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Swarm Heuristic for Identifying Preferred Solutions in
Surrogate-Based Multi-Objective Engineering Design
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Exploring the entire Pareto frontier of high-fidelity multidisciplinary problems can be prohibitive due to the
excessive number of expensive evaluations required. The use of surrogate models offers promise toward managing
such problems, which are restricted by a computational budget. In this paper, the kriging-assisted user-preference
multi-objective particle swarm heuristic is presented, in which less accurate but inexpensive surrogate models are
used cooperatively with the precise but expensive objective functions to alleviate the computational burden. A user-
preference module is integrated into the optimization framework, which guides the swarm toward preferred regions
of the Pareto frontier, thereby focusing all computing effort on identifying only solutions of interest to the designer.
While providing a logical criterion to prescreen candidates for precise evaluation, the additional guidance provided
by user-preferences guarantees an accelerated convergence rate. To depict the proficiency of the proposed
framework, a suite of test problems, including the multidisciplinary cross-sectional design of a semimonocoque
fuselage enclosing a pressurized cabin and payload bay, is presented. A parametric model is described that is capable
of generating a broad range of double-lobe fuselage designs. The superiority of the kriging-assisted user-preference
multi-objective particle swarm optimization algorithm over more traditional search methods to efficiently manage
high-fidelity discontinuous design problems is highlighted.
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I.

N RECENT times, the usage of computational models in

engineering design has greatly increased [1,2]. Engineers employ
high-fidelity numerical modeling to simulate, within reasonable
accuracy, how a complex system will behave. Furthermore, the
ability to reflect changes in the behavior of a system by modifying
certain input parameters has prompted the use of optimization
techniques. Innovative design methods have since been developed,
e.g., by drawing on the Darwinian model of the survival of the fittest,
the ability of a flock of birds to move in unison to avoid a predator, or
the ability of a neural network to detect patterns in complex input-
output data relationships, etc. These learning techniques are formu-
lated to find the most optimal system configuration to suit the
preferences of the designer, in the shortest time possible. However, a
significant challenge to the application of evolutionary heuristics in
engineering design is the excessive number of expensive function
evaluations required for convergence [1]. Even with the cooperative
use of a surrogate model, the computational expense may still inten-
sify when considering multiple competing objectives, where a host of
solutions are possible. Therefore, control measures are proposed to
ensure efficient frameworks that focus on identifying preferred
solutions only.

A multi-objective optimization problem (MOP) follows the
generic form:
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minf () = {£1(%), ... [u(O}fi: S > R (M
where x represents a decision vector of n inputs x = {x;,...,x,}

subject to the design space S € R” bounded by [Xin» Xmax)» and
any additional constraints. The vector f represents m conflicting
objectives. Solutions to MOP are globally nondominated or
Pareto-optimal, each offering a specific level of compromise be-
tween the objectives. The simplest approach to identify one
possible solution on the Pareto front is to adopt the weighted sum
approach, where all objectives are aggregated into a single scalar
through weights [3,4]. Such methodologies allow for the use of
proven optimization tools, such as the deterministic gradient-based
methods. However, the weight terms are generally not known in
advance, and it provides no flexibility to the designer to screen
through alternative solutions. Furthermore, complete equivalence
to an actual Pareto-optimal solution is not necessarily guaranteed
[5]. Alternatively, we propose the use of a multi-objective particle
swarm algorithm [5,6], a recent addition to the list of evolutionary
multi-objective techniques [7]. This population-based heuristic is
capable of identifying a host of nondominated solutions, providing
the designer greater flexibility in selecting the most appropriate
solution. The swarm heuristic is praised for its proficiency in
managing discontinuous and multimodal problems, as well as its
quick and simple implementation [3,8].

Despite these advantages, evolutionary algorithms may only
deliver marginal performance for computationally challenging prob-
lems since they are not guided by any gradient information [1,9]. We
argue that in most engineering applications, to explore the entire
Pareto front is often unnecessary and the computational burden can
be alleviated by incorporating the preferences of the designer.
Recently, there has been increased interest in coupling classical
interactive methods to population-based heuristics as an intuitive
way of specifying user-preferences [10-12]. We propose the inte-
gration of one such interactive algorithm as a guidance mechanism
for the swarm. A reference point, which is specified as an array of m
aspiration values, is projected onto the Pareto landscape by the
designer to guide the swarm toward solutions of interest. Unlike goal
attainment methods, which make explicit reference to a target design
[13], the reference point is a means of expressing the designer’s
preferred level of compromise, which can ideally be based on an
existing or target design [14-16]. The swarm is guided by this
information to confine its search to the preferred region of the Pareto
front in the vicinity of the reference point. By establishing a preferred
region (or solution spread), the designer is still provided with the
flexibility to explore other interesting alternatives, which perhaps
slightly deviate from the specific level of compromise as dictated by
the reference point.

The integration of the reference point method has proven to
overcome many limitations that plague conventional evolutionary
algorithms, including many-objective problems [16,17]. Of partic-
ular significance is the ability to converge over large multimodal
design spaces (which are typical of engineering design problems)
and precision in the exploitation of individual solutions [14,15]. In
this paper, we aim to progress further with the concept of user-
preference optimization, by exploring the concept of surrogate-
assisted optimization (SAO). Surrogate or metamodels are used to
predict the response of a computationally intensive function at an
unobserved location, based on observations at nearby locations. The
aim of SAO is to use the precise objective functions and the inex-
pensive surrogate models cooperatively, in an effort to reduce the
number of precise evaluations required for convergence. An active
area of research is the development of prescreening criteria which
determine, with sufficient confidence, which candidate designs are
feasible for precise evaluation [2,18,19]. Such prescreening
strategies are to be implemented with caution, so that a fair balance
between searching less explored regions of the design space and
exploitation of promising areas can be established. We demonstrate
the relative ease in prescreening candidate designs for precise
evaluation, by using the information provided by the reference point.
This simple, yet logical, criterion is proficient in identifying solutions

which are expected to provide improvement within the preferred
region.

