
A Dynamic Archive Based Niching Particle Swarm Optimizer
Using a Small Population Size

Zhaolin Zhai Xiaodong Li

School of Computer Science and Information Technology
RMIT University, Melbourne, VIC 3001, Australia

Email:zhaolin.zhai@student.rmit.edu.au; xiaodong.li@rmit.edu.au

Abstract

Many niching techniques have been proposed to solve
multimodal optimization problems in the evolutionary
computing community. However, these niching methods
often depend on large population sizes to locate many
more optima. This paper presents a particle swarm op-
timizer (PSO) niching algorithm only using a dynamic
archive, without relying on a large population size to lo-
cate numerous optima. To do this, we record found optima
in the dynamic archive, and allow particles in converged
sub-swarms to be re-randomized to explore undiscovered
parts of the search space during a run. This algorithm is
compared withlbest PSOs with a ring topology (LPRT).
Empirical results indicate that the proposed niching al-
gorithm outperforms LPRT on several benchmark multi-
modal functions with large numbers of optima, when us-
ing a small population size.

Keywords: Particle Swarm Optimization, Multimodal
Optimization, Evolutionary Computation, a Dynamic
Archive.

1 Introduction

Optimization techniques, such as Evolutionary Algo-
rithms (EAs) (Back et al. 1997), Particle swarm optimiza-
tion (PSO) (Kennedy & Eberhart 1995), and Differential
Evolution (Price et al. 2005)have proven to be successful
in solving difficult global optimzation problems, typically
chacterized by searching a single global optimum. How-
ever, many real optimization problems in science and en-
gineering do have more than one global optimal solution
known as multimodal problems. For instance, in the field
of wing design in aviation industry, there may be several
different solutions which could perform equally well. It
is desirable to locate as many optimal solutions as possi-
ble, so engineers are able to select the best solution de-
pending on the preferred design variable ranges. To ad-
dress this issue, a number of approaches to find multiple
solutions have been proposed (Li et al. 2002, R. Brits &
van den Bergh 2002, Bird & Li 2006, Li 2010). These
approaches are generally referred to as niching or speci-
ation algorithms. The notion of niching or speciation is
originated from ecological science, in which all kinds of
species (a class of individuals with common characteris-
tics (Li et al. 2002)) are considered to be evolved in paral-
lel by competition and species form different niches over
time. In the context of EC, niches refer subpopulations

Copyright c©2011, Australian Computer Society, Inc. This paper ap-
peared at the Thirty-Fourth Australasian Computer ScienceConference
(ACSC2011), Perth, Australia. Conferences in Research andPractice
in Information Technology (CRPIT), Vol. 113, M. Reynolds, Ed. Re-
production for academic, not-for-profit purposes permitted provided this
text is included.

formed around global or local optima, and a niching algo-
rithm aims to identify and maintain equally good solutions
stably throughout a run (Mahfoud 1995). In a typical EC
based niching algorithm, individuals in a population are
partitioned someway, generating a set of subpopulation
known as species. These species are expected to be con-
verged around different global or local optima (attraction
basins) in the search space for locating different potential
solutions.

Currently, existing niching algorithms largely depend
on using a large population size to find large numbers of
optima in the search space. However, without the prior
knowledge on numbers of optimal solutions to the prob-
lem, it is extremely hard to determine how many indi-
viduals or particles are sufficient for a multimodal prob-
lem. In particular, for problems with numerous global op-
tima, it is difficult for existing niching algorithms to locate
all optima, if the population size is not sufficiently large.
Furthermore, most reported experimental results on nich-
ing algorithms, is limited to low dimensional problems
or higher dimensional problems with a small number of
global optima (Bird & Li 2006, Li et al. 2002, Schoeman
& Engelbrecht 2005, Li 2010). However, in many cases,
as the dimensionality increases, the number of global and
local optima in multimodal problems may go up quickly.
For instance, the inverted Vincent function has6n number
of global optima, wheren is the number of dimensions.

