Challenges in applying Evolutionary
Algorithms to real-world problems

Professor Xiaodong Li
School of Science (Computer Science and Software Engineering)
RMIT University, Melbourne, Australia

Email: xiaodong.li@rmit.edu.au

® RMIT

www.rmit.edu.au UNIVERSITY




Why this talk?

* Personal experience when talking to optimization
researchers from math and operations research
backgrounds;

* Dealing with practitioners who need solutions to their
real-world problems;

« Growing popularity of nature-inspired optimization
techniques;

 Clear gaps between existing methods and practical
problems to be solved,;

* Human-in-the-loop approach to optimization;

* Personal views on research needs and motivations.
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My pathway to become an EC researcher

« Graduated from Xidian University with a bachelor in Information Science;
« Master and PhD in Artificial Intelligence, Otago University, New Zealand,;

 First academic job as a lecturer at Charles Sturt University, then Monash, and
finally at RMIT University;

* In early years interested in artificial life, complexity, and swarming behaviour;

 After a PhD on “'Connectionist Learning Architecture Based on an Optical
Thin-Film Multilayer Model®, looked for new research ideas...

» Developed a fire-spread simulation model using cellular automata (i.e., an
artificial life model), which led to my interests in swarm intelligence;

« Attended Swarm Fest in 2001, and first time at CEC in 2002.

 Attended first GECCO in 2003; my first ever GECCO paper, on a multiobjective
PSO algorithm won the ACM SIGEVO Impact Award in 2013 for the highest
citations among all GECCQO’03 paper.

* Visiting research fellow to Prof. Xin Yao at the University of Birmingham in
2008.

Li, X. (2003), "A Non-dominated Sorting Particle Swarm Optimizer for Multiobjective Optimization", in Proceeding of Genetic and Evolutionary
Computation Conference 2003 (GECCQ'03), Lecture Notes in Computer Science (LNCS 2723),eds. Erick Cantu-Paz et al., Chicago, USA, 12-16, July,
2003, pp.37-48.
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My pathway to become an EC researcher

.ﬁf-y ol 4 y
CEC'17 conference, San Sebastian, Spain, receiving 2017 IEEE CIS TEVC Outstanding Paper Award.
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Evolutionary Computation
and Machine Learning

We study and develop nature-inspired computational models and algorithms, especially in
the areas of evolutionary computation and machine learning, and apply them to real-world
problems. The group takes an inter-disciplinary approach drawing its inspirations from
mathematical programming, meta-heuristics, and operations research.

Staff: Prof. Xiaodong Li (Group leader), A/Prof. Vic Ciesielski, Dr. Andy Song, Dr. Jeffrey Chan, A/Prof. Fabio Zambetta
Students: more than 15 PhD candidates, plus several master and honours students
Teaching: Atrtificial Intelligence, Machine Learning, Evolutionary Computing, and Data Mining

Further information: https://titan.csit.rmit.edu.au/~e46507/ecml/
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My research activities so far have been largely
focussed on algorithmic development or enhancement.

Next few slides are some examples...

But my interests have gradually shifted towards
solving more practically relevant problems.
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Divide-and-Conquer: Large Scale Global
Optimization with variable grouping techniques
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Figure: A routing plan
Omidvar, M. Li, X. Mei, Y. Yao, X. (2014), "Cooperative Co-evolution with Differential Grouping for Large Scale Optimization", IEEE Transactions on
Evolutionary Computation, 18(3): 378-393, June 2014 (2017 IEEE CIS "IEEE Transactions on Evolutionary Computation Outstanding Paper Award).
Mei, Y.,Li, X. and Yao, X. (2014), "Cooperative Co-evolution with Route Distance Grouping for Large-Scale Capacitated Arc Routing Problems”, IEEE
Transactions on Evolutionary Computation, 18(3): 435-449, June 2014.
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Multi-modal Optimization using Niching Methods
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X. Li, “Niching without niching parameters: Particle swarm optimization using a ring topology,” IEEE Trans. on Evol. Comput., vol. 14, no. 1, pp. 150
— 169, February 2010.

X. Li, A. Engelbrecht, and M. Epitropakis, “Benchmark functions for cec’2013 special session and competition on niching methods for multimodal
function optimization,” Technical Report, Evolutionary Computation and Machine Learning Group, RMIT University, 2013.
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Objective 2 —

Preference-based Evolutionary Multiobjective

Optimization
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Mohammadi, A., Omidvar, M. and Li, X. (2013), "A New Performance Metric for User-preference Based Multi-objective Evolutionary Algorithms", in

Proceedings of Congress of Evolutionary Computation (CEC 2013), IEEE, pp.2825 - 2832.

