
Adaptively Choosing Neighbourhood Bests
Using Species in a Particle Swarm Optimizer for

Multimodal Function Optimization

Xiaodong Li

School of Computer Science and Information Technology
RMIT University, VIC 3001, Melbourne, Australia

xiaodong@cs.rmit.edu.au
http://www.cs.rmit.edu.au/˜xiaodong

Abstract. This paper proposes an improved particle swarm optimizer
using the notion of species to determine its neighbourhood best values,
for solving multimodal optimization problems. In the proposed species-
based PSO (SPSO), the swarm population is divided into species sub-
populations based on their similarity. Each species is grouped around a
dominating particle called the species seed. At each iteration step, species
seeds are identified from the entire population and then adopted as neig-
hbourhood bests for these individual species groups separately. Species
are formed adaptively at each step based on the feedback obtained from
the multimodal fitness landscape. Over successive iterations, species are
able to simultaneously optimize towards multiple optima, regardless of
if they are global or local optima. Our experiments demonstrated that
SPSO is very effective in dealing with multimodal optimization functions
with lower dimensions.

1 Introduction

In recent years, Particle Swarm Optimization has been used increasingly as an
effective technique for solving complex and difficult optimization problems [3,
6,7]. However, most of these problems handled by PSOs are often treated as a
task of finding a single global optimum. In the initial PSO proposed by Eberhart
and Kennedy [7], each particle in a swarm population adjusts its position in the
search space based on the best position it has found so far, and the position
of the known best-fit particle in the entire population (or neighbourhood). The
principle behind PSO is to use these particles with best known positions to guide
the swarm population to converge to a single optimum in the search space.

How to choose the best-fit particle to guide each particle in the swarm popu-
lation is a critical issue. This becomes even more acute when the problem being
dealt with has multiple optima, as the entire swarm population can be potenti-
ally misled to local optima. One approach to combat this problem is to allow the
population to search for multiple optima (either global or local) simultaneously.
Striving to locate multiple optima has two advantages. Firstly, by locating mul-
tiple optima, the likelihood of finding the global optimum is increased; secondly,
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when dealing with real-world problems, for some practical reasons, it is often
desirable for the designer to choose from a diverse set of good solutions, which
may be equally good global optima or even second best optima.

The uniqueness of PSO’s ability in adaptively adjusting particles’ positions
based on the dynamic interactions with other particles in the population makes it
well suited for handling multimodal optimization problems. If suitable particles
can be determined as the appropriate neighbourhood best particles to guide
different portions of the swarm population moving towards different optima,
then essentially we will be able to use a PSO to optimize over a multimodal
fitness landscape. Ideally multiple optima will be found. Now the question is
how to determine which particles would be suitable as neighbourhood bests;
and how to assign them to the suitable particles in the population so that they
will move towards different optima accordingly.

The paper is organized as follows: section 2 describes related work on mul-
timodal optimization, and their relevance to the proposed species-based PSO
(SPSO). Section 3 presents the classic PSO. Section 4 introduces the notion
of species and its relation to multimodal optimization. Section 5 describes the
proposed SPSO. Section 6 and 7 cover the performance measures and test func-
tions respectively, followed by section 8 on experimental setup and then section
9 on results and discussion. Finally section 10 draws some conclusions and gives
directions for future research.

2 Related Work

Although multimodal function optimization has been studied extensively by EA
researchers, only few works have been done using particle swarm models. In
[5], Kennedy proposed a PSO using a k-means clustering algorithm to identify
the centers of different clusters of particles in the population, and then these
cluster centers are used to substitute the personal bests or neighbourhood bests.
However some serious limitations of this method can be identified:

1. In order to calculate the cluster centers, the method requires three itera-
tions over all individuals in the population, which is very computationally
expensive.

2. A cluster center identified is not necessarily the best-fit particle in that
cluster. Consequently using these cluster centers as lbest is likely to lead
to poor performance (see Fig. 1 of [5]).