This paper introduces a dynamic archive based PSO
niching algorithm (rpso − sp) to alleviate the population
dependence problem in niching algorithms.rpso − sp is
able to handle multimodal optimization problems using a
dynamic archive for saving best found solutions. To make
each particle keep doing search in a run, a multi-start tech-
nique is employed inrpso − sp through re-randomizing
converged sub-population, allowing sub-population ex-
plore undiscovered parts of the search space continuously.
The paper is organized as follows. Section 2 gives an in-
troduction to the basic PSO algorithms. Section 3 provides
a review of some state-of-the art PSO niching techniques.
Section 4 describes the newly proposedrpso− sp niching
algorithm. Experimental results and analysis are provided
in Section 5 and 6, followed by conclusions in Section 7.

2 Particle Swarm Optimization

Particle swarm optimization (PSO) is a recently devel-
oped stochastic optimization algorithm first introduced by
Kennedy & Eberhart (1995), inspired by social behaviors
observed among insects and animals such as bird flock-
ing or fish schooling. Like Genetic Algorithms (GAs),
PSO uses a population of agents, referred to as particles,
to form a swarm. Each particle in the swarm represents
a candidate solution to an optimization problem. In a
standard PSO algorithm, each particle moves through the
search space by adjusting its position based on its own ex-
perience that of neighborhood particles. We denote the

ith particle in the swarm as~xi, which is evaluated as a po-
tential solution at each iteration. Theith particle moves
with a velocity~vi toward promising regions by consulting
the best position~pi (the position giving the best fitness
value so far) found by itself and that of its neighbors~pg.
As to deciding neighbors for each particle, two types of
neighborhood topologies are extensively used in PSO. In
a global best (gbest) PSO, each particle influences every
other particle;~pg is obtained from the entire swarm. In
the local best (lbest) PSO, each particle influences its im-
mediate or close neighbors. We adopted the constriction
coefficient variation of PSO (Clerc & Kennedy 2002) in
this paper. Updating~vi and~xi for theith particle is based
on the following equations:

~vi = χ(~vi+~R1[0, ϕ1]⊗(~pi−~xi)+~R2[0, ϕ2]⊗(~pg−~xi))
(1)

~xi = ~xi + ~vi (2)

where~R1[0, ϕ1] and~R2[0, ϕ2] generate two vectors con-
taining random values uniformly distributed in the range
[0, ϕ1] and [0, ϕ2] respectively. ϕ1 and ϕ2 are usu-
ally set to ϕ

2
. ϕ is a positive constant.⊗ indicates

point-wise vector multiplication. A constriction coeffi-
cientχ is used to restrict particles’s visiting regions (com-
monly χ = 0.7298). χ is calculated according toχ =

2
∣

∣

∣
2−ϕ−

√
ϕ2

−4ϕ

∣

∣

∣

, whereϕ = ϕ1 + ϕ2 = 4.1 (Clerc &

Kennedy 2002).

3 PSO Niching Techniques

PSO niching methods commonly attempt to locate mul-
tiple optima to multimodal problems by partitioning a
swarm into a number of subs-swarms. These sub-swarms
run independently as local optimizers to find multiple op-
timal solutions in parallel. Currently, a variety of niching
PSO algorithms have been developed. Parsopoulos and
Vrahitis introduced a method to identify particles as po-
tential solutions when the fitness value of this solution is
lower than a predefined threshold value (Parsopoulos &
Vrahatis 2001). Brits et al proposed NichePSO (R. Brits
& van den Bergh 2002) and they extended Parsopoulos
and Vrahitis’ niching method by adopting multiple sub-
swarms generated from a main swarm. A sub-swarm is
created around a particle with little change of its fitness
over a number of iterations. Then a set of produced sub-
swarms do local search in parallel. Another niching PSO
algorithm is species particle swarm optimizer (SPSO) pro-
posed by Li (Li 2004). The basic idea is similar to a
species conserving genetic algorithm (SCGA) in (Li et al.
2002), except that PSO is used as a local optimizer instead
of using GA. In SPSO, a niche radius must be predefined.
It is a typical niching parameter, used to specify the upper
bound on the distance between two individuals being con-
sidered to be in the same niche (Li et al. 2002). To avoid
predefining such a parameter, Li introduced anlbest PSO
(as described in Section 2) with a ring topology (LPRT),
adopting a ring topology to form niches without requiring
a niche radius (Li 2010).