Carrese, R., Sobester, A., Winarto, H., and Li, X. (2011), "Swarm heuristic for identifying preferred solutions in surrogate-based multiobjective
engineering design", American Institute of Aeronautics and Astronautics Journal, 49(7): 1437- 1449, July 2011.
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Shifting towards solving more practical problems

* When interacting with operations research community;
* NICTA/Data6l optimization summer schools;

* People in engineering and mathematical programming (RMITOpt group,
AMSI Optimise 2017, Data61 talk series);

* PhD projects with more practical problems;

» Personal communication with Prof. Zbigniew Michalewicz; his company
SolvelT (specialised in integrated planning and supply chain optimization)
winning big contracts with some of the largest companies in Australia such as
BHP, Rio Tinto.

* Changing from more algorithms focused to more problem focused.

Michalewicz, Z., The Emperor is Naked: Evolutionary Algorithms for Real-World Applications ACM Ubiquity, November 2012, pp. 1 - 13.
Michalewicz, Z., Quo Vadis, Evolutionary Computation? On a growing gap between theory and practice, Springer LNCS State-of-the-Art Survey, J. Liu,
C. Alippi, B. Bouchon-Meunier, G. Greenwood, H. Abbass (Editors), 2012.
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Strengths of nature-inspired optimization methods

* Pros
— Robust and generic solution methods;
— No gradient information is required;
— Less demanding on rigorous math formulation;

— Usually work with a population of candidate solutions (implicit
parallelism);

— Strong global search capability, i.e., less prone to getting
stuck on local optima, and work well on non-convex problems;

— Fewer assumptions e :‘a'*'M:m.v

- ao RCORLS #l@ :
 Cons \%\reloms@ms0M@\‘%,

— Weak theoretical foundation:; less established:

— Computationally more expensive, as compared with
conventional methods;

— Little consideration on solution constructive approaches;
— Difficult to analyse population dynamics;

— Difficult to apply to complex large-scale problems with
multitudes of components inter-dependent to each other.
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Mathematical programming methods

* Pros
— Strong theoretical foundation, more established;

— Work well on linear and integer programming
problems; if problems are not linear, and Y
approximation can be still good enough for certain « '(wf (x,o)dx:M(T(f)-;olnu:.vl;. J; 2
problems; '

— Work well on problems with convex shapes;

— “Construct and search” approach can be effective;
— Some effective problem reduction techniques;

— Usually single-solution search methods.

« Cons FION g()a
— Often have strong assumptions, e.g., convexity; Convex Concave
— Non-convex and nonlinear problems are much ; /Q\
harder to deal with; unfortunately many real-world \ : : :
problems belong to this class; : /
— MIP solvers such as CPLEX or GUROBI often can r Y z Y

only solve small or medium sized problem
instances, e.g., the branch-and-bound methods.
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Mathematical programming methods

Lagrangian relaxation:

T

Minimize — ¢'x Minimize ¢’x+u’ (Ax—b)
subject to ‘ subject to
Ax=Db xecX
xeX

* Now the original problem is transformed into the following
relaxed problem:

Minimize ¢/x+u’(Ax—Db) D, D, D,
subject to
xecX i
* Now the task is to find the greatest lower bound for the B2
above relaxed problem.
* Other well known methods include LP relaxation, Dantzig- Fn

Wolfe decomposition, column generations, dynamic
programming, Benders’ decomposition, etc.
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Hybrid methods — new potential?

Synergy - bring together the bests from both paradigms -
EC and math programming methods;

Focusing more on solving problems that are practically
relevant, rather than purely for new algorithms;

Fertile grounds for new research ideas!!

EC methods can leverage on the strong theoretical
foundation of the exact methods, from the field of
operations research;

» Exact methods can be enhanced to solve non-convex and
nonlinear problems for large problem instance sizes, and
can be made more robust, with fewer assumptions.