The paper is structured as follows. Section II provides a descrip-
tion of the user-preference multi-objective particle swarm algorithm,
and the rationale for selecting leaders. Section III introduces surro-
gate modeling and describes a novel user-preference prescreening
criterion. Section IV highlights the computational efficiency of the
proposed framework for a high-fidelity design problem, compared
with more traditional methods. Finally in Sec. V, conclusions are
presented and avenues for future research are explored.

II. User-Preference Particle Swarm Algorithm

Particle swarm optimization (PSO) is perhaps the most widely
researched swarm paradigm and was first introduced by Kennedy
and Eberhart [6]. The PSO architecture is derived from the social-
psychological tendency of individuals to learn from previous
experience and emulate the success of others. Particles are repre-
sented by n-dimensional vectors x; and v;, which are the particle
position and velocity, respectively. From the performance rating
provided by the objective solver, particles identify and exploit
promising areas of S via coordinated movement. Although PSO was
initially developed for single-objective optimization, it has since
gained rapid popularity in multi-objective optimization [8].

There have been numerous modifications to the canonical particle
swarm algorithm, which affect certain search characteristics [5]. Of
significant importance is the swarm topology, which controls the
level of communication between swarm particles. Recent research
suggests that a local topology is more likely to overcome premature
convergence so that particles do not commit prematurely to an
inferior optimum [20]. Individual particles have limited global com-
munication and the concept of a single global leader is replaced by a
subset of one to many neighborhood leaders, to encourage diversity.
We present a variant of the multi-objective particle swarm (MOPSO)
heuristic, which incorporates user-defined preferences to direct all
computing effort on preferred regions of the Pareto landscape.
Implementing user-preferences allows us to adopt a more diverse
search tactic, by ranking solutions according to their resemblance to
the ideal compromise.

A. Particle Flight

The ith particle of the swarm is accelerated toward its personal best
position p; and the global (or neighborhood) best position p,. The
particle velocity magnitude is initialized randomly in the interval
[Xmin — Xmax> Xmax — Xmin)- The updated position and velocity
vectors at time ¢ 4 1 are given by the following two equations [21]:

Viarn = X[V + Ri[0, 0] ® (piy — Xi) + R2[0, 95]
® (Pg.() — Xi )] 2)

X i+ = Xi) T Vi1 3)

where R [0, ¢,] and R, [0, ¢,] are two functions returning a vector of
uniform random numbers in the range [0, ¢,] and [0, ¢, ], respectively.
The constants ¢, and ¢, are set to ¢/2 where ¢ =4.1. The
constriction factor x applies a dampening effect as to how far the
particle explores within the search space, given as y =2/|2—
@ — +/¢* — 4¢|. To avoid saturation of the search space boundary, in
the event a particle leaves the search space, it is reflected in the
opposite direction by the magnitude of confinement violation.

B. Topology

In a multi-objective environment, there are generally a host of
nondominated solutions that are all considered equally optimal. At
each time-step, the best representative front found by the particles is
stored within an elitist archive. As the search progresses, non-
dominated solutions in the archive are updated and/or removed via
the dominance criteria. Since there are now several identifiable
leaders for each particle, additional guidance in ranking the archive
solutions is necessary. Following the work of Wickramasinghe and
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Li [10], a user-preference module is integrated to focus on preferred
regions of the Pareto landscape. This module provides an intuitive
criterion for selecting candidates for leadership, and assists the
swarm to identify only solutions of interest to the designer. The
guidance mechanism takes the form of a reference point z, which is
used to construct a distance metric to be minimized for x € §

minimize d, = n_lla_x{(f,-(x) —Z)} 4

where Z; is the ith component of the reference point or the aspiration
value to the ith objective. The designer generally has no prior
knowledge of the Pareto front, therefore reference points may be
ideally placed in any feasible or infeasible region, as shown in Fig. 1.
The reference point draws on the designer’s experience to express a
feasible compromise, rather than specific target values or goals.
Similarly, the reference point distance metric ranks or assesses a
particle’s success using one single scalar, instead of an array of
objective values. We apply the dominance criteria concurrently with
Eq. (4) to find a feasible set of nondominated solutions with the most
resemblance to Z;, in terms of compromise.

At each population update, the archive members are first sorted
based on the metric d_, of which the highest ranking solutions are
selected as candidates for leadership. Each individual particle is then
assigned randomly to an archive member as the allocated leader [see
Eq. (2)]. Although this procedure does not follow the canonical local
topology [20], it promotes search diversity and provides the neces-
sary selection pressure for particles to converge toward the preferred
region around the reference point, rather than a single point. To
maintain a high selection pressure on the archive members, a limited
number of solutions are permitted for entry. If the archive limit is
breached, lowest ranked solutions are removed. The solution spread
along the Pareto front is controlled by §, as shown in Fig. 1. This
parameter is the maximum variance of the solutions’ distance metric
o(d.). The extent of the solution spread is directly proportional to &
and evidently, as the value of § increases, the influence of the location
of z diminishes. Once the condition o(d,) < § is satisfied, the
algorithm uses a crowding distance operator to maintain a uniform
spread [7,22].

C. Handling Constraints

When comparing particles for admission in the archive, a
constraint-dominance procedure is applied following the work of
Deb [7]. Foreach particle, ¢; = (cy, . .., ¢,,) where p is the number of
constraints and ¢; > 0 is the violation of the constraint. A solution x
constraint-dominates y if any of the following criteria are met:

1) Solution x is feasible and solution y is not.

2) Both solutions x and y are infeasible but c(x) < c(y).

3) Both solutions x and y are feasible but d_(x) < d_(y).

Therefore, if both solutions are deemed to satisfy the constraint
values, the more preferred particle is admitted for entry. However, if
both particles are infeasible, the particle with the overall least
number/value of constraint violations is considered the better
solution.