4 A Dynamic Archive based PSO Niching Algorithm
(rpso− sp)

The reason existing PSO niching techniques often requir-
ing a large population size (Li et al. 2002, Bird & Li 2006,
Li 2004, 2010), for solving complex multimodal problems
is that a large particle swarm is more likely to generate
a great number of sub-swarms. The more sub-swarms a

4

2
8

2

5

8

3

4

1

37

5

6

7

1

6

Figure 1: An example of mapping 8 particles in the swarm
to a ring topology. Assuming two dimensional search
space is used

niching method produces, the more local or global optima
the niching method possibly can find. However, without
the prior knowledge on numbers of optimal solutions to
the problem, it is almost impossible to figure out the ap-
propriate number of particles for a niching algorithm. To
alleviate such a problem, a new niching PSO algorithm,
rpso− sp, is proposed in this paper.

4.1 Constructing sub-swarms by using a ring topol-
ogy

rpso − sp adopts LPRT’s idea on forming sub-swarms
for two reasons: simplicity and niching parameter-free (Li
2010). Existing niching algorithms commonly use a rel-
atively complex procedure to dynamically group particles
as sub-swarms (Bird & Li 2006, Schoeman & Engelbrecht
2005) based on given niching parameters and particles’
current positions. Practically, many niching algorithms
group particles within a threshold distance (known as a
niche radius) in the search space as sub-swarms. LPRT in-
stead maps all particles in the search space to a ring topol-
ogy and Figure 1 gives such an example. Left side of the
figure shows particles’ actual positions in the search space
(assuming two dimensional search space); the right side
shows how a population of 8 particles is mapped into a
ring topology. Then LPRT forms sub-swarms by grouping
a fixed number of particles, which have the closest index
values on a ring topology. Figure 2 and Figure 3 illustrate
two variants instances of LPRT:r3pso andr3pso − lhc
(Li 2010). As shown in these two Figures, bothr3pso
and r3pso − lhc have sub-swarms consisting of 3 par-
ticles except that the number of particles on the tail of
a ring is less than 3. For instance, sub-swarm C only
contains 2 particles, shown in Figure 3. As to the dif-
ference between these two variants,r3pso has overlapped
sub-swarms which are formed by any particle and its left
and right neighbors on the ring topology indicated in Fig-
ure 2. r3pso − lhc is the same asr3pso, but without
overlapping neighbors shown in Figure 3. Each particle
in r3pso − lhc only belongs to one sub-swarm. Multi-
ple formed sub-swarms inr3pso − lhc do local search
independently, like local hill climbers (lhc). For detailed
description about LPRT, please refer to (Li 2010). LPRT’s
method uncovers two new features, compared with other
niching algorithms. Firstly, members in each sub-swarm
remain unchanged throughout a run. Secondly, particles
in other parts of the search space have chances to form a
sub-swarm, as LPRT creates sub-swarms regarding parti-
cles’ indexes on a ring topology instead of particles’ actual
positions in the search space. This feature is clearly shown
in Figure 1.

1

2

7

6

5

4

3

8

Sub-swarm A

Sub-swarm B

Sub-swarm C

Figure 2: An example ofr3pso. Sub-swarms A, B and C
consist of 3 particles and they are overlapped.

1

2

7

6

5

4

3

8

Sub-swarm A

Sub-swarm BSub-swarm C

Figure 3: An example ofr3pso − lhc. It is the same
as r3pso, but without overlapping neighbors. All sub-
swarms A, B and C do local search independently, like
local hill climbers (lhc).