Blum, C. and Raidl, G.R. Hybrid Metaheuristics - Powerful Tools for Optimization. Artificial Intelligence: Foundations, Theory, and Algorithms,

Springer 2016.
Blum, C., Puchinger, J. and Raidl, G.R. and Roli, A.”"Hybrid metaheuristics in combinatorial optimization: A survey”. Applied Soft Computing

11(6): 4135-4151 (2011).
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Constrained Pit (CPIT) problems in mining

= s g Y W o

Open-pit mining is an important industry in
Australia

Small increases, or decreases, in
efficiency can have a large effect on profit.

The two most critical tasks in planning an
open pit mine is deciding what to mine,
and also the order in which to mine it.

The CPIT problem combines these two
tasks, allowing the mine operator to
estimate the total value of the mine over its
life and also to identify the most valuable
areas for excavation.

Properties:

— very large-scale

— Few side constraints, but many
variables and precedence constraints;

— Current MIP solvers cannot handle
without first using decomposition.
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CPIT problem modelling

» The mine is divided up into discrete blocks, each given a
value and a resource cost to extract

» The objective of the CPIT problem is to maximise the net
present value (NPV) over the life of the mine, taking into
account the following restrictions:
1. Each block is mined at most once
2. A block cannot be mined before all of its predecessors
3. The resource limits consumed by mining blocks must not

be violated

1 -2 -2 -2 -2

4
(a) (b)

Figure: A 2D cross-section of the CPIT problem is represented as a graph
with precedence constraints as arcs between blocks.

Gecml
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The problem can be modelled as a network flow problem,
and the goal is to find the maximum closure, which gives

the maximum profit.

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the

2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.
Kenny, A., Li, X., Ernst, A.T. and Thiruvady, D., (2017), "Towards Solving Large-Scale Precedence Constrained Production Scheduling Problems in

Mining", in Proceedings of the 2017 Conference on Genetic and Evolutionary Computation Conference (GECCO), Berlin, Germany, ACM, pp.1137-

1144, 2017.

17
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CPIT problem modelling

» The MIP formulation for the CPIT problem is given below:

max Z Z Pbt(xbt - xbt—l)a

beB teT
s.t., Xpr < Xat V(a,b) e P,.te T,

Xbt S Xb,t+1 Vbe Bs t € Ts

Z Gor(Xpt — Xbe—1) < Ryt VreR, teT,

beB

xpr € {0,1} VbeB,teT.

Here, B is the set of blocks; T the set of periods; pp; the
profit made from mining block b at time t; P is the set of
precedences, where (a, b) € P if block a must be mined
immediately before block b; R is the set of resources; qp,
the amount of resource r consumed by mining b; R,: the
total amount of r available at t; and, xp; is a binary
decision variable that is 1 if b is mined at t or earlier and 0
otherwise.

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the
2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.
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Merge search — from a population perspective

Principle: if a variable takes the same
value across many solutions to the same
problem, then it is likely to take the same
value again (if another solution is
generated). As the population size (a) Single solution (b) Multiple solutions overlaid
increases, the probability of this being

true also increases. The nature of CPIT Figure 1: By overlaying multiple solutions, regions of fixed

problem makes it a perfect fit to test this and free variables can be identified to produce a reduced ver-
idea sion of the problem.

« The merge operation is a problem reduction technique that identifies groups of
variables that can be removed from main problem.

« Once the merge has occurred, a MIP solver can be used to find a solution to this
restricted problem.

» This solution can then be used to generate another population of neighbouring solutions,
and the cycle continues.

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the
2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.
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Figure: a) Parallel merge search; b) Time expanded problem graph for two time periods. The
cumulative variables ensure that once a block is mined, it stays mined in subsequent periods.

» Each block has a cone of precedence blocks that must be mined before it
» A population of solutions is produced by swapping these cones of blocks between periods

(a) Initial solution [b) Block and direction selected (C) Block cone computed (d:] Swap period of blocks in cone

Figure: A block and its predecessor cone is swapped to create a neighbouring solution.

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the
2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.
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Merge search — from a population perspective

Table 1: Characteristics of minelib [7] datasets.

Initial solution construction: cones of

Instance Blocks Precedences Periods Variables Constraints

newmani 1.060 3.022 6 6.360 29.904 blocks are computed and ranked according
zuck_small 9,400 145,640 20 188,000 3,100,840 to their value and resource usage and then
kd S ;g;i? 12;?%? i igg?gg 1523;;22 mined heuristically until the resource limits
zuck_medium , , s 9, , , :

marvin 53,271 650,631 20 1,065,420 14,078,080 were reaChed fOI‘ eaCh perIOd'

zuck_large 96,821 1,053,105 30 2,904,630 34,497,840

Table 2: Results on minelib dataset instances. Mean and standard deviation not reported for minelib|[7], as the only information
given was a single objective value. The subscripts gs and s stand for random search and cone search respectively, and denote
the algorithm used to construct the initial solutions.

