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Abstract. Maximin strategy has its origin in game theory, but it can
be adopted for effective multiobjective optimization. This paper pro-
poses a particle swarm multiobjective optimiser, maximinPSO, which
uses a fitness function derived from the maximin strategy to determine
Pareto-domination. The maximin fitness function has some very desira-
ble properties with regard to multiobjective optimization. One advantage
is that no additional clustering or niching technique is needed, since the
maximin fitness of a solution can tell us not only if a solution is domi-
nated or not (with respect to the rest of the population), but also if it is
clustered with other solutions, i.e., diversity information. This paper de-
monstrates that on the ZDT test function series, maximinPSO produces
an almost perfect convergence and spread of solutions towards and along
the Pareto-optimal front respectively, outperforming one of the state-
of-art multiobjective EA algorithms, NSGA II, in all the performance
measures used.

1 Introduction

Particle Swarm Optimization (PSO) has become increasingly popular as an effi-
cient optimization method for single objective optimization, and more recently
it has shown promising results for solving multiobjective optimization problems
[3,4,5,6,7]. PSO is an optimization technique inspired by studies of the social
behaviour of insects and animals [1][2]. The social behaviour is modelled in a
PSO to guide a population of particles (or potential solutions) moving towards
the most promising region of the search space. In PSO, each particle repre-
sents a candidate solution, xi = (xi1, xi2, . . . , xiD). D is the dimension of the
search space. The i-th particle of the swarm population knows: a) its perso-
nal best position pi = (pi1, pi2, . . . , piD), i.e., the best position this particle
has visited so far that yields the highest fitness value; and b) the global best
position, pg = (pg1, pg2, . . . , pgD), i.e., the position of the best particle that
gives the best fitness value in the entire population; and c) its current velo-
city, vi = (vi1, vi2, . . . , viD), which represents its position change. The following
equation (1) uses the above information to calculate the new updated velocity
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for each particle in the next iteration step. Equation (2) updates each particle’s
position in the search space.

vid = wvid + c1r1(pid − xid) + c2r2(pgd − xid) (1)
xid = xid + vid , (2)

where d = 1, 2, . . . , D; i = 1, 2, . . . , N ; N is the size of the swarm population;
w is the inertia weight, which is often used as a parameter to control explo-
ration/exploitation in the search space; c1 and c2 are two coefficients (positive
constants); r1 and r2 are two random numbers within the range [0, 1]. There is
also a VMAX , which sets the upper and lower bound for velocity values.

Recently Balling in [8] proposed a very interesting multi-objective optimiza-
tion technique based on fitness derived from using the maximin strategy [9]. In
sharp contrast to almost all other existing multi-objective algorithms, Balling
demonstrated that by using the maximin fitness, there is no need to use any
additional niching technique, since using the maximin fitness by itself penalizes
clustering of solutions.

In this paper, maximinPSO, a PSO model using the maximin fitness is pro-
posed for multi-objective optimization. maximinPSO adopts a similar approach
as NSPSO[7], except that it uses the maximin fitness to rank individuals in
the population (rather than the non-dominated sorting procedure), and there
is no niching method used. The paper is organized as follows: Section 2 first
introduces the concept of dominance, from which the maximin fitness function
is derived. Section 3 defines the maximin fitness function and describes its key
properties in relation to the proposed maximinPSO algorithm. Section 4 intro-
duces the maximinPSO algorithm formally. Section 5 presents test functions,
performance measures, as well as the results and analysis of experiments carried
out with the maximinPSO over the test functions. Finally Section 6 concludes
the paper.

2 Multiobjective Optimization and the Notion of
Dominance

Assuming minimization, multi-objective optimization strives to simultaneously
minimize m objectives:

Minimize y = f(x) = (f1(x), f2(x), . . . , fm(x)) (3)

where x is a n-dimensional decision variable vector, x = (x1, . . . , xn) ∈ X, and
y = (y1, . . . , yn) ∈ Y . X is the decision variable space, whereas Y is the objective
space. Each objective depends on the decision vector x. A decision vector u ∈ X
is said to strictly dominate another decision vector v ∈ X (denoted by u ≺ v)
if and only if
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∀i ∈ {1, . . . , m} : fi(u) ≤ fi(v) and ∃j ∈ {1, . . . , m} : fj(u) < fj(v) (4)

u weakly dominates v (denoted by u � v) if and only if

∀i ∈ {1, . . . , m} : fi(u) ≤ fi(v) (5)

A decision vector x ∈ X is said to be Pareto-optimal with respect to X if and
only if there is no other decision vector in X that dominates x.