4.2 A Dynamic Archive Recording Found Optima

rpso − sp extends LPRT by utilizing a dynamic archive
(DA) to record optima found by converged sub-swarms.
And these converged sub-swarms are re-randomized to
search other parts of the search space, achieved through a
multi-start technique. As far as the basic concept of nich-
ing is concerned, niching algorithms can be considered to
be either sequential or parallel (Brits et al. 2007). If a
PSO niching method repetitively appliesgbest PSO to the
search space until all global optima are found, this algo-
rithm is categorized as being sequential niching. In con-
trast, if a PSO niching method partitions the swarm into
several sub-swarms for forming different niches simulta-
neously, this method is in the domain of parallel niching.
Obviously,rpso−sp presented in this paper holds charac-
teristics from both sequential niching (employing a multi-
start technique) and parallel niching (using a ring topol-
ogy to form sub-swarms). Sorpso − sp is a hybrid of
sequential and parallel niching ideas. In addition, existing
parallel niching algorithms commonly record found opti-
mal solutions in members of the population. This could
possibly lead to identified solutions missing due to opera-
tions in PSO. To better maintain equally good solutions, a
dynamic archive is used inrpso − sp for preservation of
optimal solutions. By doing so,rpso − sp can lower the
risk of losing found optimal solutions.

Additionally, to make the comparison betweenrpso−

sp andLPRT clear in Section 6, variants ofrpso − sp
follow the similar naming rules asLPRT does (Li 2010).
It is noticed that numbers in variants names indicates the
number of members in each sub-swarm. LikeLPRT ,
rpso−sp also has several variants with varying sub-swarm
sizes.r3pso − sp andr3pso − sp − lhc are two typical
variants ofrpso − sp. They are the same asr3pso and
r3pso− lhc respectively, except that a dynamic archive is
used in each variant for recording optima found by con-
verged sub-swarms.

Our proposedrpso − sp algorithm works generally in
the following steps:

Step 1: Initialize particles to random positions in the search
space and use a ring topology to form sub-swarms.
At the same time, an empty dynamic archiveDA is
built.

Step 2: Sub-swarms rungbest PSOs in parallel. The best so-
lution found by the converged sub-swarm is checked
with the DA to confirm that whether a found solu-
tion is qualified to add into theDA. Then converged
sub-swarms are re-randomized to do search again. In
terms of identifying converged sub-swarms, a sub-
swarm is considered to be converged when the ve-
locity of any particle in the sub-swarm approximately
reduces to 0. The reason behind this is simple. As-
sume that a particle in a sub-swarm stops moving in
the search space, this implies that no better positions
can be found either by other particles in the sub-
swarm or by the particle itself, according to Equa-
tion (1). Furthermore, the stopped particle almost is
a leading particle with the best solution in the sub-
swarm.

Step 3: When stopping criteria are met,rpso−sp terminates.

The detailed algorithm for building aDA is presented
in Algorithm 1; it is performed at each iteration step in
rpso− sp. We assume maximization in this paper.

As can be seen in Algorithm 1, a dynamic archiveS
records two types of solutionsp found by sub-swarms.

Type 1: p has a better fitness value than a thresholdδ (f(p) >
δ). δ holds the best fitness value found by sub-
swarms so far. Under this condition,p is the best
solution found since a run starts.p will replace the
saved solutions in the dynamic archive ifp ands are
considered to be similar solutions. Namely Euclidean
distance betweenp ands is smaller than identifica-
tion radiusR (||p− s|| ≤ R; see equations (3)–(5)).
If it is not the case, it meansp has no similar solution
in S. Sop will be simply added intoS. R is used to
identify different solutions.

Type 2: p has a relatively good fitness value compared with
recorded solutions in the dynamic archive|f(p) −
δ| < ε. ε is set by users as acceptable accuracy, used
to identify a qualified solutionp. In this case, ifp
and s are similar||p − s|| ≤ R, andp has better
fitness value (f(p) > f(s)), thenp will replaces in
the dynamic archive. Ifp has no similar solution in
S, p will be directly added intoS

Equation (3) calculates the minimum distancedisti be-
tween each particleki and other particleskj . K represents
a set, consisting ofn particles in the swarm.||ki − kj ||
computes Euclidean distance betweenki and kj in the
search space. Then the average of minimum distancesrm

in the mth iteration of a run is obtained over Equation
(3) and Equation (4), suggested by Bird & Li (2006).rm

in fact reflects the convergence degree of all particles in
the swarm. We assume that the most of sub-swarms have

input : p - a potential solution obtained from con-
verged sub-swarms

output : S - a list of found solutions in a dynamic
archive

begin
found← FALSE; update← FALSE;
if S = ∅ then

S ← S ∪ {p}; δ ← f(p);

end
else

if f(p) > δ then
δ ← f(p); update← TRUE;

end
if update or |f(p)− δ| < ε then

for each s ∈ S do
if ||p− s|| ≤ R then

if f(p) > f(s) then
s← p;
found← TRUE;
break;

end
else

found← TRUE;
break;

end
end

end
if not found then

S ← S ∪ {p};
end

end
end

end

Algorithm 1: Pseudocode for building a dynamic
archive.