D. Mutation Operator

Despite the additional guidance provided by user-preferences, and
the diversity inherent within the proposed topology, the search
proficiency of the swarm may deteriorate when confronted with a
highly multimodal problem [8,23]. A Gaussian mutation operator is
applied to archive solutions if consistent improvement is not
recorded.! The mutation operator is both effective at initially
bypassing poorly performing areas of the design space, and gener-
ating new leaders as the search stagnates, or v — 0. The percentage
of archive members selected for mutation steadily reduces as the
archive reaches maximum capacity.

fImprovement is measured by monitoring the mean value of d.. If
successive mean values are equal, mutation is triggered.

S od)<s,

Objective 2 —
K

8, =0.001

ﬁ Reference point
—— Pareto front

O Preferred solutions

Objective 1 —
Fig. 1 User-preference particle swarm algorithm on a convex Pareto
landscape.

E. UP-MOPSO Algorithm

The user-preference multi-objective particle swarm optimization
(UP-MOPSO) algorithm is summarized in Fig. 2. The stopping
criterion for the algorithm is based on the maximum number of
function evaluations as specified by the user.

UP-MOPSO is the developed optimizer for our surrogate-assisted
framework. We next describe how surrogates are implemented in this
algorithm to manage problems constrained by a computational
budget.

III. Surrogate-Assisted Optimization

Evolutionary optimization techniques are very reliable in
obtaining a representation of the Pareto front for MOP. However,
in modern engineering design, the objective array can be compu-
tationally demanding and thus the success of the optimization
process is also dependent on the computational resources available.
The cooperative use of a surrogate with the precise objective function
offers promise toward managing design problems which are
restricted by a computational budget.

A. Kriging Prediction

In most engineering problems, to construct a globally accurate
surrogate of the original objective landscape is improbable due to the
weakly correlated design space. It is more common to locally update
the prediction accuracy of the surrogate as the search progresses
toward promising areas of the design space [2]. For this purpose, the
kriging method has received much interest, because it inherently
considers confidence intervals of the predicted outputs. For a com-
plete derivation of the kriging method, the readers are encouraged to
follow the work of Jones [24] and Forrester et al. [2]. We provide a
very brief introduction to the ordinary kriging method, which
expresses the unknown function y(x) as

y(x) =B+ z2(x) 5)

where x = [x,---,x,] is the data location, § is a constant global
mean value, and z(x) represents a local deviation at the data location
x based on a stochastic process with zero-mean and variance o?
following the Gaussian distribution. The approximation y(x) is
obtained from

$(x) =B+ r"R(Y —1h) ©6)

where f is the approximation of 8, R is the correlation matrix, r is the
correlation vector, Y is the training dataset of N observed samples at
location X, and 1 is a column vector of N elements of 1. The
correlation matrix is a modification of the Gaussian basis function

R(x',x/) = exp (— > il — xilz) )
k=1

where 6, > 0 is the kth element of the correlation parameter 6.
Following the work of Jones [24], the correlation parameter 6 (and
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1. Specify reference point Z and solution spread &

2. Initialize the swarm population:

(a) The position &;, velocity ¥; and personal best position p; = Z;

(b) Evaluate each particle in the population; time-step ¢ := 0.

3. Time-stept:=1+ 1.

4. Apply domination criteria to update archive, Q:

(a) Calculate the distance metric d; (via Eq. (4)) of each swarm particle.

(b) Identify non-dominated solutions and include in Q; if 0 (d;) < & then rank Q by min d,, else rank Q by crowding

distance.

(c

~

members are removed.

5. Update swarm population:

if O limit is breached, if 6 (d;) <6 then rank Q by min d., else rank Q by crowding distance; lowest ranked

(a) Randomly assign highest ranked members of Q to particles.

(b) Update particle position Z; and velocity ¥; as per Egs. (2) and (3); evaluate each particle in the population.

6. Apply mutation operator if consistent improvement in Q is not recorded.

7. Update p; if dominates existing p; .

8. if not maximum number of evaluations reached then goto 3.

Fig. 2 UP-MOPSO pseudocode.

hence the approximations 3 and 6?) are estimated by maximizing the
concentrated In-likelihood of the dataset Y, which is an n-variable
single-objective optimization problem, solved using a quasi-Newton
method [25]. The accuracy of the prediction y at the unobserved
location x depends on the correlation distance with sample points X.
The closer the location of x to the sample points, the more confidence
in the prediction y(x). The measure of uncertainty in the prediction is
estimated as

®)

1 — ITR—] 2
52(x):62|:1—rTR’1r+7( r) ]

1R 1

B. Reference Point Prescreening Criterion

Training a kriging model from a training dataset is time-
consuming and is O(N?). Stratified sampling using a maximin Latin
hypercube (LHS) methodology [2,26] is used to construct a global
kriging approximation [X, Y]. The nondominated subset of Y is then
stored within the elitist archive (see Sec. IL.B). This ensures that
candidates for global leadership have been precisely evaluated (or
with negligible prediction error) and, therefore, offer no false
guidance to other particles. Adopting the concept of individual-based
control [27], kriging predictions are then used to prescreen each
candidate particle after the population update (or after mutation) and
subsequently flag them for precise evaluation or rejection. The
kriging model estimates a lower-confidence bound (LCB) for the
objective array as

1) fn (b = [51(X) — 05, ()}, -, (P (X) — 05,,(%)}]
)

where @ = 2 provides a 97% probability for f‘lb(x) to be the lower
bound value of f(x). An approximation to the reference point

distance, ci (x), can thus be obtained using Eq. (4). This value, while
providing a means of ranking each solution as a single scalar, also

*If x C X, itis observed from Eq. (8) that §(x) reduces to zero.

gives an estimate to the improvement that is expected from the
solution. At time ¢, the archive member with the highest ranking
according to Eq. (4) is recorded as d,;,. The candidate x may then be
accepted for precise evaluation, and subsequent admission into the
archive if c?z (X) < dyyin. Particles will thus be attracted toward the
areas of the design space which provide the greatest resemblance to Z
and the direction of the search will remain consistent.