The set of all Pareto-optimal solutions in the decision variable space is called
the Pareto-optimal set. The corresponding set of objective vectors is called the
Pareto-optimal front. In this paper, for clarity, we denote the Pareto-optimal
front as P ∗, and the set of non-dominated solutions found as Q.

3 The Maximin Fitness Function

Maximin strategy has its origin in game theory [9]. Rawls in [10] used a nice
example of the maximin strategy to illustrate his theory on principles of justice.
Balling was the first to propose the use of the maximin fitness function for
multiobjective optimization [8]. The maximin fitness for a decision vector u can
be calculated through the following steps. First the min function is called to
obtain the minimal value from set {fi(u) − fi(v) | ∀i ∈ {1, . . . , m}:

mini=1,...,m{fi(u) − fi(v)} (6)

Then the max function is applied over the set of minimal values of all possible
pairs of u and another decision vector (other than u) in the population:

maxj=1,...,N ;u �=v{mini=1,...,m{fi(u) − fi(v)}} (7)

In equation (7) two loops of comparison take place, with the min first step-
ping through all the objectives from 1 to m, and then the max looping through
all candidate solutions in the population from 1 to N , except u. To obtain all
non-dominated solutions, another loop will be required to check each solution in
the population, from 1 to N . As a result, the overall complexity is O(mN2).

The maximin fitness value for the decision vector u is defined as [8]:

fmaximin = maxj=1,...,N ;u �=v{mini=1,...,m{fi(u) − fi(v)}} (8)

Given equation (8), it is obvious that for any solution (i.e., a decision vec-
tor) to be a non-dominated solution with respect to the current population, its
maximin fitness value must be less than zero. Any solution with a maximin fitn-
ess equal to zero is a weakly-dominated solution. Any solution with a maximin
fitness value greater than zero is a dominated solution.
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One unique property that makes the maximin fitness function so appealing
to multiobjective optimization is that the maximin fitness value can be used to
reward diversity and penalize clustering of non-dominated solutions, therefore
no additional diversity maintaining mechanism such as a niching technique is
necessary. This can be illustrated by the two examples as shown in Fig. 1 [8].
Fig. 1 a) shows the maximin fitness values calculated for solution A, B and C
respectively. Since the three solutions are non-dominated with each other, the
maximin fitness values are negative (written in parentheses). Fig. 1 a) also shows
that the maximin fitness is the same for the three equally-spaced solutions, howe-
ver, Fig. 1 b) shows that the two closely-spaced solutions B and C are penalized
by having a higher fitness than A. With the assumption of minimization, the
smaller the fitness value is, the better the solution, so A(-1.5) is rewarded by
getting an even smaller fitness than A(-1) in Fig. 1 a), whereas B(-0.5) and
C(-0.5) are penalized by getting a higher fitness than B(-1) and C(-1) in Fig. 1
a). In the case when B and C are completely overlapped, the maximin fitness
will be zero for both B and C.

(a) (b)

Fig. 1. a) Three non-dominated solutions with an equal fitness value; b) three non-
dominated solutions with higher fitness values assigned to solutions that are close to
each other.

Balling [8] also showed that maximin fitness favors the middle of a convex
front, and the two extreme solutions of a concave front (as shown in Fig. 2). Fig.
2 might give you the impression that using maximin fitness will result in more
solutions clustering in the middle of a convex front or two extreme ends of a con-
cave front. This is not necessarily true when there is a sufficiently large number
of solutions along the front, because maximin fitness works against clustering
of the solutions. In fact, maximin fitness works against clustering of solutions
regardless of if the front is convex or concave, as long as there are sufficient
numbers of solutions along the front.