LP UB minelib RandomSearch ConeSearch SerialMergegs SerialMergecs ParallelMergecs
Instance mean std. dev mean std. dev mean std. dev. mean std. dev. mean std. dev.
newman1 2.449E+07 2.348E407 2.322E+07 9.356E+04 2.355E+07 1.021E+05 2.411E+07 1.768E+04 2.407E+07 4.889E+04 2.413E+07 1.506E+04
zuck_small 8.542E+08  7.887E+08 5.676E+08 9.165E+06 7.868E+08 1.246E+07 7.832E+08 7.590E+06 8.373E+08 1.249E+06 8.390E+08 9.056E+05
kd 4.095E+08  3.969E+08 3.508E+08 9.307E+05 3.915E+08 1.273E+06 3.845E+08 7.837E+05 3.987E+08 9.442E+05 4.007E+08 3.339E+06
zuck_medium 7.106E+08 6.154E+08 4.587E+08 4.405E+06 6.083E+08 1.494E+07 6.390E+08 6.524E+06 6.444E+08 2.444E+06 6.473E+08 1.828E+06
marvin 8.639E+08  8.207E+08 5.925E+08 9.839E+06 7.985E+08 6.507E+06 7.955E+08 4.420E+06 8.470E+08 1.422E+06 8.500E+08 9.534E+05

zuck_large 5.739E+07 5.678E+07 4.136E+07 7.470E+04 5.042E+07 2.073E+05 4.616E+07 1.224E+05 5.102E+07 2.493E+05 5.182E+07 3.196E+05

Kenny, A., Li, X. and Ernst, A.T. (2018), "A Merge Search Algorithm and its Application to the Constrained Pit Problem in Mining", in Proceedings of the
2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.316 - 323, 2018.
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Further improvement on merge search (ecml

108
6.55 T T T
=w=w ParallelMerge |
Table 3: Difference in problem size between the original and wrv+r ImprovedMerge
the reduced sub-problem produced by the merge operation. 6.5 L ImprovedMergens - ]
P :
Instance Original  ParallelMerge ImprovedMerge E ' :- ''''''''
Reduced % Reduced Covered % % 6.45 |- : =
newman1 6.36E+03 1.16E+03 18.2 5.98E+02 1.27E+03 19.9 ;%. .
zuck_small 1.88E+05 1.50E+04 8.0 7.55E+02 1.98E+03 1.1 @
kd 1.70E+05 1.42E+04 8.4 7.07E+02 3.37E+03 2.0
zuck_medium 4.49E+05 3.99E+04 9.1 1.74E+03 9.41E+03 2.1 6.4 - .
marvin 1.07E+06 1.38E+04 13 6.52E+02 1.90E+03 0.2 LI
zuck_large 2.90E+06 1.88E+05 6.5 5.31E+02 1.65E+03 0.06 -
0

DN &

N

(a) Solutions {a, b} and {c, d} (b) Solution with groups {a, d} (c) Solution with groups {b. ¢} (d) Solution with groups {a, b, c, d}

4

Figure 4: By selecting different combinations of variable groups in the reduced sub-problem, new solutions can be generated.

Kenny, A., Li, X., Ernst, A.T. and Sun, Y., (2019), "An Improved Merge Search Algorithm For the Constrained Pit Problem in Open-pit Mining", in
Proceedings of the 2019 Conference on Genetic and Evolutionary Computation Conference (GECCO), Prague, 2019 (accepted on 21/03/2019).
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Minimum cost integer flow problem (MCFP) @C””l

z= Z Z fijxij (1)

i=1 j=1
q. ifi=1 Supply=10 Demand=10
lej Zxkl— 0, ifi=(23....n-1) (2)
Jj=1 —q, ifi=n
l;'j < Xij < Ujj (i,j=1,...,n) (3) “
.. = Possible optimal solution
xij €Z (i,j=1,...,n) (4)
Rodes: ! 2 3 4 5 Feasible region
Priorities 514 1] 3|2
Figure 2: A chromosome for priority based encoding
method. -~
1

Path ®_>®_>®_>® Flow=7 ) Feasible space and encoding space.
N Path Flow=7
Path (1 2 3 4 Flow=1