already converged on a number of niches. Then the mini-
mum distance between each particle and other particles, is
close to zero. Accordingly, the average of minimum dis-
tancesrm is reaching zero. In short, whilerm is approach-
ing zero, the convergence degree becomes very high.

disti = min{||ki − kj ||; ∀ki, kj ∈ K ∧ ki 6= kj} (3)

rm =

∑n
i=1

disti

n
(4)

R = min{r1, r2, . . . rm} (5)

The identification radiusR employed in Algorithm 1,
is used for deciding that whether a newly found solution
is already in theDA. R denotes the smallest value among
the average of minimum distances produced up to themth

iterations of a run, shown in Equation (5). The reason why
we chooseR in this way is easily explained. In the first
half of a run, it is highly possible that niches on the big
attraction basins in multimodal problems have been iden-
tified, as big attraction basins easily absorb more particles
than small attraction basins. Along with more and more
niches having been found, discovering niches located on
the smaller attraction basins becomes a major challenge.
To handle this problem, a smaller and smaller identifi-
cation radius actually is more preferrable. Therefore, it
makes sense to chooseR in this way which can be adap-
tively chosen in a run.

5 Experimental setup

To measure the performance of PSO niching algorithms, a
set of extensively used multimodal benchmark functions
was used. Table 1 indicates the test functions used in
this study ranging from simple to more challenging ones.
f1 has 5 evenly spaced global peaks.f2 has 5 unevenly
spaced global peaks.f3 has four unevenly spaced global
peaks without any local peaks. The inverted Shubert func-
tionf4 and the inverted Vincent functionf5 are more chal-
lenging N-dimensional multimodal functions. Due to hav-
ing a large number of unevenly spaced local and global op-
tima when the function dimensionalityn increases, both
f4 and f5 are widely used in this study. For inverted
Shubert 2D function, it has 18 global peaks spaced in 9
groups. The distance between global peaks in the same
group is much closer than global peaks in the different
groups. In general,f4 hasn·3n global peaks in3n groups.
f5 has6n unevenly spaced global peaks.f6 only keeps
a single global peak when its dimension increases.f7

has5n clearly known global peaks evenly spaced in n-
dimensional search space without local peaks.

We usedpeak ratio (PR) as the performance measure-
ment throughout experiments in this study. Peak ratio de-
fines the proportion of found peaks to the total number of
known peaks. For hard test functions with a large num-
ber of global peaks, peak ratio is more informative when
comparing the niching ability between different niching
algorithms. To count the number of found peaks for each
algorithm, an acceptance thresholdγ was set to identify
whether a found solution is close enough to a known op-
timum. If the fitness of a found solution is withinγ of
the desired global best fitness, this solution is considered
found.

6 Experimental Results

Five sets of experiments were carried out. Firstly, We eval-
uated severalrpso − sp variants and chose a relatively
good performer as the representative ofrpso − sp. We
then comparedrpso− sp andLPRT in four aspects: ba-
sic niching ability, sensitivity to population size, niching
ability by using a small population size and scalability on
high dimensional multimodal functions.

In this study, all experimental results are average val-
ues over 50 runs. MNFE and NFE indicate the maximum
number of function evaluations to be allowed in a run and
number of function evaluations spent during a run respec-
tively. PS and PR denote population size and peak ratio
respectively.