3. The number of clusters must be pre-specified.

In [10] Parsopoulos and Vrahitis observed that when they applied the gbest
method (i.e., the swarm population only uses a single global best) to a mul-
timodal function, the swarm moved back and forth, failing to decide where to
land. This behavior is largely caused by particles getting equally good informa-
tion from those equally good global optima. To overcome this problem, they
introduced a method in which a potentially good solution is isolated once it is
found (if its fitness is below a threshold value ε), then the fitness landscape is
“stretched” to keep other particles away from this area of the search space. The
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isolated particle is checked to see if it is a global optimum, and if it is below the
desired accuracy, a small population is generated around this particle to allow
a finer search in this area. The main swarm continues its search for the rest of
the search space for other potential global optima. With this modification, their
PSO was able to locate all the global optima of the test functions successfully.

Brits, et al. proposed a NichePSO [2], which has a number of improvements
to Parsopoulos and Vrahitis’s model. In NichePSO, multiple subswarms are pro-
duced from a main swarm population to locate multiple optimal solutions in the
search space. Subswarms can merge together, or absorb particles from the main
swarm. Instead of using the threshold ε as in Parsopoulos and Vrahitis’s model,
NichePSO monitors the fitness of a particle by tracking its variance over a num-
ber of iterations. If there is little change in a particle’s fitness over a number
of iterations, a subswarm is created with the particle’s closest neighbour. The
authors used a swarm of population size of 20-30, and NichePSO found all global
optima of the test functions used within 2000 iterations.

Li, et al. introduced a species conserving genetic algorithm (SCGA) for mul-
timodal optimization [9]. SCGA adopted a new technique for dividing the po-
pulation based on the notion of species, which is added to the evolution process
of a conventional genetic algorithm. Their results on multimodal optimization
have shown to be substantially better than those found in literature.

The notion of species is very appealing. To some extent, it provides a way of
addressing the three limitations we identified with the clustering approach used
in the PSO proposed by Kennedy [5]. This paper proposes a species-based PSO
(SPSO) incorporating the idea of species into PSO for solving the multimodal
optimization problems. At each iteration step, SPSO aims to identify multiple
species (each for a potential optimum) within a population and then determine
a neighbourhood best for each species. These multiple adaptively formed species
are then used to optimize towards multiple optima in parallel, without interfe-
rence across different species.

3 Particle Swarm

The particle swarm algorithm is an optimization technique inspired by the me-
taphor of social interaction observed among insects or animals. The kind of
social interaction modeled within a PSO is used to guide a population of in-
dividuals (so called particles) moving towards the most promising area of the
search space. In a PSO algorithm, each particle is a candidate solution equiva-
lent to a point in a d-dimensional space, so the i-th particle can be represented
as xi = (xi1, xi2, . . . , xid) . Each particle “flies” through the search space, de-
pending on two important factors, pi = (pi1, pi2, . . . , pid), the best position
the current particle has found so far; and pg = (pg1, pg2, . . . , pgd), the glo-
bal best position identified from the entire population (or within a neighbour-
hood). The rate of position change of the i-th particle is given by its velocity
vi = (vi1, vi2, . . . , vid). Equation (1) updates the velocity for each particle in the
next iteration step, whereas equation (2) updates each particle’s position in the
search space [6]:
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vid(t) = χ(vid(t − 1) + ϕ1(pid − xid(t − 1)) + ϕ2(pgd − xid(t − 1))) (1)
xid(t) = xid(t − 1) + vid(t) , (2)

where

χ =
2

|2 − ϕ −
√

ϕ2 − 4ϕ| and ϕ = ϕ1 + ϕ2, ϕ > 4.0. (3)

Two common approaches of choosing pg are known as gbest and lbest me-
thods. In the gbest approach, the position of each particle in the search space
is influenced by the best-fit particle in the entire population; whereas the lbest
approach only allows each particle to be influenced by a fitter particle chosen
from its neighbourhood. Kennedy and Mendes studied PSOs with various popu-
lation topologies [8], and have shown that certain population structures could
give superior performance over certain optimization functions.

4 Identifying Species

Central to the proposed SPSO in this paper is the notion of species. Goldberg and
Richardson proposed a niching method based on speciation by fitness sharing
[4], where a GA population is classified into groups according to their similarity
measured by Euclidean distance. The smaller the Euclidean distance between
two individuals, the more similar they are:

d(xi, xj) =

√√√√
n∑

k=1

(xik − xjk)2, (4)

where xi = (xi1, xi2, . . . , xin) and xj = (xj1, xj2, . . . , xjn) are vectors of real
numbers representing two individuals i and j from the GA population.