As the search begins in the explorative phase and the prediction
accuracy of the surrogate model(s) is low, depending on the
deceptivity of the objective landscape(s) there will initially be a large
percentage of the swarm that is flagged for precise evaluation.
Subsequently, as the particles begin to identify the preferred region
and the prediction accuracy of the surrogate model(s) gradually
increases, the prescreening criterion becomes increasingly difficult
to satisfy, thereby reducing the number of flagged particles at each
time-step. To restrict saturation of the dataset used to train the kriging
models, a limit is imposed of N = 200 sample points where lowest
ranked solutions according to Eq. (4) are removed.

C. Kriging UP-MOPSO Algorithm

To allow for the introduction of kriging and the corresponding
reference point criterion, several modifications must be made to the
original pseudocode, as shown in Fig. 2. The kriging UP-MOPSO, or
K-UP-MOPSO, algorithm is summarized in Fig. 3.

D. Schaffer Test Function

Presented here are the results for the inexpensive convex Schaffer
problem [19]. This mathematical test function is a multidimensional
two-objective minimization problem of the form:

d
10 == (Z xf)m (10)

i=1

d

/2
£(x) =%- [Z(l —xl-)z}y (11)

i=1
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Table 1 Optimization results for the convex Schaffer test function

Algorithm Function min(d,) var(d,)
evaluations

NSGA-II 1000 7.6201 + 1.8600 -

NSGA-II 5000 0.5371 +£0.2823 -

UP-MOPSO 1000 0.1742 + 0.0274 -

UP-MOPSO 5000 0.0553 +£0.0009  0.0159 £ 0.0013

K-UP-MOPSO 150 0.0521 +£0.0003  0.0152 £ 0.0002

where the design space range is x € [0, 10]?, the number of
dimensions d = 10 and y = 2. The curvature of the Pareto front is
scalable by the parameter y. The Pareto front follows the equation

==y oy e01] (12)

1. Specify reference point Z and solution spread &

2. Construct global Kriging approximations

The Schaffer test function is not characterized as deceptive; though a
random initial population tends to be reasonably far from the global
Pareto front, which generally prolongs the explorative phase of the
search. By focusing exclusively on the preferred region and
constructing a kriging model for each objective, the time spent in
exploration and hence the number of function evaluations can be
significantly reduced. Simulations are performed with a population
of 100 individuals using the UP-MOPSO algorithm, the benchmark
nondominated sorting genetic algorithm (NSGA-II) by Deb et al.
[28] and the K-UP-MOPSO algorithm. For the latter, a kriging model
is constructed for each objective based on a LHS sample of N = 50
design points. The reference point is selected as 7 = [0.2, 0.2] with a
solution spread of 6 = 0.015. With no broadly applicable stopping
criterion for multi-objective optimization, all algorithms stopped
after a specified number of function evaluations. Results for the
NSGA-II and the UP-MOPSO algorithms are recorded after 1000

(a) Construct global Kriging models [X, Y] for each objective/constraint where required using LHS of N samples.

(b) Calculate d; of each sample point [X, Y].

(c) The non-dominated sample points of Y are stored within the archive, Q; rank Q by min d;

3. Initialize the swarm population:

(a) Initialize position &;, velocity ¥; and personal best position p; = &;

(b) Evaluate each particle in the population using Kriging; time-step ¢ := 0.

4. Time-stept:=t+ 1.

5. Update swarm population:

(a) Randomly assign highest ranked members of Q to particles.

(b) Update &; and @j;; evaluate each particle in the population using Eq. (9).

(c) Calculate the estimated lower bound reference point distance JZ, i

6. Update Kriging models via pre-screening strategy

(a) For the i-th particle: if d;, ;< highest ranked member of Q then precisely evaluate particle and update Kriging

datasets (N := N + I), else reject particle.

(b) Update Kriging dataset [X,Y] and re-calculate d; of each sample point.

(c) If the sample size N > 200 design points, lowest ranked solutions according to d; are removed.

7. Apply domination criteria to update archive, Q:

(a) Identify non-dominated swarm particles with negligible error (§; — 0) and include in Q.

(b) Identify non-dominated solutions from training datasets and include in Q; if o (d;) < 6 then rank Q by min d;,

else rank Q by crowding distance.

(c) if O limit is breached, if o (d;) < J then rank Q by min d; , else rank Q by crowding distance; lowest ranked

members are removed.

8. Apply mutation operator if consistent improvement in Q is not recorded (mutated particles are precisely evaluated as

per step 06).

9. Update personal best position if dominates existing personal best. p; is recorded as the position which provided the

minimal prediction error §;.

10. if not maximum number of evaluations reached then goto 4.

Fig. 3 K-UP-MOPSO pseudocode.
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Fig. 4 K-UP-MOPSO on Schaffer function showing sample points in
the immediate vicinity.

and 5000 function evaluations. For the K-UP-MOPSO algorithm,
results are recorded after 150 function evaluations.

Statistical results (mean =+ standard deviation) of 50 independent
simulations are shown in Table 1. The value of the solution with
minimum reference distance (i.e., min(d,)) is indicative of the
closeness of the nondominated solution set to the global Pareto front.
The K-UP-MOPSO consistently provides a more accurate solution
set over the standard UP-MOPSO algorithm and NSGA-II algorithm
at approximately 2% of the computational cost (the number of
function evaluations refers to the sample points plus the additional
update points). Results for the variance (i.e., var(d.)) of the non-
dominated solution set are also recorded; this variance is a measure of
the solution spread. Since the NSGA-II algorithm explores the full
extent of the Pareto front, the variance is not recorded. Larger values
of the variance suggest a nonuniform scattering of solutions, while
values that approach § indicate the desired solution spread is attained.