6.1 Choosing a rpso − sp Variant comparing with
LPRT

To make an informed decision on which variant ofrpso−
sp should be adopted, a set ofrpso − sp variants were
tested on the inverted Shubert 3D functionf4(3D) and
a relatively better performer was chosen as the base al-
gorithm for rpso − sp. As can be seen in Figure 4,
r3pso − sp (like r3pso), performs much worse than the
variantr3pso − sp − lhc no matter how big sub-swarm
sizes are. It is clear thatr3pso − sp − lhc performs
reasonably well although it is not the best one among
rpso − sp − lhc variants. r3pso − sp − lhc thereby
is chosen as the core niching algorithm used in our ex-
periments and it is simply denoted asrpso − sp. It is
noticed that the performance of variants does not sim-
ply increase with increasing sizes of sub-swarms. For
example,r20pso − sp − lhc performs much worse than
r3pso − sp − lhc does. In this paper, we focus on com-
parison betweenrpso − sp and two variants ofLPRT :

Table 1: Test functions. n and GP are function dimensions andthe number of global peaks respectively.
Name Function Range GP

Equal Maxima (Deb 1989) f1(x) = sin6(5πx) [0, 1] 5
Uneven Maxima (Deb 1989) f2(x) = sin6(5π(x3/4 − 0.05)). [0, 1] 5
Himmelblau’s function (Deb 1989) f3(x, y) = 200 − (x2 + y − 11)2 − (x +

y2 − 7)2
[−6, 6] 4

Inverted Shubert function (Li et al. 2002) f4(~x) = −
∏n

i=1

∑

5

j=1
j cos[(j +1)xi +

j]

[−10, 10] n · 3n

Inverted Vincent function (Li 2010) f5(~x) = 1

n

∑n
i=1

sin(10 · log(xi)) [0.25, 10] 6n

Inverted Rastrigin function (Li 2010) f6(~x) = −
∑n

i=1
(x2

i − 10 cos(2πxi) +
10)

[−1.5, 1.5] 1

Inverted Deb’s 1st function (Deb 1989) f7(~x) = 1 − 1

n

∑n
i=1

(1 − sin6(5πxi)) [0, 1] 5n

0 2 4 6 8 10 12 14

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Function Evaluations

P
ea

k
R

at
io

r2pso−sp−lhc

r3pso−sp−lhc

r5pso−sp−lhc

r10pso−sp−lhc

r20pso−sp−lhc

r2pso−sp

r3pso−sp

r5pso−sp

r10pso−sp

r20pso−sp

Figure 4: The performance ofrpso − sp’s variants on
the inverted Shubert 3D function.γ = 0.1, PS = 100,
MNFE = 1, 000, 000.

r3pso and r3pso − lhc, which showed the best perfor-
mances among allLPRT variants on a range of multi-
modal test functions (Li 2010).

6.2 Results on One or Two Dimensional Test Func-
tions.

Table 2 shows thatr3pso andr3pso− lhc are able to suc-
cessfully locate all global peaks onf1(1D), f2(1D) and
f6(2D) within MNFE = 200, 000, as well asrpso−sp.
However, they perform poorly onf4(2D) and f7(2D).
Peak ratios forr3pso andr3pso− lhc onf7(2D) are only
46% and49% respectively. Meanwhile, bothr3pso and
r3pso− lhc fail to find all global peaks onf3(2D) in sev-
eral runs. In contrast,rpso − sp performs consistently
well on these nine benchmark functions and it can locate
all global peaks withinMNFE = 200, 000.

6.3 The Effect of varying Population Sizes

To explore the effect of population size on the perfor-
mance of niching algorithms, population sizes ranging
from 4 to 1600 were used forrpso − sp, r3pso and
r3pso − lhc, on optimizingf4(2D) and f5(2D). Fig-
ure 5 and Figure 6 showr3pso and r3pso − lhc have
a good niching ability only when population size is very
large(PS > 250 onf4(2D) andPS > 1200 onf5(2D)).
When smaller population sizes are used, PR drops dra-
matically for both variants. For example, whenPS < 10,
PR < 0.2 is for both variants onf4(2D). In contrast,
rpso− sp performs consistently well for different popula-
tion sizes. Even whenPS < 10, rpso− sp is still able to
find almost 18 optima onf4(2D).