Path A Flow=2 Path @x.®—>0 FIOW=2
d 1 =z
-e-0-e NoTomomok

(b) A feasible solution that the priority based
encoding cannot represent

Figure 3: An example of priority based decoding paths

Ghasemishabankareh, B., Ozlen, M., Neumann, F. and Li, X. (2018), "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow
Problems", in Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN'2018), LNCS, Springer, Coimbra,
Portugal, pp.69 - 81, 2018.
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2 3 Generate a path Send flow

2
S %, S
4/“ ‘°3 4/“ ’_\s “ Path, o o o o Flow= 6
~ N G ~
A f P Path, @—-@——@ Flow= 4

W Encoding

] ] Solution
« Using GA to evolve representation Space

schemes for solving MCFP; _
: : Decodin
« Using non-convex cost functions.

Based on
probabilities

Encoding
Space

Option 1. Maximum

Generate a path Send flow Option 2: one-by-one

Option 3: Random

Ghasemishabankareh, B., Ozlen, M., Neumann, F. and Li, X. (2018), "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow
Problems", in Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN'2018), LNCS, Springer, Coimbra,
Portugal, pp.69 - 81, 2018.
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Table 1. A set of 35 randomly generated single-source single-sink MCFP instances.

No.n m|No. n miNo. nn m|No. n m|No. n miiNo. n m|No. n m
1 36 2411 114]16 369(21 1484[26 341931 4882
2 S|7 3412 OR(17 385(22 1406|27 316632 4718
3 5 88 1032[13 20 10518 40 37323 80 1560|28 120 3326|133 160 4986
4 919 27114 9919 406|24 135329 321234 4835
5 8110 29(15 101120 406|25 1526(30 2911|135 5130

A set of 35 single-source single sink MCFP instances is randomly generated with different
number of nodes (n = {5, 10, 20, 40, 80, 120, 160}). Each instance has n nodes and m arcs.
Five different networks are randomly generated for each node size n.

Ghasemishabankareh, B., Ozlen, M., Neumann, F. and Li, X. (2018), "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow

Problems", in Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN'2018), LNCS, Springer, Coimbra,
Portugal, pp.69 - 81, 2018.
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Minimum cost integer flow problem (MCFP)
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19 406 (330 0.8437 3.93E-01 | 370 3.22 G.36E-01 [ 270 6.5308 4.73E-01 | 342 10.684 6.18E-01 |3600 0.2118 |3600 2.298 -1
20 406 (350 3.5742 4.14F-01 | 435 6177 6G.60E-01 | 320 0.1484 6.27E-01 | 360 12,2304 7.58E-01 (3600 8.7013 |3600 2.7180 |-1
21 14241336 0.7333 2.71E-04 1401 08181 T1.67VE-O01 [ 375 23523 T.75E-01 [ 4509 32517 1.3ZE+00[3600 NFE 3600 5.703 1
22 | |1406(326 0.6737 4.00E-04 | 336  0.806 1.56E-01 | 360 2.2178 4.64E-01 | 506 5.4074 1.03E-L-00|3600 NF 3600 4082 1
23 | 80 1560|270 0.8085 3.36E-04 | 361 1.6541 4.84F-01|278 4.128 8.63E-01 420 5.6396 0.22E-01 |3600 NF 3600 7476 1
24 1353|342 0.6585 3.50E-04 | 464 1.793 5.88E-01|354 4.3011 7.70E-01 779 8.1006 1.32E-+00|3600 NF 3600 4.18 1
25 1526(322 0.7628 3.30E-04 | 304 1.0477 3.20E-01|302 2.7758 G&5.56E-01|583 5.0059 1.11E+00|3600 NF 3600 2642 1
26 10725 1.0924 L 3TE-04 [ 725 28201 3.00E-01 (711  5.525 4.30BE-01 [ 577 8.5144d T.ITEH00[3600 NF 3600 b.080 1
il 3166|728 1.0818 0.44FE-04 | 805 2.4484 3.80E-01 (624 49784 6.08E-01| 754 T.6565 1.16E-4+00|3600 NF 3600 2.103 1
28 |120(3326|802 1.0152 6.75E-04 | 803 2.3035 3.03E-01 | 636 5.0317 6.01E-01 | 906 T7.5819 7.76E-01 |3600 NF 3600 13.321 1
20 3212|748 1.0532 T.88E-04 | 877 25385 5.05E-01 | 673 5.2673 6.27E-01 | 777 10.2727 1.74E400(3600 NF 3600 3.414 1
30 2011|774 0.9446 4.06E-04 | 828 20145 4.28E-01 | 697 4.2784 6.21E-01 [ 817 7.5239 1.37EL00(3600 NF 3600 4.297 1
31 ARRZ[8aT 12.2598 2.50E+00] 914 145003 4.31E-01 [ 950 156057 D.54E-01 (922 135152 Z.74E-01 [3600 NFE 3600 14.18 1
32 4718|961 6.1413 1.42E400| 019 15.6080 0.73E-01 | 952 17.0503 T7.80E-01 | 927 14.6681 9O.81E-01 |3600 NF 3600 10.57 1
33 |160)4086|002 8.5483 1.21E400| 012 16.2104 6.18E-01 | 047 17.2818 R47E-01 (1345 15.1022 7.50E-01 |3600 NF 3600 14.45 1
A4 4835|853 6.3798 1.01E400(|1064 11.199 4.81E-01 (1067 12.1144 6.70E-01 | 942 10.3464 4.48E-01 |3600 NF 3600 14,1422 |1
A5 5130|994 10.6176 1.22E4+00|1068 197703 7.70E-01 (1081 20.5212 5.50E-01 | 806 18.0247 5.97E-01 |3600 NF 3600 15043 1