For a more detailed description of the properties of the maximin fitness fun-
ction, the reader can be referred to [8].
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(a) (b)

Fig. 2. a) The maximin fitness favors the middle of a convex front, whereas in b) the
maximin fitness favors the two extreme solutions of a concave front.

Choosing pg for each particle. Our objective is to propel particles in the
population towards the current non-dominated front Q as well as the less crow-
ded areas along Q. For each particle, we have decided to choose randomly its pgd

for each dimension d = 1, . . . , D of the particle, from a pool of non-dominated
particles with the smallest maximin fitness values (they should be negative too).
Fig. 3 illustrates how this works. Note that this method allows the pg of a par-
ticle to be composed of different pgd from different non-dominated particles. This
will have the effect of emphasizing the less crowded areas as a whole on the best
known non-dominated front over iterations.

Fig. 3. A few “less crowed” non-dominated particles are used as a pool for choosing
at random a pgd (for each dimension d = 1, . . . , D) for a particle in the population.

4 The maximinPSO Algorithm

This paper proposes a PSO, maximinPSO, which makes use of the maximin
fitnesses (according to equation (8)) of individuals in a swarm to facilitate domi-
nance comparison and diversity maintenance for the purpose of multiobjective
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optimization. maximinPSO extends the basic PSO in a similar way as NSPSO
[7]. Both maximinPSO and NSPSO combine particles and their offspring into
a temporary population, and categorize the temporary population into non-
dominated and dominated groups. The main difference between the two is that
maximinPSO uses maximin fitness to identify the non-dominated particles in
the swarm, whereas NSPSO uses the concept of non-dominated sorting [13].
Furthermore, maximinPSO does not use any additional clustering or niching
technique for diversity maintenance, but NSPSO does use niching techniques as
those in NSGA II. Hence maximinPSO will save computation that would nor-
mally be spent on niching. Having said so, maximinPSO still requires O(mN2)
complexity to calculate the maximin fitnesses for the whole population.

The proposed maximinPSO can be summarized in the following steps:

1. An initial population of N particles is generated at random, and stored in
PSOList; For each particle on PSOList, pi is set to xi by default; vi is set
to be within the variable ranges, with a probability of 0.5 being positive or
negative; VMAX is set to the bounds of the variable ranges.

2. Calculate the maximin fitness for all particles in the initial population; get
the non-dominated solutions based on the maximin fitness values; sort the
non-dominated solutions according to their maximin fitnesses (in ascending
order), and store them in nonDomPSOList.

3. Iterate through the whole swarm population PSOList. For the i-th particle
(from 1 to PSOList’s current size), do the following:
a) Choose randomly a pgd for each dimension d = 1, . . . , D of the i-th

particle, from the top few particles (this number can be user-specified)
of the nonDomPSOList, as the new pg for the i-th particle.

b) Produce an offspring for the i-th particle based on its pi and pg.
c) Store both the i-th particle and its offspring in a list nextPopList. Note

that nextPopList should be twice the size of PSOList, since it now
contains both the parent and its offspring.

4. Calculate maximin fitness for all particles on nextPopList; get non-
dominated solutions; copy the non-dominated solutions from nextPSOList
to the new PSOList for the next iteration; if PSOList contains less than N
non-dominated particles, then randomly add weakly-dominated or domina-
ted solutions from nextPopList, until PSOList is filled up by N particles; if
PSOList contains more than N non-dominated particles, then no other par-
ticles are added to PSOList. Note that in such a case the size of PSOList
will be likely to grow over iterations, exceeding N non-dominated solutions
towards the end of a run.

5. Go back to Step 3, until a termination criterion is met. If terminated, then
calculate performance measures in the final iteration.

5 Experiments

5.1 Test Functions

In order to assess a multiobjective algorithm’s ability to converge to the true
Pareto-optimal front as well as to find diverse Pareto-optimal solutions, Zitzler
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et al. [11] proposed six test functions with different problem features that may
cause difficulties, such as convexity and non-convexity of P ∗, disconnectedness
of P ∗, multiple local fronts, and non-uniformity of the search space. We choose
five of the six functions, ZDT1, ZDT2, ZDT3, ZDT4, and ZDT6. All these test
functions have two objectives, but have no constraints. The reader can refer to
[11] for detailed definitions of these functions.