To sum up,rpso − sp shows a much lower sensitiv-
ity to population size than bothr3pso andr3pso − lhc.
rpso − sp performs consistently well when varying the
population size. On the other hand, the performance of

10
1

10
2

10
3

0

0.2

0.4

0.6

0.8

1

Population Size

P
ea

k
R

at
io

rpso−sp

r3pso

r3pso−lhc

Figure 5: Peak ratios for Inverted Shubert 2D Function as
PS increases from 4 to 1600.γ = 0.0001, MNFE =
200, 000

r3pso andr3pso − lhc are largely dependent on popula-
tion sizes. Without a large enoughPS, these algorithms
may fail to achieve desired results.

6.4 The effect of increasing number of evaluations

Since the goal of a niching algorithm is to find and main-
tain niches on all global optima, we designed a set of
experiments to monitor peak ratios in the whole run for
each algorithm by using a relatively small population size:
PS = 50. Figure 7 and Figure 8 demonstrate the niching
behaviors for each algorithm. Althoughrpso − sp is un-
able to find all global optima onf4(3D) andf5(3D) in
most cases, it performs far better thanr3pso andr3pso−
lhc. Furthermore, Figure 8 displays thatrpso − sp has a
potential to obtain higher peak ratios if more evaluations
are given.

As expected, one of advantagesrpso − sp has is that
it is able to remember all found optima. In other words,
the issue of maintaining niches in niching algorithms is
handled by employing a dynamic archive to save found
optima. More importantly, a population size is no longer
a crucial parameter forrpso − sp. Since it is able to find
more optima continuously, without depending on the spec-
ified population size. Finally, compared withr3pso− lhc
andr3pso, rpso− sp can reach higherPR within a small
number ofNFE as shown in both Figure 7 and Figure 8.

6.5 The effect of increasing dimensionalities

To examine the scalability of niching PSO variants, a set
of experiments were conducted onf4 andf5 by increas-
ing the dimension from 2 to 5, as shown in Figure 9 and
Figure 10.rpso− sp still performs better than other nich-
ing variants, although the performance of all three variants

Table 2: Peak ratios on low dimensional functions forr3pso, r3pso − lhc andrpso − sp. γ = 0.0001, PS = 50,
MNFE = 200, 000.

f1(1D) f2(1D) f3(2D) f4(2D) f5(1D) f6(2D) f7(2D)
r3pso 100% 100% 85% 51% 78% 100% 46%

r3pso− lhc 100% 100% 98% 54% 90% 100% 49%
rpso− sp 100% 100% 100% 100% 100% 100% 100%

10
1

10
2

10
3

10
4

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Population Size

P
ea

k
R

at
io

rpso−lhc

r3pso

r3pso−lhc

Figure 6: Peak ratios for Inverted Vincent 2D Function as
PS increases from 4 to 1600.γ = 0.0001, MNFE =
500, 000

0 2 4 6 8 10
x 10

5

0

0.2

0.4

0.6

0.8

1

Number of Function Evaluations

P
ea

k
R

at
io

rpso−sp

r3pso

r3pso−lhc

Figure 7: Peak ratios for Inverted Shubert 3D as the
number of function evaluations increases.MNFE =
1, 000, 000, PS = 50, γ = 0.01.

0 2 4 6 8 10
x 10

5

0

0.2

0.4

0.6

0.8

1

Number of Function Evaluations

P
ea

k
R

at
io

rpso−sp

r3pso

r3pso−lhc

Figure 8: Peak ratios for Inverted Vincent 3D as the
number of function evaluations increases.MNFE =
1, 000, 000, PS = 50, γ = 0.0001.

2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

Dimension

P
ea

k
R

at
io

rpso−sp

r3pso

r3pso−lhc

Figure 9: Peak ratios for Inverted Shubert Function (f4)
as the dimensionality increases from 2 to 5.γ = 0.1,
MNFE = 1, 000, 000, PS = 50.

2 3 4 5 6

0

0.2

0.4

0.6

0.8

Dimension

P
ea

k
R

at
io

rpso−sp

r3pso

r3pso−lhc

Figure 10: Peak ratios for Inverted Vincent Function (f5)
as the dimensionality increases from 2 to 5.γ = 0.0001,
MNFE = 1, 000, 000, PS = 50.

degrade quickly with increasing dimensions. It is notice-
able thatrpso − sp managed to keep a peak ratio≈ 0.2
on bothf4(4D) andf5(4D). Accordingly, the absolute
number of optima found is around 94 and 210 onf4(4D)
andf5(4D) respectively. This implies thatrpso− sp still
maintain a relatively better scalability to higher dimen-
sional problems even when the population size is much
smaller than the number of known global peaks on bench-
mark functions. However, all PSO niching variants reach
much lower peak ratios whendimension = 5.