The definition of a species also depends on another parameter rs, which
denotes the radius measured in Euclidean distance from the center of a species
to its boundary. The center of a species, so called species seed, is always the
best-fit individual in the species. All particles that fall within the rs distance
from the species seed are classified as the same species.

4.1 Determining Species Seeds from the Population

The algorithm for determining species seeds introduced by Li et al. is adopted
here [9]. By applying this algorithm at each iteration step, different species seeds
can be identified for multiple species and then used as the lbest for different
species accordingly. Fig.1 summarizes the steps for determining the species seeds.

The algorithm (as given in Fig. 1) for determining the species seeds is per-
formed at each iteration step. The algorithm takes as an input, Lsorted, a list
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input : Lsorted - containing all particles sorted in decreasing order fitness
output : S - containing dominating particles identified as species seeds

begin
S = Φ;
while not reaching the end of Lsorted do

found← FALSE;
for all p ∈ S do

if d(s, p) ≤ rs then
found← TRUE;
break;

end
end
if (not found) then

let S ← S ∪ {S}
end

end
end

Fig. 1. The algorithm for determining the species seeds.

containing all particles sorted in decreasing order of fitness. The species seed
set S is initially set to Φ . All particles are checked in turn (from best to the
least-fit) against the species seeds found so far. If a particle does not fall within
the radius rs of all the seeds of S, then this particle will become a new seed
and be added to S. Fig. 2 provides an example to illustrate the working of this
algorithm. In this case, applying the algorithm will identify s1, s2 and s3 as the
species seeds. Note that since a species seed is the best-fit particle in a species,
other particles within the same species can be made to follow the species seed as
the newly identified neighbourhood best (lbest). This allows particles within the
same species to be attracted to positions that make them even fitter. Because
species are formed around different optima in parallel, making species seeds the
new neighbourhood bests will provide the right guidance for particles in different
species to locate multiple optima.

The complexity of the above procedure can be estimated based on the number
of evaluations of Euclidean distances between two particles that are required.
Assuming there are N individuals sorted and stored on Lsorted, the while loop
steps through Lsorted to see if each individual is within the radius rs of the seeds
on S. If S currently contains i number of seeds, then at best the for loop is
executed only once when the particle considered is within rs of the first seed
compared; and at worst the for loop is executed i times when the particle falls
outside of rs of all the seeds on S. Therefore the number of Euclidean distance
calculations required for the above procedure T (N) can be obtained by the
following [9]:
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Fig. 2. An example of how to determine the species seeds from the population at each
iteration step. s1, s2 and s3 are chosen as the species seeds.

N ≤ T (N) ≤
N∑

i=1

(i − 1) =
N(N − 1)

2
, (5)

which gives the complexity of the procedure: O(N2).

5 The Species-Based PSO (SPSO)

Once the species seeds have been identified from the population, we can then
allocate each seed to be the lbest to all the particles in the same species at
each iteration step. The species-based PSO (SPSO) accommodating the above
described algorithm for determining species seeds can be summarized in the
following steps:

1. Generate an initial population with randomly generated particles;
2. Evaluate all particle individuals in the population;
3. Sort all particles in descending order of their fitness values (i.e., from the

best-fit to least-fit ones);
4. Determine the species seeds for the current population (see Fig. 1);
5. Assign each species seed identified as the lbest to all individuals identified

in the same species;
6. Adjusting particle positions according to equation (1) and (2);
7. Go back to step 2), unless the termination condition is met.

Considering the limitations of Kennedy’s clustering-based PSO [5] (also discus-
sed in section 2), SPSO improves in the following aspects:

1. SPSO only requires one iteration over all particles in the population in order
to determine the species seeds, which are used as substitutes for neighbour-
hood bests (similar to the cluster centers in Kennedy’s PSO).



Adaptively Choosing Neighbourhood Bests Using Species 111

2. In SPSO, an identified species seed is always the best-fit individual in that
species.

3. There is no need to pre-specify the number of species seeds. They are auto-
matically generated during a run.

6 Performance Measurements

The performance of SPSO in handling multimodal functions can be measured
according to three criteria, number of evaluations required to locate the op-
tima; accuracy, measuring the closeness to the optima, and success rate, i.e.,
the percentage of runs in which all global optima are successfully located.