Table: results on cost function F1. Three possible ways to send the flow over the generated
path: randomly (R), one-by-one (O), or by a maximum possible amount (M).

Ghasemishabankareh, B., Ozlen, M., Neumann, F. and Li, X. (2018), "A Probabilistic Tree-Based Representation for Non-convex Minimum Cost Flow
Problems", in Proceedings of the 15th International Conference on Parallel Problem Solving from Nature (PPSN'2018), LNCS, Springer, Coimbra,
Portugal, pp.69 - 81, 2018.
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Human-in-the-loop for EMO @le

* The field of evolutionary multiobjective optimisation has traditionally involved
the approximation of the entire Pareto Front of the objective space.

* The computational effort required to find these solutions is significant and the
number of solutions found can be considerable.

e By incorporating user preferences the search for solutions can be directed or
focussed toward a region of interest.

* Itis often assumed that the user has a set of predetermined preferences and
an implicit value function that can evaluate potential solutions.

* To aid preference articulation in optimisation, the technique of progressive
interactivity has been incorporated from Operations Research.

e This allows the user to learn about the problem, explore options and formulate
their preferences while reducing the search space and computation time q

Taylor, K. and Li, X. (2018), "Interactive Multiobjective Optimisation: Preference Changes and Algorithm Responsiveness", in Proceedings of
the 2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.761-768, 2018.
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An interactive approach for EMO

— Decision maker interacts with an EMO algorithm during its optimization run

— DM can be educated and can give intermediate feedback. This means preference information can
be adjusted during the run.

— The algorithm is more adaptive to changing needs.

— Search space can be significantly reduced, since effort is more targeted to regions of interests.
Machine learning can be used to learn and model preference information.
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An interactive approach for EMO
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Figure 1: Preference Region hypervolume for a single gener-
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An interactive approach for EMO

==R-NSGA-II e g-NSGA-Il sax -NSGA-Il — R-MEAD

0412
ga8
.r"‘" ) 0.040
o 00 o o
E .I £ 0035
= - =
s 0.08 : g 0.030
3 /.--I v 2 0025
= 006 . =
= N T o020
& A4 d &
£ oo } # W‘"‘ W "\L\ 7 E 0015
z | = / =
= ’ Hﬁ 2 0010
002 | I| T,
E / J‘J | / 0.005
0.00 A L 0.000
i 150 300 450 600
Generation
(a) ZDT1

== R-NSGA-1] wem g-NSGA-Il  wss r-NSGA-Il — R-MEAD
o
£
=
...... E
z
1
a
)
T
&
g
Z
1
0 150 300 450 600
Generation
(b) ZDT2

—R-NSGA-I] = g-NSGA-Il  =es r-NSGA-Il — R=MEAD

0.0200
Faatn 0.060

0.0175 -2 -
2 : £ ooso
2 00150 =
g -~ IPRCR 0.040

- ayte i -

gumzs . ERLELET Wy : é
= 0,0100 v patene st z 0,030
-7 u
# 00075 " & 0,020
Q . w
2 00050 mall o b I o T z 0,010