7 Conclusions

The primary advantage ofrpso − sp over previous nich-
ing techniques is that it does not depend on a large popu-
lation size to optimize multimodal functions with a large
number of global optima. Our experiments clearly demon-
strate thatrpso − sp is able to provide competitive per-
formance even when only small population sizes have
been used. Although the performance ofrpso− sp drops
quickly as the function dimensionality increases, it per-

forms consistently well or better than the ring topology
based PSO niching algorithms without using a dynamic
archive. Since a user does not have to specify niching
parameters and only a small population size is required,
rpso − sp holds a great promise in real world problem
solving. Future work will investigate how to further en-
hance the scalability ofrpso− sp and applyrpso− sp to
real–world problems solving.

References

Back, T., Fogel, D. B. & Michalewicz, Z., eds (1997),
Handbook of Evolutionary Computation, IOP Publish-
ing Ltd., Bristol, UK, UK.

Bird, S. & Li, X. (2006), Adaptively choosing niching
parameters in a PSO,in M. Cattolico, ed., ‘Genetic
and Evolutionary Computation Conference, GECCO
2006, Proceedings, Seattle, Washington, USA, July 8-
12, 2006’, ACM, pp. 3–10.

Brits, R., Engelbrecht, A. & van den Bergh, F. (2007),
‘Locating multiple optima using particle swarm op-
timization’, Applied Mathematics and Computation
189(2), 1859 – 1883.

Clerc, M. & Kennedy, J. (2002), ‘The particle swarm -
explosion, stability, and convergence in a multidimen-
sional complex space’,IEEE Trans. on Evol. Comput.
6, 58–73.

Deb, K. (1989), Genetic Algorithms in multimodal func-
tion optimization (Master thesis and TCGA Report No.
89002), PhD thesis, Tuscaloosa: University of Al-
abama, The Clearinghouse for Genetic Algorithms.

Kennedy, J. & Eberhart, R. (1995), Particle swarm opti-
mization, in ‘Proc. Conf. IEEE Int Neural Networks’,
Vol. 4, pp. 1942–1948.

Li, J.-P., Balazs, M. E., Parks, G. T. & Clarkson,
P. J. (2002), ‘A species conserving genetic algorithm
for multimodal function optimization’,Evol. Comput.
10(3), 207–234.

Li, X. (2004), Adaptively choosing neighbourhood bests
using species in a particle swarm optimizer for mul-
timodal function optimization,in K. Deb, ed., ‘Proc.
of Genetic and Evolutionary Computation Conference
2004(LNCS 3102)’, pp. 105–116.

Li, X. (2010), ‘Niching without niching parameters: Par-
ticle swarm optimization using a ring topology’,Evolu-
tionary Computation, IEEE Transactions on 14(1), 150
–169.

Mahfoud, S. W. (1995), Niching methods for genetic al-
gorithms, PhD thesis, Urbana, IL, USA.

Parsopoulos, K. & Vrahatis, M. (2001), Modification of
the particle swarm optimizer for locating all the global
minima, in R. N. M. K. V. Kurkova, N. Steele, ed.,
‘Artificial Neural Networks and Genetic Algorithms’,
Springer, pp. 324–327.

Price, K., Storn, R. M. & Lampinen, J. A. (2005),Differ-
ential Evolution: A Practical Approach to Global Opti-
mization (Natural Computing Series), Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

R. Brits, A. E. & van den Bergh, F. (2002), A niching
particle swarm optimizer,in ‘Proc. of the 4th Asia-
Pacific Conference on Simulated Evolution and Learn-
ing 2002(SEAL 2002)’, pp. 692–696.

Schoeman, I. & Engelbrecht, A. (2005), ‘A parallel vector-
based particle swarm optimizer’, pp. 268–271.