To measure accuracy, we only need to check set S, which contains the species
seeds identified so far. These species seeds are dominating individuals sufficiently
different from each other, however they could be individuals with high as well
as low fitness values (see Fig. 2). We can decide if a global optimum is found by
checking each species seed in S to see if it is close enough to the known global
optima (for all the test functions used in this study). A solution acceptance
threshold (0 < ε ≤ 1) is defined to detect if the solution is close enough to a
global optimum:

|fmax − f(x)| ≤ ε (6)

where fmax is the known maximal (highest) fitness value for a test function
(assuming maximization problems). If the number of global optima is greater
than one, then all global optima will be checked for the required accuracy using
equation (6) before a run is terminated.

7 Test Functions

The five test functions suggested by Beasley et al. [1] and the Rastrigin function
(with different dimensions) were used to test SPSO’s ability to locate a single or
multiple maxima:

F1(x) = sin6(5πx). (7)

F2(x) = exp

(
−2log(2) ·

(
x− 0.1

0.8

)2
)
·sin6(5πx). (8)

F3(x) = sin6(5π(x3/4 − 0.05)). (9)

F4(x) = exp

(
−2log(2) ·

(
x− 0.08
0.854

)2
)
·sin6(5π(x3/4 − 0.05)). (10)
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F5(x, y) = 200− (x2 + y − 11)2 − (x + y2 − 7)2. (11)

F6(x) =
n∑

i=1

(x2
i − 10cos(2πxi) + 10). (12)
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Fig. 3. Test functions.

As shown in Fig. 3, F1 has 5 evenly spaced maxima with a function value
of 1.0. F2 has 5 peaks decreasing exponentially in height, with only one peak
as the global maximum. F3 and F4 are similar to F1 and F2 but the peaks are
unevenly spaced. F5 Himmelblau’s function has two variables x and y, where
−6 ≤ x, y ≤ +6. This function has 4 global maxima at approximately (3.58,-
1.86), (3.0,2.0), (-2.815,3.125), and (-3.78,-3.28). F6 Rastrigin function, where
−5.12 ≤ xi ≤ 5.12, i = 1, . . . , 30, has one global minimum (which is (0,0)
for dimension=2), and many local minima.1 F6 with a dimension of 2, 3, 4,
5 and 6 variables were used to test SPSO’s ability in dealing with functions with
numerous local minima and of higher dimensions.

1 Rastrigin function can be easily converted to a maximization function.
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Table 1. Summary of performance results (averaged over 30 runs).

Function Num. of ε rs Num. of evals. Success rate
global optima (mean and std dev)

F1 5 0.0001 0.05 1383.33 ± 242.95 100%
F2 1 0.0001 0.05 351.67 ± 202.35 100%
F3 5 0.0001 0.05 1248.33 ± 318.80 100%
F4 1 0.0001 0.05 503.33 ± 280.07 100%
F5 4 0.0001 2.0 3155 ± 402.22 100%

Table 2. Comparison of results on F1 and F5.

Function Num. of Algorithm Num. of evals. Success rate
global optima required

F1 5
Sequential Niched GA (SNGA) 1900 99%

Species Conservation GA (SCGA) 3310 100%
SPSO 1383.33 100%

F5 4
Sequential Niched GA (SNGA) 5500 76%

SPSO 3155 100%

8 Experimental Setups

A swarm population size of 50 was used for all the above test functions. SPSO
was run 30 times, each run with a maximum of 1000 iteration steps. The accuracy
threshold ε was set to 0.0001. A run is terminated if either the required accuracy
for all the global optima or the maximum of 1000 iteration steps is reached.
rs was set normally to a value between 1/20 to 1/10 of the allowed variable
range. Success rate is measured by the percentage of runs (out of 30) locating
all the global optima within the 1000 iteration steps. The number of function
evaluations required for finding all the global optima are averaged over 30 runs.
Table 1 provides a summary of the results.

For PSO parameters in equation (1) and (2), ϕ1 and ϕ2 were both set to 2.05.
The constriction factor χ was set to 0.729844 [8]. Using this χ value produces a
damping effect on the amplitude of an individual particle’s oscillations, and as
a result, the particle will converge over time. Vmax was set to be the lower and
upper bounds of the allowed variable ranges.