5.2 Performance Measures

We use the following performance metrics introduced by Zitzler et al. [11]:

M∗
1(Y

′) :=
1

|Y ′|
∑

p′∈Y ′
min{||p′ − p̄||∗; p̄ ∈ Ȳ} (9)

M∗
2(Y

′) :=
1

|Y ′ − 1|
∑

p′∈Y ′
|{q′ ∈ Y ′; ||p′ − q′||∗ > σ∗}| (10)

M∗
3(Y

′) :=

√√√√
n∑

i=1

max{||p′
i − q′

i||∗;p′,q′ ∈ Y′} (11)

where Y ′ denotes a set of objective vectors corresponding to the non-dominated
solutions found, and Ȳ the Pareto-optimal front. Note that a niche neighbour-
hood size, σ∗ > 0, is used in equation (10) to calculate the distribution of
the non-dominated solutions. M∗

1(Y
′) gives the average distance from Y ′ to Ȳ .

M∗
2(Y

′) describes the goodness of distribution of solutions in Y ′. M∗
2(Y

′) should
give a value between [0, |Y ′|] as it estimates the number of niches in Y ′ based on
σ∗. The higher the value, the better the distribution according to σ∗. M∗

3(Y
′)

measures the extent of Y ′. In addition to the above metrics, we also count the
number of function evaluations used for a single run.

5.3 Results

The maximinPSO was given an initial population size of 200. A simulation run
was terminated only when more than 2000 non-dominated solutions were found
in an iteration step. Since the PSOList grows in size over time, by the time
PSOList contains 2000 (or greater) non-dominated solutions, the population
generally has already converged and stabilized. c1 and c2 were set to 2.0. w was
gradually decreased from 1.0 to 0.4. VMAX was set to the bounds of decision
variables. This is a set of common parameter values used in a simple PSO model
[2]. At each iteration step, for every particle, its pgd is chosen at random (for each
dimension d = 1, . . . , D) from the top 20% of nonDomPSOList to construct the
particle’s new pg (Step 3 of the maximinPSO algorithm). At the final iteration
step, the M∗

1, M∗
2 and M∗

3 were calculated according to equation (9), (10) and
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(11). The number of evaluations taken for the run was also recorded. A set of
|P ∗| = 500 uniformly distributed Pareto-optimal solutions was used to calculate
M∗

1. For M∗
2, the niche neighbourhood size σ∗ was set to 0.01.

The results of maximinPSO were compared with that of the real-coded
NSGA II [12]. As in the maximinPSO, an initial population of 200 was used.
NSGA II was run for 100 generations so it takes 20000 evaluations for each
run, as NSGA II uses a constant population size. In contrast, maximinPSO
uses a population size that grows over time, which allows more non-dominated
solutions to be discovered with relatively fewer evaluations. For NSGA II, we
used the same parameter values as suggested by Deb et al. [13]. A crossover
probability of 0.9 and a mutation probability of 1/n (n is the number of real-
variables) were used. The SBX and real-parameter mutation operators, ηc and
ηm were set to 20 respectively.

Both maximinPSO and the real-coded NSGA II were run 30 times. The
results were averaged and summarized in Table 1.

Table 1. M∗
1, M∗

2, M∗
3, and the number of evaluations (averaged over 30 runs).