Itis clearly observed from Fig. 4 that the K-UP-MOPSO algorithm
identifies a set of Pareto-optimal solutions in the immediate vicinity
of the reference point. Also shown are selected sample points used to
update the kriging models. The proficiency of the reference point
prescreening criterion is evident from the sample point attraction
toward the preferred region. This establishes a distinct search
direction which is beneficial to prescreen prospective swarm parti-
cles to determine whether they are feasible for precise evaluation. Itis
also observed that only few precisely evaluated solutions reside on
the Pareto front. This information is sufficient to predict a uniform
spread of solutions on the Pareto front with negligible error.

E. Design of a Helical Compression Spring

For engineering design problems, the selection and use of a
reference point to identify preferred solutions is more intuitive since
it can reflect the designer’s own preferred compromise. Presented in
this section is a multi-objective constrained problem which was first
proposed by Tudose and Jucan [29]. They solved it using a multi-
objective genetic algorithm; a subsequent solution, using surrogate
models, is described by Forrester et al. [2]. A helical compression
spring is to be designed to work over a stroke of # = 50 mm with a
corresponding load variation between F;, =40 N and F . =
500 N. ASTM A229/SAE J315 oil tempered wire is used with
modulus of elasticity E = 2.06 x 10° MPa, density p=7.87x
107 kg/mm?, and rigidity modulus G = 0.78 x 10° MPa. There
are two conflicting objectives: 1) to minimize the mass, and 2) to
maximize the fatigue life of the spring. Two constraints ensure that
the spring does not fail in shear and in buckling, respectively. There
are three design variables, whose ranges are shown in Table 2. The

Table 2 Ranges of variables for the design
of a helical compression spring

Designation Variable Lower bound Upper bound

1 d, mm 0.5 7
2 i 4 16
3 ka 0.1 1.1

Wire diameter (mm)

10 f 7
3 6.5
210}
o 6
o
2 s
S w0} o
g i
2 .,F"! 5
£
6
10 4.5
4
0 0.5 1.5

1
Spring mass (kg)

Fig. 5 Full factorial plan and the corresponding wire diameters of the
feasible designs.

first is the wire diameter d. The second is the index i, defined as
the ratio of the mean helix diameter (measured from the center of the
wire) and the diameter d. The final variable is the maximum load
intercoil distance coefficient k,, which is the ratio of the distance
between adjacent coils of the fully loaded spring and the diameter d.

Shown in Fig. 5 are the results of the evaluation of a 250,000 point
full-factorial sampling plan. Only a marginal percentage (i.e.,
66,139) of the designs have proven to be feasible, where they do not
violate the two resistance constraints and they make geometrical
sense (i.e., their variable triplets generate sensible springs). For a
conventional (exhaustive) search, this would suggest a high number
of unnecessary (or at least avoidable) evaluations are performed.

As the following results will indicate, the K-UP-MOPSO
algorithm performs efficiently for this problem, in spite of the very
large infeasible subdomain of the design space. Simulations are
performed with a population of 100 individuals using the NSGA-II
algorithm, the UP-MOPSO algorithm and the K-UP-MOPSO algo-
rithm. For the latter, a kriging model is constructed for the objective
and constraint functions based on a LHS sample of 20 design points,
of which only 7 designs satisfy the constraints (note: designs that
yield geometrically nonsensible springs are omitted). We specify the
reference point as the ideal target design of 0.1 kg mass, and a life of
10" cycles. The solution spread is specified as § = 0.015. For the
NSGA-II and UP-MOPSO algorithms, results are recorded after
2000 function evaluations. For the K-UP-MOPSO algorithm, results
are recorded after 50 function evaluations.

Statistical results (mean =+ standard deviation) of 50 independent
simulations are shown in Table 3. A representative simulation is
shown in Fig. 6 compared with the Pareto front trend estimated from
the full-factorial search of Fig. 5. The K-UP-MOPSO algorithm is
observed to be far more proficient in comparison to the other algo-
rithms, because it consistently obtains more accurate (and uniform)
results at a fraction of the computational cost. Furthermore, the
percentage of feasible solutions (i.e., sensible designs with no record
of constraint violation) is sufficiently greater. Although the objectives
and constraints are inexpensive to compute for this specific problem,
if each experiment were a computer simulation or destructive test, the
potential time and cost savings would be significant.

IV. Fuselage Cross-Sectional Design

As the main illustration of the K-UP-MOPSO algorithm, we shall
consider the preliminary design of a semimonocoque fuselage
enclosing a pressurized cabin and payload bay, using high-fidelity
structural analysis. A fundamental design rule here is that any cross-
sectional shape other than a circle is a stress compromise [30]. Any
deviation from the circular shape forces the frames to carry a bending
load (otherwise they are limited to maintaining the shape of the
fuselage and breaking up the lengths of the longerons). Yet,
competing drivers (primarily, the minimization of pressure drag by a
reduction of cross-sectional area and the maximization of passenger
comfort by increasing certain cabin dimensions) routinely demand
other shapes.
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Table 3 Optimization results for the helical spring design problem

Algorithm Function evaluations % Feasiblity min(d,) var(d,)
NSGA-II 2000 40.2+0.5  0.2925+0.0014 -
UP-MOPSO 2000 41.74+0.7  0.2902 +0.0027  0.0152 £ 0.0023
K-UP-MOPSO 50 68.7+0.2  0.2877 £0.0005 0.0151 £ 0.0002
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lobe.” The passenger cabin and the cargo bay are separated by the
cabin floor, which carries tensile loads resulting from the pres-
surization, as well as the bending loads caused by the weight of the
seats, passengers, etc. From a design optimization perspective we
therefore need a parametric description capable of covering a broad
range of two-lobe designs.

A. Features of a “Good” Parametric Geometry

Different practitioners may hold subtly different mental wish-lists
under this heading, but these differences are usually in the ranking,
rather than in the entries themselves. Here then, are the top three
items on « list, colored, no doubt, by our own biases.