9 Discussion of the Results

As shown in Table 1, for F1 - F5, SPSO has converged to the required accuracy
of 0.0001 with 100% success rate. SPSO found all the global optima in all runs
with less than 1000 iteration steps. In comparison, NichePSO [2] only obtained
similar accuracy values on F1, F3 and F5 after 2000 iterations. Furthermore, on
F2 and F4, SPSO got better accuracy values than the NichePSO.

Table 2 shows that SPSO has the best results comparing with the results of
SNGA proposed by Beasley, et al. [1] and SCGA proposed by Li, et al. [9] on F1
(equal maxima function) and F5 (Himmelblau’s function).
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Fig. 4. A simulation run on F1(equal maxima), step 1, 4 and 74 from left to right.
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Fig. 5. A simulation run of SPSO on F4(uneven decreasing maxima) - step 1, 6 and
116 from left to right.

Fig. 4 shows that on F1, SPSO was able to locate all maxima, that is, at
iteration step 74, all particles were able to converge to all 5 maxima. Fig. 5
shows that on F4, SPSO always found the highest peak first, then was also able
to locate all other lower peaks in later iteration steps successfully, regardless of
if they are global maxima or local optima. The results on F2 and F3 are similar
to those of F1 and F4. Fig. 6 shows that on F5, many species seeds (based on
the rs value) were identified by SPSO initially as expected. Over the following
iteration steps, these species were merged to form 4 groups around the 4 maxima.
Eventually almost all particles converged to these 4 maxima at step 66.

Table 3 shows the results of SPSO on the Rastrigin function with dimension
varying from 2 to 6. In this experiment the same parameter settings were used as
the previous ones. It is interesting to note that on the Rastrigin function SPSO
has increasing difficulty to converge to the required accuracy as the dimension
is increased from 3 to 6. This is expected, as SPSO is designed to encourage
forming species depending on the local feedback on the fitness landscape. The
higher dimension and the presence of a large number of local minima of the
Rastrigin function would demand SPSO to have a larger initial population in
order to locate the global minimum. Further investigation on this will be carried
out in future.

10 Conclusion

By using the concept of species, we have developed a PSO which allows the
swarm population to be divided into different species adaptively, depending on
the feedback obtained from the fitness landscape discovered at each iteration
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Fig. 6. A simulation run of SPSO on F5 - step 1, 4, 10 and 66.

step during a run. Particles from each identified species follow a chosen neigh-
bourhood best to move towards a promising region of the search space. Multiple
species are able to converge towards different optima in parallel, without inter-
ference across different species. In a classic GA algorithm, crossover carried out
over two randomly chosen fit individuals often produces a very poor offspring
(imagining the offspring are somewhere between two fitter individuals from two
distant peaks). In contrast, SPSO seems to be able to alleviate this problem
effectively.

Tests on a suite of widely used multimodal test functions have shown that
SPSO can find all the global optima for the all test functions with one or two di-
mensions reliably (with 100% success rate), and with good accuracy (< 0.0001),
although SPSO seemed to show increasing difficulty to converge as the dimen-
sion of the Rastrigin function was increased to more than three. Comparison of
SPSO’s results with other published works has demonstrated that SPSO is com-
parable or better than the existing evolutionary algorithms as well as another
niche-based PSO for handling multimodal function optimization, not only with
regard to success rate and accuracy, but also on computational cost. In future, we
will apply SPSO to large and more complex real-world multimodal optimization
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Table 3. Results on F6 Rastrigin function (averaged over 30 runs).

Dimension ε rs Num. of evals. Success rate
(mean and std dev)

2 0.0001 2.0 3711.67 ± 911.87 100%
3 0.0001 2.0 9766.67 ± 4434.86 100%
4 0.0001 2.0 36606.67 ± 14662.38 33.3%
5 0.0001 2.0 44001.67 ± 10859.84 26.7%
6 0.0001 2.0 50000 ± 0.00 0%

problems, especially problems that we have only little (or no) prior knowledge
about the search space. We also need to investigate how to best choose the spe-
cies radius, for example perhaps looking at how to adaptively choose the species
radius based on the feedback obtained during the search.
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