Metric Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

M∗
1

maximinPSO 7.74E-04 1.01E-02 3.44E-03 7.68E-04 1.84E-03
±1.72E-05 ±5.13E-02 ±1.09E-04 ±1.50E-05 ±6.06E-04

real-coded 1.14E-03 8.26E-04 4.90E-03 5.77E-02 1.04E-01
NSGA II ±5.56E-05 ±3.44E-05 ±1.45E-04 ±1.09E-01 ±1.02E-02

M∗
2

maximinPSO 2.65E+03 2.51E+03 2.15E+03 2.59E+03 2.35E+03
±3.89E+02 ±8.12E+02 ±1.25E+02 ±3.23E+02 ±3.22E+02

real-coded 1.96E+02 1.96E+02 1.97E+02 1.69E+02 1.95E+02
NSGA II ±6.62E-02 ±5.90E-02 ±1.60E-01 ±5.50E+01 ±2.74E-01

M∗
3

maximinPSO 1.40E+00 1.31E+00 1.96E+00 1.40E+00 1.17E+00
±9.75E-03 ±3.58E-01 ±5.26E-03 ±7.13E-03 ±3.22E-05

real-coded 1.41E+00 1.41E+00 1.93E+00 1.29E+00 1.13E+00
NSGA II ±3.60E-03 ±3.69E-03 ±9.43E-02 ±2.33E-01 ±2.67E-02

Num.
of
Evals.

maximinPSO 5.56E+03 5.65E+03 1.13E+04 5.26E+03 5.30E+03
±5.45E+02 ±1.43E+03 ±1.17E+03 ±5.02E+02 ±5.45E+02

real-coded 2.00E+04 2.00E+04 2.00E+04 2.00E+04 2.00E+04
NSGA II ±0.00E+00 ±0.00E+00 ±0.00E+00 ±0.00E+00 ±0.00E+00

5.4 Discussion

From Table 1, comparing with the real-coded NSGA II, maximinPSO consi-
stently performed better on all test functions, except ZDT2. maximinPSO ou-
tperformed NSGA II on all performance measures for ZDT3, ZDT4, and ZDT6.
More specifically, maximinPSO consistently converged better (M∗

1), distribu-
ted solutions better along the non-dominated front (M∗

2), had a better coverage
(M∗

3), and finally used fewer evaluations. For ZDT1, maximinPSO outperfor-
med NSGA II on all metrics except M∗

3 (but just slightly). maximinPSO has
no difficulty in handling convex (ZDT1) and disconnected Pareto-fronts (ZDT3).
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Handling non-convexity of Pareto-front. For ZDT2, we examined all 30
maximinPSO runs, and identified 3 very poor runs, which skewed the results
for ZDT2 in the Table 1. Out of these 3 very poor runs, in two of which
maximinPSO converged to a single end point of the Pareto-front, and in the
3rd run, maximinPSO only converged to a local front, but the spread of the
solutions is still good. If the 3 poor runs were taken out, the remaining 27 runs
are in fact equally good or better than NSGA II. This problem of converging to
a single solution could be attributed to the fact that there is a higher probabi-
lity that maximinPSO discovered non-dominated solutions on the end points
of a concave Pareto-front too early. These non-dominated solutions around the
end points subsequently attracted all other particles rather quickly before they
even had a chance of going to other parts of the Pareto-front. To combat this
problem, we increased the initial population size from 200 to 400 in order to
encourage more particles to reach other parts of the Pareto-front. As expec-
ted, subsequently this problem was eliminated. The results of maximinPSO on
ZDT2 using a population size of 400 are provided in Table 2 (averaged over 30
runs). Once again Table 2 shows that maximinPSO outperformed NSGA II on
all performance metrics. It is also interesting to note that the number of eva-
luations used to get 2000 or more non-dominated solutions is not much greater
than the maximinPSO with an initial population size of 200 (the last row in
Table 1).

Table 2. Improved results of maximinPSO on ZDT2.

Algorithm M∗1 M∗2 M∗3 Num. of Evals.

maximinPSO
7.87E-04 2.72E+03 1.41E+00 6.86E+03

±9.70E-06 ±4.55E+02 ±1.46E-03 ±6.58E+02
real-coded
NSGA II

8.26E-04 1.96E+02 1.41E+00 2.00E+04
±3.44E-05 ±5.90E-02 ±3.69E-03 ±0.00E+00

Fig. 4 shows the non-dominated solutions found for ZDT1, ZDT2, ZDT3,
ZDT4 and ZDT6 in the final iteration step of a simulation run of maximinPSO.
We achieved almost a perfect convergence, spread and coverage towards P ∗.