1) Conciseness: The cost of a conventional, black-box opti-
mization process increases exponentially with the number of design
variables. To tackle this “curse of dimensionality,” one must limit the
number of design variables; see Sébester [31] for a more detailed
treatment of this issue as well as a generic approach for building very
low dimensionality geometries.

2) Robustness: The parametric geometry’s ability, in terms of
design space proportion, to yield physically and geometrically
sensible shapes. A low degree of robustness will waste physics-based
analyses on nonsensible designs during optimization. Robustness
may be improved by restricting design variable domains, but regions
of infeasibility are seldom rectangular, so this process may sacrifice
flexibility.

3) Flexibility: This is the breadth of the range of shapes the
parametric geometry is capable of generating. It is very hard to mea-
sure, and it is generally impossible to tell when a model has reached
“sufficient” flexibility. This is because the necessary flexibility is
determined by the vague and difficult to define concept of how
“unusual” would a shape have to be for it to still be worth
investigating.

For fuselage design, beyond the need to reproduce standard
sections, generating families of objects with smoothly controllable
deviations from circularity and multiple overlapping instances
thereof in a concisely parameterized manner is advantageous. Such a
parametric geometry would enable the Pareto analysis of the
tradeoffs involved in deviations from circularity. As hinted earlier,
these are usually driven by the competing goals of structural weight,
drag minimization and comfort.&

' The study of the systematic description of such pseudocircular fuselage
cross-section shapes goes back to the earliest days of computer aided design
analysis [32].

y-coordinate

Fig. 7 Approximation to the wing-to-body fairing area of the Embraer
E145.

B. Concise Cross-Section Model

Let us define the right-hand half of the generic airliner fuselage
cross section in the y-z plane as the explicit function

¥(z) = Cs - max[Y*R(2), Y"X ()] + Az,  z€[0,1] (13)
where the coordinates y(z) are a composite depiction of the indi-
vidual shape description of the cargo lobe (Y©AR) and the passenger
lobe (YPAX)

YCAR(7) — CCARNTM (QRCAR _ ANTA 2 ¢ [0, 2RCAR] (14)
0 elsewhere
YPAX (Z)
_ CPAX[Z —(1- 2RPAX)]N{’AX(1 _ Z)NgAX7 ze[l— 2RPAX 1]
0 elsewhere

s5)

In its most flexible form, the cross-sectional shape is described by ten
variables, each with a clear and intuitive meaning. The upper
(passenger) lobe and the lower (cargo) lobe have variable radii: RPAX
and RER  respectively. The deviations from circularity are controlled
by two exponents on each lobe: NPAX NPAX NCAR “and NTAR,
Additional flexibility is enabled by a scaling coefficient on each lobe
(CPAX and CCAR) (see Fig. 7 for an example). The section is normal-
ized to a height of one; the coefficient Cg and the offset Az help
define the full size, correctly positioned section.

C. Cabin Design Constraints and Objectives

We seek to design a single-aisle fuselage cross section capable of
accommodating 95 percentile U.S. male passengers seated six
abreast, respecting the industry standard requirements in terms of
aisle headroom, headroom under the overhead bins, overhead bin

*We are viewing the section from the nose of the aircraft, with the vertical
z-axis pointing upwards and the horizontal y-axis pointing to the port side.
$The shape descriptions use class functions from Kulfan [33,34].
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Fig. 8 Cabin space constraint points (denoted by + symbols) related to passenger space requirements based on the size of a 95 percentile U.S. male, as
well as on the space needed for a fuselage frame of constant depth. The cargo lobe must accommodate the standard single-aisle container and/or the wing
carry-through structure. A feasible cross-section shape is one that envelops all + symbols.

space, and window seat foot, shoulder, and headroom. We also seek
to design the cargo bay to accommodate the standard LD3-45W
container (see Fig. 8). We incorporate these conditions into a set of
constraint points (marked by + symbols on Fig. 8), which must fall
inside the section to ensure the satisfaction of all of these
requirements. Formally, we define the design variable vector

— CAR CAR CAR CAR PAX PAX PAX
X = [RCAR, NCAR NCAR (CAR RPAX NPAX NPAX

CPX Wy, Wy, Wag, Hp] (16)

(see Table 4 for the definition and ranges of these variables) and,
denoting the number of constraint points that fall outside the cross
section with N, we set the constraint N, (X, Cg, AZ) = 0. The
constraint is satisfied implicitly through the parametric model and is
thus not handled directly by the optimizer, yielding a first-order
discontinuity. As K-UP-MOPSO is inherently a population-based
gradient-free approach, this approach is permissible.

For a given x, we seek to wrap the constraint points as tightly as
possible, so we obtain f, the cross-sectional (half) area as:

1
f1(x) = min / y(z)dz subject to Ny, =0 17
Cs,Az [

where each evaluation of f|(x) requires a Nelder and Mead pattern
search. The second objective f, is a measure of passenger comfort
and we calculate it as:

F2(X) = 0.6Wg + 0.1W, + 0.1W,g + 0.2H, (18)

The third objective relates to the stress in the cabin structure. There
are a variety of loads (e.g., bending loads, aerodynamic loads, etc.)

Table 4 The 12 cross-section definition design

variables

Variable Definition Lower bound Upper bound
RCAR See Eq. (14) 0.3 0.5
NEAR See Eq. (14) 0.1 0.5
NEAR See Eq. (14) 0.1 0.5
CCAR See Eq. (14) 0.5 1.2
RPAX See Eq. (15) 0.3 0.5
NPAX See Eq. (15) 0.1 0.5
NEAX See Eq. (15) 0.1 0.5
CPAX See Eq. (15) 0.5 1.2
Wy Seat width 0 1
W Aisle width 0 1
Wr Armrest width 0 1
Hy Bin headroom 0 1
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Fig. 9 Reference point 737-style fuselage cross section (normalized
coordinates).

that are dynamically applied to an aircraft fuselage in flight.
Furthermore, the stress is nonuniformly distributed due to deviations
in frame depth and circumferential size along various stations. We
propose a more simplified stress analysis that provides a fairly
sensible measure of the harshness of the stress-state of a candidate
design. A two-dimensional finite element analysis is still required,
which is a physics-based, high-fidelity analysis. Distributed loads are
applied to the frame circumference and the floor to signify
pressurization loads and weight loads, respectively.