[l N— & ', 4| S SR S . —————— 0.005

0,0000

0 150 300 450 600
Generation
(d) ZDT4

— R-NSGA-]  mem g-NSGA-I]

Czcml

Evolutionary Computaion and Machine Learning Group

— R=NSGA-1] o g-NSGA-Il === r-NSGA-Il — R-MEAD

0.045 1

0.040

0,035
0,030
0025
0020
0.015
0010

0005

0.000

Generation

(c) ZDT3

w=n =NSGA-II — R=MEAD

0 150 300 450 600

Generation

(e) ZDT6

Figure 2: Average hypervolume by generation - 30 runs with problems ZDT1, ZDT2, ZDT3, ZDT4 and ZDTe.

Taylor, K., Li, X. and Chan, J. (2019), "Improving Algorithm Response to Preference Changes in Multiobjective Optimisation Using Archives", in
Proceedings of Congress of Evolutionary Computation (CEC 2019), IEEE, 2019 (accepted on 08/03/2019).

Taylor, K. and Li, X. (2018), "Interactive Multiobjective Optimisation: Preference Changes and Algorithm Responsiveness", in Proceedings of the
2018 Conference on Genetic and Evolutionary Computation Conference (GECCO), Kyoto, Japan, ACM, pp.761-768, 2018.
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Truss structural optimization
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Truss structural optimization

* Finding an optimal design for a truss structure involves optimizing its topology, size, and shape.
* Atruss design problem is usually multimodal, meaning that the problem offers multiple optimal
designs in terms of topology and/or size of the members, but they are evaluated to have similar or

equally good objective function values.

Cross-sectional area A,

< 52\

:;ijb"azf:odes Pe—load P Figure: Illustration of (a) 11-
member, 6-node ground structure
and (b), (c), and (d) its three

Cross-sectional area A1 Cross-sectional area Al

: i : ! different design solutions.
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Bilevel formulation of the truss problem

A bilevel formulation for the truss problem:

+ We treat the topology optimization as the upper level optimization task, and the size
and shape optimization as the lower level optimization task.

» The goal is to obtain multiple truss designs by considering both its topology and size

simultaneously. Sroundatructure
min F(xy.x7)
Topology A Topology B Topology C

s.t. xp € argmin{ f(xy.x7) : gj(x,x7) £0,j=1...]
f;EX; '

Gk(xu,x;) <0,k=1---K,
l.lpperlewel

Particles

We then can apply a niching method at the upper :
level, to obtain multiple designs in terms of S
topology as well as the size of the truss problem.

Particles

NN

Optimized designs

Islam, M.J., Li, X. and Deb, K., (2017), "Multimodal Truss Structure Design Using Bilevel and Niching Based Evolutionary Algorithms", in Proceedings of
the 2017 Genetic and Evolutionary Computation Conference (GECCO), Berlin, Germany, ACM, pp.274-287, 2017.
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Truss solutions found by applying niching
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by applying niching to the upper level.
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Figure: Found truss solutions using (a-b)
PSO algorithms by Luh and Lin, and (c-d)
GA by Deb and Gulati.

Islam, M.J., Li, X. and Deb, K., (2017), "Multimodal Truss Structure Design Using Bilevel and Niching Based Evolutionary Algorithms", in
Proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO), Berlin, Germany, ACM, pp.274-287, 2017.
Luh, G.C. and Lin, C.Y. (2011), “Optimal design of truss-structures using particle swarm optimization”, Computer & Structures 89, 23-24

(2011), 2221 — 2232.

Deb, K. and Gulati, S. (2001), “Design of truss-structures for minimum weight using genetic algorithms”, Finite Elements in Analysis and

Design 37, 5 (2001), 447 — 465.
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Take-home message ...

- Many challenges remain when tackling real-world problems using EC methods;

 For practitioners, they are most interested in solving the problems at hand, NOT
how well your methods perform on simple test functions;

» Real-world problems are far more challenging, and may require a combination of
techniques in order to be effective;

 Important to study carefully the properties/characteristics of the problem under
consideration, and try to incorporate the domain-specific knowledge into the
design of the solution method,;

* Rich ideas beyond just computer science; there are actually many others also do
optimization, and we can learn a lot from them, e.g., many mature ideas in the
operations research field,

* Do not be afraid of doing things differently; try NOT to follow the crowd;
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