Handling multiple local fronts. For ZDT4, where there is a large number of
local fronts, maximinPSO was able to converge to P ∗ consistently, 30 out of 30
runs, while still maintaining a good spread and coverage of P ∗. In contrast, all 30
NSGA II runs converged to a local front (see Fig. 4 d). These NSGA II runs also
produced fewer non-dominated solutions, a poorer spread, and required a larger
number of evaluations. Fig. 5 shows a few snapshots of a single maximinPSO
run on ZDT4.

Handling non-uniform density of solutions. maximinPSO had no diffi-
culty with ZDT6, where there is a non-uniform distribution of solutions (in de-
cision variable space) corresponding to the Pareto-optimal front. maximinPSO
was able to find a set of non-dominated solutions that corresponds to a set of
smoothly distributed objective vectors in the objective space. In comparison, all
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(a) ZDT1
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(b) ZDT2
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(d) ZDT4
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(e) ZDT6

Fig. 4. Non-dominated solutions found by maximinPSO. On ZTD4 and ZDT6, the
results are also compared with solutions found by the real-coded NSGA II.

30 NSGA II runs only managed to converge to a local front, with a slightly worse
spread (Fig. 4 e).

Making use of the discovered non-dominated solutions. One unique
feature of maximinPSO is its ability to make use of the non-dominated solutions
found so far to allow further improvement of the spread of solutions in future
iteration steps. Since maximin fitnesses discourage clustering, those solutions
appearing near the gaps in the current step would have lower maximin fitness
values (see Fig. 6 step 8), hence more likely to be chosen to construct a new pg.
As a result, other particles in the swarm will be more likely to be attracted to fill
these gaps. Fig. 6 shows that during a run on ZDT6, maximinPSO was able to
fill the gaps appearing on the distribution curve of the non-dominated solutions
found over a number of iteration steps.

The importance of a larger population size. Population size plays a critical
role in the performance of maximinPSO. Small population sizes do not work
well when using maximinPSO. Especially for a problem with a concave front,
the end points could become too dominated early on, hence attracting the rest
of population to a single point. To avoid such problems, a reasonably large
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Fig. 5. Snapshots of a maximinPSO run on ZDT4, showing all particles at step 8, 10
and 13 (from left to right).
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Fig. 6. On ZDT6, gaps among the distribution of solutions were filled over iteration
step 8, 10 and 12 (from left to right).

population size is necessary to allow better sampling of the search space, thereby
preventing certain individuals from becoming too dominated at the early stage
of a run. As shown in the results on ZDT2 (Table 2), an initial population of 400
were needed to obtain a good convergence and spread of solutions consistently.

It may appear that using a larger population size would increase the amount
of function evaluations, but for maximinPSO, at each iteration step we only
evaluate the offspring produced. Parents are not evaluated again before being
stored in nextPopList for the next iteration step (see step 3 of the maximinPSO
algorithm). maximinPSO generally converges very quickly, most of the time
less than 20 iteration steps for all runs reported in Table 1, which is also why
it used fewer function evaluations than the NSGA II counterpart. However, in
order to determine if each particle is non-dominated with respect to the rest
of population, the maximin fitnesses have to be calculated for all particles in
nextPopList.

6 Conclusion

This paper has described a PSO, maximinPSO, using the maximin fitness func-
tion for multiobjective optimization. Our experiments on the ZDT test function
series have shown that maximinPSO is able to produce a convergence and
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spread of solutions on the Pareto-optimal front almost perfectly, outperforming
the real-coded NSGA II in all performance measures used.

Furthermore, maximinPSO is more computationally efficient than NSGA II,
since it does not require any additional niching technique. maximinPSO was
able to find more non-dominated solutions with fewer numbers of function eva-
luations as shown in our results. When there are sufficiently large numbers of in-
dividuals in the population, maximinPSO will become less sensitive to the shape
of a Pareto-optimal front, whether it is convex or non-convex. maximinPSO also
has no difficulty handling multiple local fronts and fronts with non-uniform so-
lutions. In future, it would be interesting to see how maximinPSO performs on
problems with constraints and those with more than two objectives.
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