

for
each node size (n), five different networks are randomly generated.



Minimum cost integer flow problem (MCFP)
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Ghasemishabankareh, B., Ozlen, M., Neumann, F. and Li, X. (2018), "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow 

Problems", in Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN'2018), LNCS, Springer, Coimbra, 

Portugal, pp.69 - 81, 2018.

Table: results on cost function F1. Three possible ways to send the flow over the generated 

path: randomly (R), one-by-one (O), or by a maximum possible amount (M).

for
each node size (n), five different networks are randomly generated.



Human-in-the-loop for EMO

• The field of evolutionary multiobjective optimisation has traditionally involved 
the approximation of the entire Pareto Front of the objective space.

• The computational effort required to find these solutions is significant and the 
number of solutions found can be considerable.

• By incorporating user preferences the search for solutions can be directed or 
focussed toward a region of interest.

• It is often assumed that the user has a set of predetermined preferences and 
an implicit value function that can evaluate potential solutions.

• To aid preference articulation in optimisation, the technique of progressive 
interactivity has been incorporated from Operations Research.

• This allows the user to learn about the problem, explore options and formulate 
their preferences while reducing the search space and computation time

Taylor, K. and Li, X. (2018), "Interactive Multiobjective Optimisation: Preference Changes and Algorithm Responsiveness", in Proceedings of 

the 2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.761-768, 2018.
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An interactive approach for EMO

– Decision maker interacts with an EMO algorithm during its optimization run

– DM can be educated and can give intermediate feedback. This means preference information can 
be adjusted during the run.

– The algorithm is more adaptive to changing needs.

– Search space can be significantly reduced, since effort is more targeted to regions of interests.  
Machine learning can be used to learn and model preference information.
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An interactive approach for EMO
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An interactive approach for EMO
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Taylor, K., Li, X. and Chan, J. (2019), "Improving Algorithm Response to Preference Changes in Multiobjective Optimisation Using Archives", in 

Proceedings of Congress of Evolutionary Computation (CEC 2019), IEEE, 2019 (accepted on 08/03/2019).

Taylor, K. and Li, X. (2018), "Interactive Multiobjective Optimisation: Preference Changes and Algorithm Responsiveness", in Proceedings of the 

2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.761-768, 2018.



Truss structural optimization
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Truss structural optimization

Figure: Illustration of (a) 11-

member, 6-node ground structure 

and (b), (c), and (d) its three 

different design solutions.

• Finding an optimal design for a truss structure involves optimizing its topology, size, and shape. 
• A truss design problem is usually multimodal, meaning that the problem offers multiple optimal 

designs in terms of topology and/or size of the members, but they are evaluated to have similar or 
equally good objective function values.
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Bilevel formulation of the truss problem

We then can apply a niching method at the upper 

level, to obtain multiple designs in terms of 

topology as well as the size of the truss problem. 

A bilevel formulation for the truss problem:

• We treat the topology optimization as the upper level optimization task, and the size 

and shape optimization as the lower level optimization task. 

• The goal is to obtain multiple truss designs by considering both its topology and size 

simultaneously.

Islam, M.J., Li, X. and Deb, K., (2017), "Multimodal Truss Structure Design Using Bilevel and Niching Based Evolutionary Algorithms", in Proceedings of

the 2017 Genetic and Evolutionary Computation Conference (GECCO), Berlin, Germany, ACM, pp.274-287, 2017.
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Truss solutions found by applying niching
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Figure: Found truss solutions for 39-

member, 12-node Ground structure found 

by applying niching to the upper level.

Figure: Found truss solutions using (a-b) 

PSO algorithms by Luh and Lin, and (c-d) 

GA by Deb and Gulati.

Islam, M.J., Li, X. and Deb, K., (2017), "Multimodal Truss Structure Design Using Bilevel and Niching Based Evolutionary Algorithms", in 

Proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO), Berlin, Germany, ACM, pp.274-287, 2017.

Luh, G.C. and Lin, C.Y. (2011), “Optimal design of truss-structures using particle swarm optimization”, Computer & Structures 89, 23–24 

(2011), 2221 – 2232.

Deb, K. and Gulati, S. (2001), “Design of truss-structures for minimum weight using genetic algorithms”, Finite Elements in Analysis and 

Design 37, 5 (2001), 447 – 465.
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Take-home message …

• Many challenges remain when tackling real-world problems using EC methods;

• For practitioners, they are most interested in solving the problems at hand, NOT 

how well your methods perform on simple test functions;

• Real-world problems are far more challenging, and may require a combination of 

techniques in order to be effective;

• Important to study carefully the properties/characteristics of the problem under 

consideration, and try to incorporate the domain-specific knowledge into the 

design of the solution method;

• Rich ideas beyond just computer science; there are actually many others also do 

optimization, and we can learn a lot from them, e.g., many mature ideas in the 

operations research field;

• Do not be afraid of doing things differently; try NOT to follow the crowd;
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Any questions?
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