A two-dimensional (linear static) finite element model is
constructed using Nastran [35]. Numerical loading values are
obtained from Niu [30] as 8.25 psi and 0.35 psi for the frame and
floor, respectively. The I-beam and C-section, representing the floor
and frame, respectively, are constructed with a series of beam
elements of depth 0.125 m. The material is aluminum Al2024-T3
with modulus of elasticity E = 7.5 x 10'° Pa and Poisson ratio of
v = 0.33. The model is analyzed to determine the von Mises stress o,

Table 5 Aspiration values for the reference point
representative fuselage

Fuselage  Cross-sectional area, m*> Comfort Peak stress (x10° Pa)

Reference 6.9928 0.5 1.4908
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Fig. 10 Selected screening results for various parameters (normalized variable ranges).
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Fig. 11 History of precise evaluations for the K-UP-MOPSO algorithm on the fuselage problem.

distribution around the frame. The simulation is completed by
identifying the peak stress from the resultant stress distribution as the
objective function, resulting in another discontinuity in the first-
order. By minimizing the identified peak stress (where the location
varies dependent on the cross-sectional shape), emphasis is indirectly
placed on obtaining designs that exhibit a uniform stress distribution
(i.e., circular cross sections)

f3(x) = min{max[o, (y(z))]} 19

D. Numerical Example

To reiterate on the concept of using the K-UP-MOPSO algorithm
to focus on and exploit our preferred compromise, we (as the
designers) have selected our best approximation® of the Boeing 737
fuselage cross section (see Fig. 9) as the reference point. This cross
section has a slight hint of a double-lobe design where the cusp point
coincides with the floor. The quasi-circular cross section implies a
fairly uniform circumferential stress distribution while maintaining a
relatively low cross-sectional area for reduced pressure drag. The
aspiration values obtained from the representative cross section are
given in Table 5. The K-UP-MOPSO algorithm will use these
aspiration values to improve on the performance characteristics,

#This case study is merely a demonstration of the algorithm on a realistic
engineering design problem. We have only taken into account some of the key
objectives and constraints here, so the actual results may be different from
those obtained if the same exercise was conducted in an industrial setting.

while still maintaining a similar level of compromise. The solution
spread is restricted to § = 0.05.

The allowable computational budget for this problem is directly
related to the multimodality of the objective landscapes. The first-
order discontinuity of the objectives places further limitations on the
use of kriging models, since a larger number of sample points are
required to accurately depict nonsmooth regions of the design space.
Screening studies are a useful and simple technique to gain an
understanding of the optimization landscape. Screening studies are
performed by maintaining the baseline fuselage of the reference
geometry, and then systematically varying two independent param-
eters to generate contour plots. Selected screening plots are shown in
Fig. 10. The deceptive landscapes originate from the element of
uncertainty in the location of the peak stress for each individual
cross-sectional design, as well as the requirement of the cross section
to enclose all constraint points. Adopting user-preferences, the
kriging models can be entirely localized within the preferred region
of the design space, thereby alleviating the irregularity of the
landscape.

A swarm population of N, =100 particles was initialized; a
common value used in previous optimization studies using MOPSO
variants [22,23]. Since the majority of the swarm (at every population
update) is calculated using the constructed kriging models, the
population size is not an important consideration for the K-UP-
MOPSO algorithm. The objective space was normalized for the
calculation of the reference point distance by (fiax — fumin)- A
kriging model based on an LHS of N = 100 points was constructed
for each objective. The accuracy of the global kriging models could
be fairly low here as a result of possible discontinuities. However,
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Fig. 12 Representation of the performance of K-UP-MOPSO for the fuselage problem.

since a user-preference module is adopted, the kriging models will
focus entirely within the preferred region (as dictated by the
prescreening criterion), providing a more accurate depiction of the
localized area. We have thus imposed a computational budget of 450
precise evaluations, due to the first-order discontinuity.

A further 350 precise evaluations of the objective array were
performed over ¢ ~ 170 time-steps before the evaluation limit was
breached. The additional 350 evaluations are composed of 280
particles and 70 mutations that satisfied the prescreening criterion, as
shown in Fig. 11. It is observed from the stem-plot in Fig. 11a that
the largest number of update points occur in the earlier stages of the
search. This is due to the relatively poor prediction accuracy of the
global kriging models. As the training datasets of the kriging models
become localized within the identified preferred region, a reduced
percentage of particles satisfy the prescreening criteria. This is
opposite to the mutation stem-plot shown in Fig. 11b. As expected,
during the explorative phase of the search, the set of nondominated
solutions within the archive is continuously updating. As the search
stagnates and there is less consistent improvement in the archive,
particles are scheduled for mutation in an attempt to encourage
further improvement.

Figure 12a features the progress of the solution with minimum
reference point distance d,,;, as the number of precise evaluations
escalates. For this simulation, 100 precise evaluations are required to
reach within 65% of the most preferred solution* and an additional
20 evaluations to reach within 15%. After approximately 235
evaluations, the search has reached within 3% and appears to have
converged from this point only for slight decreases in d, as the
swarm exploits the preferred region. Figure 12b features the history
of the solution spread. Although the algorithm does not obtain the
desired spread of § = 0.05, a fairly consistent spread of ~0.04 is
observed after 230 evaluations. Table 6 demonstrates the proficiency
of the K-UP-MOPSO algorithm against the UP-MOPSO and NSGA-
II algorithms, with a similar search effort. The results clearly high-
light the superiority of the K-UP-MOPSO algorithm.

The adept searching technique of K-UP-MOPSO is further
demonstrated in Fig. 13a which features the 200 most recent
solutions scheduled for precise evaluation. Attraction toward the
preferred region dictated by the reference point is observed, which
progressively becomes more focused and localized. Furthermore,
few solutions appear to disturb the search direction of the algorithm,
i.e., the trajectory of the search remains consistent. Hence, the
reference point prescreening criterion proves to be very capable at
filtering out solutions that do not reside within the preferred region.
This argument also applies to particles that are scheduled for
mutation, which is evidently nondestructive. Featured in Fig. 13b is
the final set of 23 nondominated solutions. The optimization frame-
work was successful in obtaining solutions that exhibit improvement

***We refer to the most preferred solution as that with the minimum value
of dmin

over all three objectives compared with the reference point (i.e., the
reference point is dominated). The solutions are clearly more
inclined toward f3, suggesting that managing the circumferential
stress distribution is the most active objective.

In this study, our most preferred fuselage geometry is the solution
that provides the most resemblance to the reference point in terms of
compromise between the objectives. Table 7 features the percentage
improvement obtained over each objective with respect to the
reference geometry. The geometry of the preferred solution is
featured in Fig. 14. It is observed that the cusp point is no longer as
pronounced as the reference design. The preferred geometry follows
a more circular form, which corresponds to the 33% recorded
improvement in the stress. An evident reduction in area is visible
from the passenger lobe as well as a more comfortable seating
arrangement for passengers due to the elongation in the width. The
circumferential stress distribution around the reference and preferred
geometries is featured in Fig. 15. The von Mises stress is recorded at
each circumferential station which is normalized with respect to the
z-axis. In addition to a reduced overall operating stress, the stress
distribution of the preferred geometry is very uniform compared with
the reference design. The peak stress for both geometries occurs at
the intersection of the floor.

Perhaps the greatest advantage of the K-UP-MOPSO algorithm is
its ability to provide a spread of solutions to the designer. This
concept offers flexibility to the designer to select a design that
deviates slightly from the preferred compromise. As an example, we
have analyzed the solution which provides additional improvements
of 0.25 and 0.2%, respectively, in area and comfort, at the expense of
2 9.5% increase in the peak stress. This is the solution with the best
recorded area, as dictated by the extent of the solution spread.

Table 6 Optimization results for the fuselage
cross-sectional design

Algorithm Function evaluations min(d,) var(d,)
NSGA-II 500 0.0649 -

UP-MOPSO 500 0.0440 0.1422
K-UP-MOPSO 450 —0.0497  0.0410

Table 7 Objective values for the preferred solution and the
respective improvement over the reference design

Fuselage Cross-sectional ~ Comfort  Peak stress
area, m? (x107° Pa)

Reference 6.9928 0.5 1.4908

Preferred 6.4952 0.552 0.9915

% Improvement 7.1 10.4 33.5
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Fig. 13 Final set of nondominated solutions and most recent sample points.

Figure 16 features the stress contour of this design, compared with
the preferred solution and the reference design. For the design with
minimal area, an evident increase in the peak stress, which is located
at the floor intersection, is observed over the preferred design.
Despite the nonuniformity in the circumferential stress distribution
of the minimal area design, it clearly does not diverge any further than
the reference design.

V. Conclusions

Integrating surrogate models into virtual engineering is receiving
much interest, because it allows efficient management of compu-
tationally expensive design problems. In this paper a user-preference
module is integrated into a kriging-assisted particle swarm algorithm
to focus all computational effort on identifying only solutions of
interest to the designer. The swarm is attracted to preferred regions of
the Pareto front by specifying a reference in the objective space. A
reference point distance metric functions as both a guidance
mechanism for selecting leaders for the swarm, as well as a novel
selection criterion for locally updating the kriging datasets. It is
believed that this is the first attempt at integrating a user-interactive
module on multiple levels to an evolutionary surrogate-assisted
multi-objective optimization framework.

3.5 T T T T T
—e— Reference point

3H —2— Preferred solution 4

0.5

z-coordinate

y-coordinate

Fig. 14 Geometrical shape of the preferred design compared with the
737-style reference design.

The overarching goal of the algorithm development effort reported
on here is to reduce the often prohibitive computational cost of multi-
objective design search to the level of practical affordability in
aerospace engineering problems. It has been shown through a
mathematical test function and engineering design problems that
driving a surrogate-assisted particle swarm toward a sector of special
interest on the Pareto front can be an effective and efficient mech-
anism. As the main illustration of the algorithm, the preliminary
cross-sectional design of a semimonocoque fuselage, characterized
by a double-lobe parametric model, was considered. Competing
drivers such as the uniformity in the circumferential stress distri-
bution, the minimization of cross-sectional area, and the maxi-
mization of passenger comfort interacted to form a highly conflicting
and deceptive optimization problem. Compared with more conven-
tional methods, the advantages of the algorithm are conclusive, even
when exposed to the apparent discontinuities in the objective
landscapes. Final solutions obtained provide significant improve-
ment over the reference geometry, and are clearly reflective of
preferred interest.

The reference point criterion is capable of balancing exploration of
the search space, versus maintaining a high selection pressure on
solutions that exploit the preferred region. Itis observed that there is a
distinct attraction toward the preferred region dictated by the
reference point, which implies that the reference point criterion is
adept at filtering out solutions that will disrupt or deviate from the
optimal search path. While the heuristic presented here proved
effective over the chosen battery of tests, no mathematical proofs of
convergence are available at this time, nor is the impact of the
mutation operator fully understood on the convergence rate of the
algorithm, potentially warranting more research in this direction.
Further studies could also evaluate alternative stopping criteria, and
the performance of the algorithm on larger-scale optimization
problems.
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Fig. 15 The circumferential stress distribution over the preferred and
reference designs.
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